当前位置:文档之家› 500KV变电站电气部分设计

500KV变电站电气部分设计

500KV变电站电气部分设计
500KV变电站电气部分设计

摘要

本论文主要阐述了500KV变电站电气部分的设计。随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的要求也越来越高。变电站作为电能传输与控制的枢纽必须改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋势。本设计为500kV超高压变电站,为枢纽变电所。500kV变电所控制系统的特点是可靠性要求更高、被控制的对象多、控制对象的距离远、控制电缆用量大,要求自动化水平高和抗干扰问题突出。本设计讨论的是500KV变电站电气部分的设计。其中包括负荷计算、无功补偿、变电所位置的选择及变压器的选择、主接线设计、短路计算及电气设备的选择与校验、继电保护设计,还包括防雷设计等。

关键词变电站超高压 500kV

This paper expatiate on the part of 500kV electrical substation design.

With the development of science and technology in China, particularly computing technology has advanced, the power system demands on substation more

traditional design and control mode, to adapt to the modern power system, modernization of industrial production and the development trend of social life. The transformer substation that is designed this time is the key position transformer substation of 500kV. It is the hub of Substation.500 kV substation control system is characterized by higher reliability requirements, the object of control, and control of the object distance and the amount of control cable, and require a high level of automation and anti-jamming problems.The design is refer to the part of 500kV electrical substation design. Whole book primarily contain,calculation of power load,reactive power expiation,location of electric station and choice transformer and design the main wiring and short-circuit calculation and choice and test of electric equipments and the design of protective relays and the design of preventing thunder, etc.

KEY WORD Substation EHV 500kV

第一章绪言 (1)

第一节超高压变电站发展概况 (1)

第二节选题目的 (2)

第三节背景和意义 (2)

第四节 500KV设计变电站简介 (2)

第二章 500KV变电站选址、负荷统计及计算 (3)

第一节 500KV变电站选址及主要技术特点 (3)

第二节 500KV变电站负荷统计表 (4)

第三节 500KV变电站负荷计算 (5)

第三章主变压器的选择 (6)

第一节主变压器的选择原则 (6)

第二节主变压器的选择结果 (8)

第四章电气主接线的设计 (8)

第一节电气主接线的概述 (8)

第二节电气主接线的基本要求 (9)

第三节电气主接线的设计原则 (9)

第四节电气主接线的方案选择与确定 (9)

第五章短路电流计算 (11)

第一节短路故障的危害 (11)

第二节短路电流计算的目的 (12)

第三节短路电流计算的内容 (12)

第四节短路电流计算的方法 (12)

第五节短路点确定及短路电流计算 (13)

第六章电气设备选择及校验 (14)

第一节按正常工作条件选择电气设备 (16)

第二节按短路状态校验 (17)

第三节母线选择及校验 (18)

第四节高压断路器选择及校验 (23)

第五节高压隔离开关选择及校验 (26)

第六节电流互感器选择 (28)

第七节电压互感器选择 (29)

第八节绝缘子和穿墙套管的选择 (30)

第九节所用变压器及电力电容器选择 (31)

第七章变电站防雷及接地设计 (33)

第一节变电站防雷设计 (33)

第二节变电站接地设计 (35)

第八章变电站无功补偿装置的设计 (37)

第一节断路器投切无功补偿装置 (37)

第二节无功静止补偿装置及配电补偿装置 (38)

第九章变电站继电保护设计 (40)

第一节主变压器保护 (41)

第二节 10KV线路保护 (43)

结束语 (47)

谢辞 (48)

参考文献 (49)

第一章绪言

电力工业是国民经济的重要部门之一,它是负责把自然界提供的能源转换为供人们直接使用的电能的产业。它即为现代工业、现代农业、现代科学技术和现代国防提供不可少的动力,又和广大人民群众的日常生活有着密切的关系。电力是工业的先行,电力工业的发展必须优先于其他的工业部门,整个国民经济才能不断前进。

变电所是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。我国电力工业的技术水平和管理水平正在逐步提高,现在已有许多变电站实现了集中控制和采用计算机监控,电力系统也实现了分级集中调度,所有电力企业都在努力增产节约,降低成本,确保安全远行。变电所是生产工艺系统严密、土建结构复杂、施工难度较大的工业建筑,因此,要求变电所土建施工技术及施工组织水平也相应地随之不断提高。

