当前位置:文档之家› 基于模型的车身耐撞性优化设计

基于模型的车身耐撞性优化设计

基于模型的车身耐撞性优化设计
基于模型的车身耐撞性优化设计

建立数学模型的方法、步骤、特点及分类

建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非 预制性、条理性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 §16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

车身安全结构的秘密 爱唯欧整车拆解汇总

如何确保小型车在碰撞事故中对乘员提供尽可能多的安全保护是始终困扰工程技术人员的一道难题,由于受先天“体型”的限制,小型车往往需要在车身安全结构以及被动安全系统上做出更多的努力。 一辆车出厂后,车身表面有车身覆盖件,坐入车内,所能看到和摸到的则是内部装饰件,而夹在它们中间而且往往也是消费者很难看到的白车身则是一辆车的骨架,更形象的说,它就类似于支撑人体的骨骼。车上的零部件都是或直接或间接的安装在白车身上,而且它的结构设计也决定了车辆在碰撞时的安全性能。我们就通过对爱唯欧这款小型车进行拆解,来看看车身结构以及相关零部件在设计上是如何保证乘员安全的。 ●车身安全设计理念 当层层剥去它的“皮肤”和“肉体”后,车身骨架便清晰的浮现在眼前。其实对于小型车来说,由于车身相对较短,所以就需要车头和车尾的溃缩吸能区在碰撞后出现溃缩变形的同时也要保持有一定的刚性,也就是相对要“坚硬”一些,这样则不至于使得碰撞对乘

员舱造成破坏。当然,如果吸能区过于“坚硬”,那么碰撞时的能量最终则会转移到乘员身上,对其造成巨大伤害,所以如何平衡好“软”与“硬”的关系,往往是车身设计中一个很棘手的问题。 除此之外,如何在一点受到撞击后,将这种能量传递给整个车身,也就是分散可溃缩车身设计同样会起到很大的作用,特别是溃缩区相对狭小的小型车就显得尤为重要。在溃缩区用尽这种极端碰撞情况下,高强度的乘员舱则是对车内乘员的最后保障,对乘员舱的设计就是要足够“坚硬”以防止任何物体对乘员舱的侵入。明白这两个道理后,我们就更容易理解车身的设计的缘由了。 ●双前防撞梁同时具有行人保护设计

两道车身纵梁从前防撞梁一直贯穿至车尾,这两根纵梁可谓是整个车身的“中流砥柱”,它一方面起到支承车身的作用,另外当车辆发生纵向碰撞时,用来分散撞击能量和抵御车身的变形。

优化设计数学建模

一、问题重述 1、利用优化设计相关理论计算法,对某设计问题做优化设计。要求如下: ①列出优化数学模型; ②选择所用优化算法; ③画出程序框图; ④程序编写; ⑤程序调试运算结果。 现根据以上条件,结合生活实际,准备以铁板为材料设计一鱼缸,为了能使鱼儿有更大的生存空间,要求鱼缸容积最大。 现有边长为5米长的方形铁板,预备在四个角减去四个相等的方形面积,用以制成方形鱼缸,如何减能使鱼缸的容积最大。 二、问题分析 2.1、对于此问题,我采用的数学模型包括三部分,即设计变量、目标函数和约束条件。 模型如下: 其中,设裁去铁块的边长为:x(0

四、程序编写及函数图像 4.1求极值所用程序如下: function q=line_s(a,b) N=10000;r=0.01; a=0;b=1.5; for k=1:N; v=a+0.382*(b-a); u=a+0.618*(b-a); fv=-25*v+20*v^2-4*v^3; fu=-25*u+20*u^2-4*u^3; if fv>fu if b-v<=r u fu break; else a=v;v=u; u=a+0.618*(b-a); end else if u-a<=r v -fv break; else b=u;u=v; v=a+0.382*(b-a); end k=k+1 end end 4.2 函数曲线图程序如下: 如下曲线所得y值为负,前面(1*)已作解释。 x=0:0.1:2.5; y=-25*x+20*x.^2-4*x.^3; plot(x,y); 五、程序调试运行结果 5.1 如图所示: 当k执行5或7或10或12次时,均有x=0.8329时,有最大y=9.2593(函数中已做处理,变负为正,可以对照曲线图)。