电网是根据不同地区、不同电压等级而形成的高压和超高压网络,起着重要作用。在我国很多地区现已形成以500kV为骨干的主网,能将电力资源更充分的利用。随着国民经济的发展以及大型发电厂和更高等级电压的出现,在不久的将来,我国会出现跨几个大区的联合大电网。500kV超高压变电站的容量大、电压高、出线回路数多,在电力系统中一般都是电力输送的枢纽性变电站。因此兴建500kV超高压变电站能够更好的利用资源,实现最大利用。北方的充足能源,也将通过枢纽变电站实现“北电南送”。500kV 超高压变电站设备要求高,进而推动了国内电气设备新的改革,实现了优化能源的进程。

电气主接线是变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。随着变电所综合自动化技术的不断发展与进步,变电站综合自动化系统取代或更新传统的变电所二次系统,继而实现“无人值班”变电所已成为电力系统新的发展方向和趋势。

第一节超高压变电站发展概况

我国自1974年建成了第一条330kV输电线路,由甘肃刘家峡水电站厂到陕西关中地区开始,变电站发展迅速。1981年建成了第一条500kV输电线路,由河南姚孟火电厂到武汉,500kV超高压变电站走入人们的视线。其中,超高压变电站的建设成功,使国内各省电网形成联网,华北、东北、华东、华中、南方等电网都已建成500kV大容量输电线路和跨省联络线,并将逐步形成跨大区域互联的骨干网络。在日趋建设的超高压变电站中,超高压等级500kV的变电站占有重要的地位。

第二节选题目的

我选择设计本课题,学习和掌握变电所电气部分设计的基本方法和步骤,培养独立进行电力工程设计的基本技能,进一步了解国家有关的方针政策、设计标准和设计规范,同时将所学的理论知识与实际相结合,进一步培养理论联系实际的能力,开拓思路,锻炼独立分析问题及解决问题的能力。本次设计的500kV超高压变电站的目的是用以提高该地区的供电质量、减少电能损失,满足该地区负荷增长的需要。变电站在设计基础上,力求更加实用化,符合实际,并设计高度可靠性和灵活性的主接线,保证500kV电网的安全运行,满足各类重要负荷的用电需要。

第三节背景和意义

500KV超高压枢纽变电站是我国电网建设中非常重要的技术环节,所以做好500KV 超高压枢纽变电站的设计是我国电网建设的重要环节。500KV变电站需要采用节约资源的设计方案,既要要克服通信干扰和噪声、保证电能质量和用电安全等问题,同时还要满足以后电网改造简单、资源再利用率高的要求。

500KV变电站的设计或改造需要既能保证安全可靠性和灵活性,又能保证保护环境、节约资源、易于实现自动化设计方案。在这种要求下,500KV超高压变电站电气主接线简单清晰、接地和保护安全高效、建筑结构布置紧凑、电磁辐射污染最小已是大势所趋。因而,500KV超高压变电站应从电力系统整体出发,力求电气主接线简化,配置与电网结构相应的保护系统,采用紧凑布置、节约资源、安全环保的设计方案。

第四节500KV变电站设计简介

本次设计的变电站为500kV大型超高压枢纽变电站,500kV采用一个半断路器接线,220kV采用双母线带旁路接线,10kV采用单母线分段接线。500kV配电装置采用GIS配电装置。本所选用分层分布式综合自动化系统。主变压器及线路控保屏、电度表屏、直流屏、电池屏、交流屏均布置在主控室内。为有人值班变电站,部分站区设立无人值班室,用计算机进行监控。该变电所总建筑面积3078平方米,主控楼建筑面积2732平方米。

第二章500KV变电站选址、负荷统计及计算

第一节500KV变电站选址及主要技术特点

一、500KV变电站选址

变电所位置与供电的可靠性、经济性以及电压质量密切相关,选择变电所的地址时,应兼顾以下各点:(1)尽量接近负荷中心,以降低配电系统的电能损耗、电压损耗和有色金属的消耗量;(2)进出线方便,特别是要便于架空进出线;(3)设备运输方便,特别要考虑电力变压器和高低压成套配电装置的运输;(4)不宜设在多尘或者有腐蚀性气体的场所,当无法远离时,不应设在污染源的下风侧;(5)不应设在地势低洼和可能积水的场所;(6)不应设在有爆炸危险环境的正上方或正下方,且不宜设在有火灾危险环境的正上方或正下方。

该500KV变电所所址位于某市郊区,地势平坦、进出线走廊便于架空线路的引入和引出,因此配电装置的布置不必考虑特殊方式。所址的海拔为7米,经调查没有被洪水浸淹的历史,不必选用高海拔的电气设备。所址位于负荷中心,交通便利、通讯畅通。有铁路和公路经过变电所附近,不必过多考虑设备的运输问题。旱涝期,附近河流对变电站无影响。该地区年平均气温为14.5℃,极端最高气温为+36.5℃,极端最低气温为-11.4℃,全年≥35℃的高温日数为4天,电气设备均可正常工作;该地区年降水总量为980.3毫米,最大风速为2.0m/s,夏秋季节不受强风影响,所以不必考虑架空线路的机械强度及对屋外配电装置的影响;该地区全年只有短暂的霜冻(不足5天)和结冰现象(不足10天),覆冰厚度仅为3mm,因此不必考虑覆冰问题;无冻土情况发生,接地装置地下部分不必过深即可保证可靠接地;土壤电阻率为100Ω·M,可考虑采用构架式避雷针;年雷暴雨日数为35天,防雷装置的选取应加以考虑;当地四季存在溶雪溶冰、毛毛雨、雨加雪等对污秽绝缘子极为不利的气象条件,为防止污闪,所以对绝缘子串和变电设备外绝缘的影响应予以考虑。

二、500KV变电站主要技术特点

500KV变电站主要技术特点,具体见表2-1。

表2-1 变电站主要技术特点

第二节500KV变电站负荷统计表

本次设计的500KV变电站,线路1~8为500kV出线,9~12为220kV出线,13~15为10kV出线。

根据统计负荷如表2-1所示。

表2-1 负荷统计表

第三节500KV变电站负荷计算

变电站供电系统要能安全可靠地正常运行,其中各个元件都必须选择得当,除了需要满足工作电压和频率的要求外,最重要的就是要满足负荷电流的要求,因此必须对变电站供电系统中各条出线的电力负荷进行统计计算,通过负荷计算求出来的计算负荷是确定工厂电力系统线路截面、变压器容量、电气设备及互感器等供电设计参数的基本依据。根据原始资料,计算出变电站各条出线的计算负荷,计算负荷确定得是否正确合理,直接影响到电气设备和导线电缆的选择是否经济合理。如果计算负荷确定得过大,将使电气设备和导线电缆选得过大,造成投资过大和有色金属的浪费。但如果计算负荷确定得过小,投入使用后,又将使电气设备和导线电缆处于过负荷状态运行,增加电能损耗,产生过热,加速其绝缘老化降低使用寿命,甚至燃烧引起火灾造成更大损失,影响供电系统的正常可靠运行。

负荷计算的方法有多种,我国目前普遍采用的确定计算负荷的方法有需用系数法和二项式法,针对不同的情况应采用不同的方法。

当变电站出线较多、容量相差不太大时,宜采用需用系数法。当变电站出线较少、各台容量相差很大时,宜采用二项式法。

本设计为500kV超高压变电所,该变电站出线较多,各条出线容量相差不太大,负荷计算采用需用系数法。其优点是:公式简单,计算方便,对于不同性质的供电用户的需用系数值是经过几十年的统计积累,数值比较完整和准确,为供电设计创造了很好的条件。由于各供电区域电性质相差不大,考虑功率因数相同,则视在功率可表示为有功功率。

采用需用系数法求各用户的计算负荷:

S=K t·S ei(2-1)jsi

S—各用户的计算负荷,kV A;

式中

j s i

S ei —各用电设备额定容量,kV A。

每条出线路的负荷:

线路1: S js1= 0.80×71350=57080 (kV A) 线路2: S js2= 0.75×70400=52800 (kV A) 线路3: S js3= 0.80×58600=46880 (kV A) 线路4: S js4= 0.80×50400=40320 (kV A) 线路5: S js5= 0.80×51850=41480(kV A) 线路6: S js6= 0.75×56300=42225 (kV A) 线路7: S js7= 0.80×40750=32600(kV A) 线路8: S js8= 0.80×42100=33680 (kV A) 线路9: S js9= 0.75×43300=32475 (kV A) 线路10:S js10= 0.80×42200=33760 (kV A) 线路11:S js11= 0.80×32300=25840 (kV A) 线路12:S js12= 0.80×37100=29680 (kV A) 线路13:S js13= 0.80×21700=17360 (kV A) 线路14:S js14= 0.80×21500=17200 (kV A) 线路15:S js15= 0.80×21000=16800 (kV A) 变电所设计当年的计算负荷可由式(2-2)计算

()%115

1X S K S i jsi t js +=∑= (2-2)

式中 K t —同时系数,一般取0.85-0.9,这里取0.9;

X %—线损率,高低压网络的综合线损率在8%-12%,这里取10%。

%)

1()(151413121110987654321X S S S S S S S S S S S S S S S K S js js js js js js js js js js js js js js js t js +?++++++++++++++=

=0.9×520180 ×(1+0.1)=514978.2(kV A ) 计算负荷增长后的变电所最大计算负荷为

n m js jszd e S S ?= (2-3) 式中 n — 年数,取10年;

m — 年平均增长率,取7%;

jszd S — n 年后的最大计算负荷。 jszd S =514978.2×e 10×0.07=1037363.72 (kV A)

第三章主变压器的选择

在发电厂和变电站中,用来向电力系统或用户输送功率的变压器,称为主变压器;用于两种电压等级之间交换功率的变压器,称为联络变压器;只供本所(厂)用的变压器,称为站(所)用变压器或自用变压器。本章是对500KV变电站主变压器的选择。

第一节主变压器的选择原则

主变压器的容量和台数直接影响主接线的形式和配电装置的结构。它的确定除依据传递容量基本原始资料外,还应根据电力系统5-10年发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。如果变压器容量选得过大、台数过多,不仅增加投资,增大占地面积,而且也增加了运行电能损耗,设备未能充分发挥效益;若容量选得过小,将可能会满足不了变电站负荷的需要。

一、主变压器台数的选择

(一)对大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。

(二)对地区性孤立的一次变电所或大型工业专用变电所,在设计时应考虑装设三台主变压器的可能性。

(三)对于规划只装设两台主变压器的变电所,其变压器基础宜按大于变压器容量的1~2级设计,以便负荷发展时,更换变压器的容量[1]。

本次设计的500kV变电站装设两台主变压器。

二、主变压器容量的选择

变压器容量的选择至关重要,容量选择小了,不满足负荷增长的要求。容量选择大了,变压器空载损耗大,起不到降低损耗、同网同价的要求。因此,变电所主变压器的容量一般按变电所建成后5~10年的规划负荷考虑,并应按照其中一台停用时其余变压器能满足变电所最大负荷max

S的60%~70%选择[1],故500kV变电所取70%。

三、主变压器型式和结构的选择

(一)相数

容量为300MW及以下机组单元接线的变压器和330kV及以下电力系统中,一般都应选用三相变压器。在500kV及以上的发电厂和变电所中,应按容量、可靠性要求、制造水平、运输条件、负荷和系统情况等,经技术经济比较后确定变压器相数。500kV变电站主变压器选择单相变压器组。

(二)绕组数与结构

电力变压器按每相的绕组数为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通

双绕组、三绕组、自耦式及低压绕组分裂式等型式。为简化电压等级或减少重复降压容量,500kV 主变压器采用双绕组自耦式变压器。 (三)绕组接线组别

电力系统采用的绕组连接有星形“Y ”和三角形“D ”。 由于变压器绕组的连接方式必须和系统电压相位一致,否则不能并列进行,所以变压器绕组的连线方式选Y 型连接。本次500kV 变电站设计主变压器采用YN ,ynO ,d11接线组别。 (四)调压方式