城轨车辆耐撞性及其吸能结构的研究

城轨车辆耐撞性及其吸能结构的研究 随着轨道交通行业的迅速发展及其运量的不断加大,车辆运行的安全性已越来越受到人们的重视。轨道车辆的安全性分为主动安全性和被动安全性,从以往发生的事故来看,仅仅依靠主动安全防护技术往往难以确保乘员的生命安全与车体结构不受到重创,因此车辆被动安全防护技术已经成为国内外轨道车辆技术人员所研究的重要课题。 本文首先利用ANSYS/LS-DYNA软件分别对三种同等壁厚的薄壁管件(圆管、方管、锥形管)的碰撞过程与装在某B型地铁头车上压溃式吸能结构的工作过程进行了仿真分析,得出了它们各自的吸能量与碰撞力随时间的变化曲线,在此基础上对其耐撞性进行了研究和评价。其次,依据金属切削过程会消耗大量能量的原理,对不同参数(刀具前角、切削深度、工件材料、工件形状等)下刀具切削工件的过程进行了碰撞仿真分析,探索了各种参数对切削吸能过程的影响。 结果表明,刀具切削工件吸收能量的过程与管被压溃吸收能量的过程相近,但前者的平均碰撞力远小于后者且其波动幅度也比后者更小。在对不同切削形式下的切削式吸能结构进行了碰撞仿真分析和吸能特性的评估后得知,切削—压溃式吸能结构吸能效果最优。 最后,分别对无防爬吸能结构、装有压溃式防爬吸能结构和装有切削式防爬吸能结构的B型地铁列车头车在12.25km/h和18.36km/h两种速度下正面碰撞固定刚性墙的过程进行了仿真分析。结果表明:(1)装有切削式防爬吸能结构头车端梁和缓冲梁的吸能量比无防爬吸能结构时的吸能量降低达93.6%和57.5%,比装有压溃式防爬吸能结构时的吸能量降低达23.6%和29.3%;(2)装有压溃式防爬吸能结构头车的初始碰撞力峰值最小,其值是无防爬吸能结构时的38.3%和46.2%,

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模的基本步骤

数学建模的基本步骤 一、数学建模题目 1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。 2)给出若干假设条件: 1. 只有过程、规则等定性假设; 2. 给出若干实测或统计数据; 3. 给出若干参数或图形等。 根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。 二、建模思路方法 1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。 2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有: 1). 回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。 2). 时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。 3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。 3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。 三、模型求解: 模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合

适的求解软件的选择至关重要,常用求解软件有matlab,mathematica,lingo,lindo,spss,sas等数学软件以及c/c++等编程工具。 Lingo、lindo一般用于优化问题的求解,spss,sas一般用于统计问题的求解,matlab,mathematica功能较为综合,分别擅长数值运算与符号运算。 常用算法有:数据拟合、参数估计、插值等数据处理算法,通常使用spss、sas、Matlab作为工具. 线性规划、整数规划、多元规划、二次规划、动态规划等通常使用Lindo、Lingo,Matlab软件。 图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。 四、自学能力和查找资料文献的能力: 建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。 五、论文结构: 0、摘要 1、问题的重述,背景分析 2、问题的分析 3、模型的假设,符号说明 4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等) 5、模型的求解 6、模型检验:模型的结果分析与检验,误差分析 7、模型评价:优缺点,模型的推广与改进 8、参考文献 9、附录 六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:

汽车前后防撞梁设计地的要求的要求规范

汽车前后防撞梁设计规范 一、目的: 指导汽车前后防撞梁总成设计;提供汽车前后防撞梁总成设计的思路。 二、范围: 该规范适应于M1类车辆汽车前后防撞梁的设计。主要介绍了汽车开发过程中汽车前后防撞梁总成的作用及在整车中的影响。首先对汽车前后防撞梁在整车中的功能进行了概述,尤其是对汽车前后防撞梁碰撞性能做了详细的描述;同时对汽车前后防撞梁总成设计要点作了描述;最后对汽车前后防撞梁的加工制造性作了阐述。 三、规范性引用文件: 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 11551-2003 乘用车正面碰撞时的乘员保护 GB 17354-1998 汽车前、后端保护装置 GB 20072-2006 乘用车后碰撞燃油系统安全要求 C-NCAP 中国新车评估程序2012版 四、汽车前后防撞梁总成主要功能 1、汽车前后防撞梁总成功能概述 汽车前后防撞梁总成,是车身第一次承受撞击力的装置,也是车身中的一个重要构件,其功能主要有: a. 保护保险杠在低速碰撞过程中尽量不要破裂或者发生永久变形。 b. 保护车身骨架前后端纵梁在行人保护或者可维修性碰撞时不发生永久变形或者破裂。 c. 在100%正面高速碰撞、后面高速碰撞时起到第一次的吸能作用,在偏置碰撞中不仅起到第一次吸能作用,还能起到碰撞过程中均衡传递受力的作用,防止车身左右两侧受力不均。 2、汽车前后防撞梁总成碰撞性能概述 前防撞梁总成碰撞性能 前防撞梁总成的碰撞性能主要需满足低速碰撞和高速碰撞两个部分的法规要求。其中, 低速碰撞需满足的法规要求为:GB17354-1998 汽车前、后端保护装置。高速碰撞需满足的法规要求为:GB11551-2003 乘用车正面碰撞时的乘员保护; C-NCAP标准,需满足其100%正面碰撞和40%偏置碰撞要求。 3、低速碰撞对前防撞梁设计的性能要求 低速碰撞的国家标准GB l7354—1998规定的正撞速度为4km/h,车角碰撞速度为2.5 km/h,对车身的要求就是车身本体、前防撞梁和吸能盒等不能有

基于事故数据的乘用车品牌类型耐撞性和攻击性分析

技术研究 | Technology Research 18道路交通科学技术 2019.02文/王励旸 李平凡 李艳 0 引言 我国的机动化水平持续提高,汽车逐步走进千家 万户,车辆使用需求仍在扩展。其中,车辆安全因素日 渐受到重视,消费者正逐步形成参考国内外基于碰撞 试验的安全性评价结果选择购车品牌的习惯。然而, 通过有限的碰撞试验不能覆盖真实事故中全部事故 形态。有研究指出,碰撞试验条件苛刻、成本高昂而内 容却较单一,难以全面模拟事故环境,应以基于事故 数据的车辆安全性分析作为补充。在国外,澳大利亚、 瑞典等国开展了此类分析,通过建立统计模型部分还 原事发时车辆的工况,从而在真实场景下评估车辆安全性。国外实践表明,此类分析可与基于碰撞试验的安全性评价互为补充,对于汽车企业的研发、消费者购车以及公安交通管理部门进行针对性管控均具有指导意义。1 国内外研究现状澳大利亚早在1992年即开始进行基于事故数据的车辆安全性分析,此后逐步形成了每年更新事故数据发布报告的机制,同时也发布基于评价结果的车系安全性评级手册,以五星制评级的表达方式为消摘 要:为分析我国道路环境下乘用车品牌类型的安全性, 本文基于2014-2017年的事故数据,利用logit模型,考虑14种非车辆因素,分析了7种品牌类型的耐撞性和攻击性,检验了耐撞性和攻击性的相关性。分析结果表明,超豪华品牌的耐撞性在乘用车中最强,自主品牌轿车的攻击性最弱。综合耐撞性和攻击性的结果,豪华品牌轿车拥有最高的总体安全性。 Abstract :In order to analyze the safety performance of different brands of passenger cars under Chinese road condition, this paper, using logit model and simultaneously taking 14 non-vehicle factors into consideration, estimated the crash-worthiness and crash aggressivity of seven brands of passenger cars based on the crash data from 2014 to 2017. The correlation between crash-worthiness and crash aggressivity was examined. The analysis results showed that the crash-worthiness of the ultra-luxury brands were the strongest among passenger cars and the self-owned brands were the least aggressive. When combining the results of crash-worthiness and crash aggressivity; luxury brands have the highest overall safety performance. 关键词:耐撞性;攻击性;基于事故数据的车辆安全性评价;logit模型;乘用车;品牌 Key words :crash-worthiness; crash aggressivity; car safety rating based on crash data; logit model; passenger car; brand 基于事故数据的乘用车品牌类型 耐撞性和攻击性分析