为了保证发电厂或变电站的供电质量,电压必须维持在允许范围内,通过主变的分接开关切换,改变变压器高压侧绕组匝数。从而改变其变比,实现电压调整。切换方式有两种:一种是不带电切换,称为无励磁调压。另一种是带负荷切换,称为有载调压。 500kV 变电站主变压器采用一般均采用无励磁调压,分接头的选择依据具体情况定。 (五)冷却方式

主变压器一般采用的冷却方式有:自然风冷却;强迫油循环风冷却;强迫油循环水冷却;强迫、导向油循环冷却[1]。

第二节 主变压器的选择结果

装设两台主变压器的变电站,根据我国变电压器运行的实践经验,并参考经验,每台主变的额定容量:

jszd e S S 7.0≥ (3-1) ≥e S 0.7×1037363.72=726154.604(kV A )

主变压器可选择ODFPS -250000/500单相自耦无励磁调压变压器,三台为一组,主要性能参数为:额定容量250/250/80MVA ;额定电压

3525/3

%

5.22230?±/10.5kV ;额定电流3150A ;空载损耗80KW ;负载损耗445KW 。其中绝缘件中的含水量降低到0.5%以下,达到了变压器局部放电量国际IEC 标准[3]。

其技术数据如表3-1所示。

表3-1 ODFPS-250000/500三相自耦变压器

第四章电气主接线的设计

第一节电气主接线的概述

电气主接线是发电厂、变电所电气设计的首要部分,也是构成电力系统的重要环节。主接线的确定对电力系统整体及发电厂、变电所本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置布置、继电保护、自动装置和控制方式的拟定有较大影响。因此,必须正确处理好各方面的关系,全面分析有关影响因素,通过技术经济比较,合理确定主接线方案[1]。

第二节电气主接线的基本要求

电气主接线应满足可靠性、灵活性和经济性三项基本要求[1]。这三者是一个综合概念,不能单独强调其中的某一种特性,也不能忽略其中的某一种特性。但根据变电所在系统中的地位和作用的不同,对变电所主接线的性能要求也不同的侧重。

第三节电气主接线的设计原则

电气主接线设计的基本原则是以设计任务为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、实用、经济、美观的原则。变电所的主接线是电力系统按接线组成中的一个重要组成部分,主接线的确定对电力系统的安全、稳定、灵活、经济运行将会产生直接影响。

第四节电气主接线的方案选择与确定

一、方案拟定

主接线是根据发电厂或变电所的设计任务书,原始资料以及设计要求和原则来进行设计

的,在保证满足技术要求条件下,力求经济性。现初步选择两个方案进行可靠性、灵活性及经济性比较,确定出最佳主接线方案。 方案1:电气主接线采用双母线双分段带旁路接线 方案2:电气主接线采用3/2断路器主接线 二、方案比较

可靠性比较:500kV 超高压变电站进出线为8回,为了限制设备故障影响范围,在双母线接线中采用双母线双分段带旁路母线,将各元件分别接在各段母线上;对3/2断路器接线则采用两个断路器控制一个元件的多环形接线。双母线双分段带旁路接线见图4-1,3/2断路器接线见图4-2。

图4-1 双母线双分段带旁路接线 图4-2 3/2断路器接线 两种电气主接线自身设备的故障停电范围比较(按8个元件考虑)分别见表4-1,表4-2[1]。

表4-1 双母线双分段带旁路母线接线故障停电范围

比较表4-2、表4-3可以看出,3/2断路器接线无论是在无设备检修方式下,还是在检修与故障重叠方式下,停电元件最多只有两个;当母线故障时没有元件停电。而双母线双分段接线在无设备检修方式下,出线断路器故障或母线故障时有两个元件停电;当母联或分段断路器故障时,停电元件为4个,停电元件占50%;在检修与事故相重叠方式下,停电元件占75%。由此可见,3/2断路器接线能将各种设备自身故障引起的停电元件限制在最小范围内,从而提高电力系统运行的安全可靠性,所以方案2优于方案1[1]。经济性比较:从设备投资分析,在8个元件时两种主接线是一样的;当元件总数达10个,双母线双分段加专用旁路母线断路器时,两种主接线也是一样的。当元件多于10个时,3/2断路器接线投资大;元件少于6个时,双母线双分段带旁路接线投资大。从占地面积分析,3/2断路器接线采用常规的三列式布置方式比双母线双分段带旁路接线节省占地面积40%,若采用其它布置方式时(如单列式等),两种主接线是一样的[1]。三、方案确定