建立数学模型的方法、步骤、特点及分类 ()

薅§16.3建立数学模型的方法、步骤、特点及分类 螁[学习目标] 蚀1.能表述建立数学模型的方法、步骤; 蒆2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理性、技艺性和局限性等特点;; 羆3.能表述数学建模的分类; 蒃4.会采用灵活的表述方法建立数学模型; 葿5.培养建模的想象力和洞察力。 薆一、建立数学模型的方法和步骤 膃—般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好的模型。这种方法称为系统辨识(SystemIdentification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 袁可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的知识.以下所谓建模方法只指机理分析。 膈建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从 薆§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 薄图16-5建模步骤示意图 蚃模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 芁模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.

数学建模截断切割的优化设计

工业中截断切割的优化设计 一摘要 本文讨论了加工业中截断切割的优化排序策略我们对于不同的切割 方式总数用穷举法得到720 种所可行解及其费用并对于原问题建立了决策 并对所给出的算法进行了分析和检验 1.当e=0时我归纳出解决问题的最优法则, 从而提出了将面间距统一成判断权重来作为排 序准则的算法,同时证明 了e = 0 的情况下根据这种最优准则能够实现题目所要求的优化目标 2.对于e 1 0 时我们提出了实用准则 最后我结合实际问题将本问题进行了拓展讨论了当最终产品(成品) 在毛坯(待加工长方体)中位置不预定时应如何实施加工方案以达到节省费用 和节约资源的目的,使我们的方案适用于更为广阔的领域 二问题的重述、 在工业生产中,常需要采取将物理一分为二的截断切割方式从一块长方体材料中切出一个小长方体,其加工费用取决于水平切割和垂直切割的截面面积,以及调整刀具时的额外费用。对本题所给出的问题我们首先面临的对加工次序的排序策略然后我们考虑当毛坯和产品位置不预定的时候如何采取策略以达到我们的优化目的 问题: 1> 需考虑的不同切割方式的总数。 2> 给出上述问题的数学模型和求解方法。 3> 试对某部门用的如下准则做出评价,每次选择一个加工费用最少的切割面进行切割。 4> 对于e=0 的情况有无简明的优化准则。 5> 用以下实例验证你的方法: 待加工长方体和成品长方体的长,宽,高分别为10,14.5,19 和3,2,4,两者左侧面,正面,底面之间的距离分别为6,7,5(单位为厘米,垂直切割费用为每平方厘米1 元,r 和e 的数据有 4 组: 1) r=1,e=0; 2) r=1.5,e=0; 3) r=8,e=0; 4) r=1.5, 2 £ e £15 ; 三模型的假设和符号说明 1 切割刀具为两个一个水平放置一个为垂直放置 2 目标长方体所在位置不与毛坯任一表面重合 3 水平方向只需平行移动水平刀具垂直方向只平行移动或调整后再平行 移动刀具因此调整费用e 是否付出仅取决于先后两次垂直切割是否平行而 不记是否穿插着水平切割 4毛坯与工作台接触的底面是事先指定的

数学建模案例_停车场的优化设计(1)

案例16 停车场的优化设计 随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽

轿车侧面碰撞车身结构安全性和乘员损伤保护研究

轿车侧面碰撞车身结构安全性和乘员损伤保护研究 就经常发生的交通事故现场报告分析,轿车侧面碰撞是造成乘员重伤和死亡的主要交通事故之一。我国近几年才开始针对于这方面的研究,一般来说轿车侧面碰撞包括车对车和车对障碍物两种碰撞形式,车与车的碰撞一直以来备受人们关注而成为研究的重点,车与障碍物之间的侧碰研究却几乎为零。想要提高车辆侧面碰撞的安全性就必须对这两种情况同时进行研究。 标签:车辆安全性;乘员损伤;防护措施 我国规定,不管是直接碰撞还是间接的碰撞,在轿车侧面碰撞试验中,对于其撞击器的选取大多采用移动变形等类型的壁障,而在仿真研究轿车的侧面碰撞中,多采用移动变形壁障来代替撞击的车辆,以便于能够更好地进行研究。 1 轿车侧碰的碰撞性 碰撞力的传递性: 在轿车的实验过程中,重要的构成部件对车辆的整体性、安全性与舒适性等问题有着直接的影响。轿车的车身结构从前往后依次为前柱、中柱、后柱。轿车结构中的这些立柱有一定的支撑作用,也是轿车的门框。轿车侧面受到外力的撞击的时候,惯性会使车门产生向内冲击的力,车门框就会对这种力产生抑制,当然车门框在抵御这种外力时也会受到由车门传递而来的侧向作用力。 在轿车门内配置防撞杆,其作用在于当前门受到侧向撞击力时会将作用力直接传递或转移到铰链柱和中柱。轿车的铰链柱和后柱在外界的侧向力的作用下随之产生一种向车内运动的破坏力,铰链柱上端的前风窗下横梁和仪表板安装横梁的轴向刚度提供了抵抗这种来自于外界的力,而铰链柱下端的刚度是由车身底部横向结构来提供的。在轿车车门受到侧向撞击力的情况下,向车内转移、传递的破坏力将会使中柱受到向车内弯曲弯矩力而变形,弯曲刚度和中柱上、下接头的刚度形成了向车内变形的抵抗。也就是说在受到侧向撞击时,接头就会起着传递作用,通过车顶边梁、车顶横梁和相关的接头结构致使作用在中柱上的一部分力就会向非撞击侧传递。车顶结构提供了中柱上面的接头来抵抗对中柱向车内的运动力,其原理在于车顶边梁的弯曲刚度、车顶横梁的轴向刚度、接头结构相应的刚度、前柱和后柱的弯曲刚度等刚好通过中柱下方的接头,横梁将会接受部分作用在中柱上的应力。作用在门槛梁上的侧向力,受到外部的直接撞击与内部中柱作用的影响,而其门槛梁上的侧向力则是通过地板和地板横梁来进行分散和传递的活动。 2 侧面碰撞导致的车身结构安全性影响 目前我国生产制造的轿车,关于轿车的侧面强度的设计存在一定的问题,例如:汽车的侧面一旦受到外测力,而此时轿车的本身结构来看,非常小的变形空

建立数学模型的一般方法

建立数学模型的一般方法 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义. 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化、均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样. 模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量(常量和变量)之间的等式(或不等式)关系或其他数学结构.这里除需要一些相关学科的专门知识外,还常常需要较广阔的应用数学方面的知识,以开拓思路.当然不能要求对数学学科门门精通,而是要知道这些学科能解决哪一类问题以及大体上怎样解决.相似类比法,即根据不同对象的某些相似性,借用已知领域的数学模型,也是构造模型的一种方法.建模时还应遵循的一个原则是,尽量采用简单的数学工具,因为你建立的模型总是希望能有更多的人了解和使用,而不是只供少数专家欣赏. 模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值计算等各种

优化设计的数学模型及基本要素

第2章 优化设计的数学模型及基本要素 Chapter 2 Mathematical Modeling for Optimization 2-1 数学模型的建立 (mathematical modeling) 建立数学模型,就是把实际问题按照一定的格式转换成数学表达式的过程。数学模型建立的合适、正确与否,直接影响到优化设计的最终结果。 建立数学模型,通常是根据设计要求,应用相关基础和专业知识,建立若干个相应的数学表达式。如机械结构的优化设计,主要是根据力学、机械设计基础等专业基础知识及机械设备等专业知识来建立数学模型的。 当然,要建立能够反映客观实际的、比较准确的数学模型并非容易之事。数学模型建的过于复杂,涉及的因素太多,数学求解时可能会遇到困难;而建的太简单,又不接近实际情况,解出来也无多大意义。因此,建立数学模型的原则:抓主要矛盾,尽量使问题合理简化。Principle :The problem is simplified as much as possible. 由于设计对象千变万化,即使对同一个问题,由于看问题的角度不同,数学模型建的可能也不一样。建立数学模型不可能遵循一个不变的规则,本课也不准备把大量的时间花在数学模型的建立上。仅想以几个例子来演示一下数学模型的建立过程,使学生从中得到一些启发。 Exp. 2-1 例2-1 用宽度为cm 24,长度cm 100的薄 铁皮做成cm 100长的梯形槽,确定折边的尺寸 x 和折角θ(如图 2-1所示) ,使槽的容积最大。 解: 由于槽的长度就是板的长度,槽的梯形 截面积最大就意味着其容积最大。因此,该问题 就由,求体积最大变成求截面积最大。槽的梯形 截面积为: 图 2-1 ?= 2 1S 高 ?(上底边+下底边) 其中,上底边=x 224-;下底边=θcos 2224x x +-;高=θsin x 定义:该优化设计问题的目标函数是槽的梯形截面积S ,设计变量为θ,x 。问题可以简单地归结为:选择适当的设计变量θ,x ,在一定的限制条件下,使目标函数S 达到最大,限制条件为: 120,20<<<

车身结构轻量化与抗撞性多目标协同优化设计方法研究

车身结构轻量化与抗撞性多目标协同优化设计方法研究 汽车的轻量化和安全性设计是实现汽车节能、环保和安全三大设计发展主题的关键技术手段。车身轻量化与抗撞性是相互矛盾和相互制约的两个重要性能,车身的轻量化与抗撞性优化设计,是汽车轻量化、安全性设计的重要组成部分和核心关键技术。 作为整车最关键的连接和承载部件,车身的轻量化与抗撞性优化设计须协同考虑车身的各项基本性能,是一项典型的多参数、多约束和多目标的复杂系统工程。如何系统科学地开展车身的轻量化与抗撞性优化设计是当前汽车行业非常重要的研究课题,研究热点和难点。 目前,已有的研究工作中主要是针对车身单个或小部分零部件的轻量化或抗撞性优化设计居多,而以车身整体为研究对象进行系统地轻量化与抗撞性多目标协同优化设计的研究相对偏少,车身结构的轻量化与抗撞性优化设计仍然缺乏一个系统的设计方法和流程。其次,现有的针对车身结构进行的轻量化或抗撞性优化设计中,较少考虑了材料成本或其他不确定性因素对优化设计结果的影响,导 致优化设计结果的可行性、可用性不足。 再次,现有的车身结构轻量化或抗撞性多目标优化设计中,并未将多目标优 化设计结果与多准则决策方法进行有效整合,使得多目标最优设计方案的选择常常缺乏一定的理论依据。据此,本文以某自主品牌轿车车身为研究对象,采用有限元数值模拟和试验验证相结合手段,综合运用灵敏度与贡献度设计变量筛选方法、多目标试验设计方法、多目标优化代理模型方法、多目标优化算法以及多准则决策方法,结合结构-材料-性能-成本一体化优化设计方法,在考虑不确定性因素影响下,从车身零部件和车身总成水平上,对车身结构进行了分批次轻量化与抗撞

建立数学模型的方法、步骤

§16.3 建立数学模型的方法、步骤、特点及分类 [学习目标] 1.能表述建立数学模型的方法、步骤; 2.能表述建立数学模型的逼真性、可行性、渐进性、强健性、可转移性、非预制性、条理 性、技艺性和局限性等特点;; 3.能表述数学建模的分类; 4.会采用灵活的表述方法建立数学模型; 5.培养建模的想象力和洞察力。 一、建立数学模型的方法和步骤 —般说来建立数学模型的方法大体上可分为两大类、一类是机理分析方法,一类是测试分析方法.机理分析是根据对现实对象特性的认识、分析其因果关系,找出反映内部机理的规律,建立的模型常有明确的物理或现实意义.§16.2节的示例都属于机理分析方法。测试分折将研 究对象视为一个“黑箱”系统,内部机理无法直接寻求,可以测量系统的输人输出数据、并以 此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个与数据拟合得最好 的模型。这种方法称为系统辨识(System Identification).将这两种方法结合起来也是常用的建模方法。即用机理分析建立模型的结构,用系统辨识确定模型的参数. 可以看出,用上面的哪一类方法建模主要是根据我们对研究对象的了解程度和建模目的决定的.如果掌握了机理方面的一定知识,模型也要求具有反映内部特性的物理意义。那么应该 以机理分析方法为主.当然,若需要模型参数的具体数值,还可以用系统辨识或其他统计方法得到.如果对象的内部机理基本上没掌握,模型也不用于分析内部特性,譬如仅用来做输出预报,则可以系统辩识方法为主.系统辨识是一门专门学科,需要一定的控制理论和随机过程方面的 知识.以下所谓建模方法只指机理分析。 建模要经过哪些步骤并没有一定的模式,通常与实际问题的性质、建模的目的等有关,从§16.2节的几个例子也可以看出这点.下面给出建模的—般步骤,如图16-5所示. 图16-5 建模步骤示意图 模型准备首先要了解问题的实际背景,明确建模的目的搜集建模必需的各种信息如现象、数据等,尽量弄清对象的特征,由此初步确定用哪一类模型,总之是做好建模的准备工作.情况明才能方法对,这一步一定不能忽视,碰到问题要虚心向从事实际工作的同志请教,尽量掌握 第一手资料. 模型假设根据对象的特征和建模的目的,对问题进行必要的、合理的简化,用精确的语言做出假设,可以说是建模的关键一步.一般地说,一个实际问题不经过简化假设就很难翻译 成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或 过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图 把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假 设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的 综合.作假设时既要运用与问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥

SAE-C2003T320-车身结构耐撞性能优化设计

车身结构耐撞性能优化设计 李佳洁 哈飞汽车制造有限公司 [摘要] 本文主要针对在我国全面实行汽车整车正面碰撞标准之后,结合某微型车整车碰撞试验模拟分析及耐撞性能优化改进设计实例,对强制性标准中车身结构的被动安全对策加以深入探讨、总结。针对实车碰撞结果存在的问题,将理论分析、计算机模拟计算的方法相结合进行设计优化,并利用等数值分析手段对微车车架及前部结构进行了结构优化改进设计,碰撞结果表明系统的改进可使汽车的被动安全性得到显著提高。 关键词:正面碰撞车身安全结构被动安全 1 概述  汽车被动安全性能已是当今世界汽车技术发展的主流方向之一。汽车的被动安全性更是汽车产品竞争力的重要标志,也成为新车设计所应考虑的主要因素。汽车被动安全性设计是一个非常复杂的系统工程,其根本任务是通过合理设计控制汽车碰撞中结构部件的变形、受力和相互作用,使造成的成员伤害降到最低限度。汽车的被动安全性设计实际上就是寻找为保证碰撞安全所愿付出的代价与可能造成乘员伤害的一种平衡。现今的车身结构应具有良好的耐撞性,高强度化特性。在汽车碰撞中,车身是吸收能量的主体,车身的安全设计水平,主体上决定了车辆的被动安全性能。通过某些国产车型耐撞性改进成功设计实例,探索出汽车被动安全设计和改进的规律,积累汽车耐撞性改进和优化设计经验可以大幅度的降低研发成本,减少盲目探索。 2 碰撞法规与车身的碰撞特性  国际上具有代表性的汽车碰撞安全法规及技术法规共有三大体系,即美国联邦机动车安全法规(FMV SS)、欧洲汽车法规(ECE)、日本保安基准(TRIAS)。在国际大背景下,我国积极参与国际汽车技术法规制定和协调工作,并参考欧洲技术法规制定了我国的汽车强制性正碰标准体系(CMVDR294),侧碰标准的实施也将是必然趋势。 汽车是一个具有复杂结构的高速运动物体,其碰撞形式归纳起来可大致分为三种形式:正面碰撞、侧面碰撞和后面碰撞,另外还有车碰行人与翻车等。根据资料(如图1)可知,汽车发生正面碰撞(包括斜碰)的概率在40%左右。因此以正面碰撞特性为主要依据进行设计,对降低乘员的伤害将非常重要。图1 包含所有伤害类型的撞击事故的概率分布,图 2 给出了汽车车头的理想变形特性曲线。       图1 所有伤害类型的撞击事故的概率分布图 2 汽车车头的理想变形特性曲线

数学模型方法的定义及基本步骤

数学模型方法的定义及基本步骤 3.1数学模型方法的定义 数学模型方法(MathematicalModelingMethod)是利用数学模型解决问题的一般数学方法,简称MM方法。它是处理各种数学理论问题、解决各种实际问题的小可或缺的方法,无疑,数学教师在日常教学中都应当注意让学生了解并掌握这种方法,最大可能地培养其构造数学模型的能力。这绝对小是一个轻松的过程。首先,学生必须先掌握一定的数学知识,让他们学“杂”一些,使得建立模型解题才有了可能性厂其次,要让学生多接触题目,多动脑。 3.2数学建模方法的基本步骤 一般来说数学建模方法大体上可分为机理分析和测试分析两种.机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。测试分析是将研究对象看作一个“黑箱”(不考虑内部机理),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 建模的步骤一般分为下列几步: 3.2.1调查研究 在建模前应对实际问题的历史背景和内在机理要有深刻的了解,必须对该问题进行全面的、深入细微的调查和研究.首先要明确所解决问题的目的要求和着手收集数据.数据悬为建立模型而收集的.因此,如果在调查研究时对建立什么样的模型有所考虑的话,那么我们就按模型的需要更有目的地,更合理地来收集有关数据.收集数据时应注意精度的要求,在耐曩;际问题作深入了解时,应向有关专家或从事实际工作的人员请教。将使你对问题的了解更快和走捷径。

3.2.2现实问题的理想化 现实问题错综复杂,涉及面非常之广.因此要想建立一个数学模型来反映一小现实问题面面俱到、无所不包是不可能的,也是没有必要的.一个模型,只要能反映我们所需要的某一‘个侧面就行了,或者在此基础之上进一步提高.建模前必须先将问题理想化,简单化,即首先抓住主要因素。暂不考虑次要因素.在相对比较简单的情况下,理清变量之闻的:廷系,建立树应的模型(读者在三级火箭模型,人口模型和传染病传播模型中会有较深的体会)_勾此对昕给问题给予必要的假设,不同的假设会得到不同的模型。这一步是建立模型的关键.如果假设合理,则模型与实际问题比较吻合;如果假设不合理或过于简单(即过爹地忽略了一些因素),则模型与实际情况不吻合,或部分吻合,就要修改假设,修改模型。 3.3.3建立模型 在已有假设的基础上,可以着手建立数学模型,建模时应注意以下几点: (1)分清变量类型恰当使用数学工具。如果实际问题中的变量是确定性变量,建模时数学工具多用微积分、微分方程、线性规划、非线性规划、网络、投入产出、确定性存贮论等.如果变量是随机变量,建模时数学工具多用概率、统计、随机性存贮论、排队论、对策论、决策论、随机微分方程等.由于数学分支很多,又加之相互交叉渗透,派生出许多分支.建模具体用什幺舒芝好,一是因问题而异,二是因人而异。应看自己对哪门学科比较熟悉精通,尽量发挥自己的特长。总之,对变量进行分析是建立模型的基础。 (2)抓住问题的本质,简化变量之间的关系。因为模型过于复杂,则无法求解或求解困难,就不能反映客观实际.因此应尽可能瑚简单的模型如线性化,均匀化等来描述客观实际.建模的原则是:模型尽可能简单、明了.思路清晰,能不采用则尽量不用高深的数学知识,不要追求模型技术的完美,侧重于实际应喇.只要问题能解决,模型越简单越能被决策者所采用。

相关主题
文本预览
相关文档 最新文档