综合上述比较可以看出,3/2断路器接线在最严重的故障方式下,停电元件最多为两个,当一组母线发生故障时,没有元件停电,即使是在一组母线检修,另一组母线故障的情况下,也没有元件停电,隔离开关操作简单,调度运行灵活。在投资方面,当元件数在6~10时,与双母线双分段带旁路接线相比是经济的;当元件多于10个,3/2断路器接线投资增大,但是与一旦造成系统重大事故的经济损失相比,也是合适的[1]。所以本设计500kV超高压变电站应选用方案2。

本变电站的主接线设计详见附图:500KV变电站电气主接线图。

第五章短路电流计算

第一节短路故障的危害

短路是电力系统的严重故障。所谓短路,是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接[6]。供电系统发生短路后,电路阻抗比正常运行时阻抗小很多,短路电流通常超过正常工作电流几十倍直至数百倍以上,它会带来以下严重后果:

一、短路电流的热效应

巨大的短路电流通过导体,短时间内产生很大热量,形成很高温度,极易造成设备过热而损坏。

二、短路电流的电动力效应

由于短路电流的电动力效应,导体间将产生很大的电动力。如果电动力过大或设备结构强度不够,则可能引起电气设备机械变形甚至损坏,使事故进一步扩大。

三、短路系统电压下降

短路时,系统电压大幅度下降,对用户工作影响很大。系统中最主要的电力负荷是异步电动机,它的电磁转矩同它的端电压的平方成正比,电压下降时,电磁转矩将显著降低,使电动机停转,以致造成产品报废及设备损坏等严重后果[6]。

四、短路时的停电事故

短路时会造成停电事故,给国民经济带来损失。并且短路越靠近电源,停电波及范围越大。

五、破坏系统稳定造成系统瓦解

短路可能造成的最严重的后果就是使并列运行的各发电厂之间失去同步,破坏系统稳定,最终造成系统瓦解,形成地区性或区域性大面积停电。

第二节短路电流计算的目的

电力系统发生短路时,由于系统中总阻抗大大减少,因而短路电流可能达到很大数值(几万安至十几万安),故短路电流为主要计算对象。计算的目的是:

一、选择有足够机械稳定度和热稳定度的电气设备,必须以短路计算作为依据;

二、为了合理地配置各种继电保护和自动装置并正确整定其参数,必须对电力网中发生的各种短路进行计算和分析;

三、在设计和选择发电厂和电力系统电气主接线时,为了比较各种不同方案的接线图,要进行必要的短路电流计算;

四、进行电力系统暂态稳定计算,研究短路对用户工作的影响等,也包含有部分短路计算的内容;

五、确定输电线路对通信的干扰,对已发生的故障进行分析,都必须进行短路计算[6]。

第三节短路电流计算的内容

一、短路点的选取:各级电压母线、各级线路末端;

二、短路电流的计算:最大运行方式下最大短路电流;最小运行方式下最小短路电流;计算的具体项目及其计算条件,取决于计算短路电流的目的。

第四节短路电流计算的方法

供配电系统某处发生短路时,要算出短路电流必须首先计算出短路点到电源的回路总阻抗值。电路元件电气参数的计算有两种方法:标幺值法和有名值法。

一、标幺值法

标幺制是一种相对单位制,标幺值是一个无单位的量,为任一参数对其基准值的比值。

标幺值法,就是将电路元件各参数均用标幺值表示。由于电力系统有多个电压等级的网络组成,采用标幺值法,可以省去不同电压等级间电气参量的折算。在电压系统中宜采用标幺值法进行短路电流计算。

二、有名值法

有名值法就是以实际有名单位给出电路元件参数。这种方法通常用于1kV以下低压供电系统短路电流的计算。

第五节短路点确定及短路电流计算

根据保护整定的计算和经验,各短路点选择如图5-1:

图5-1短路点选择图

根据图5-1对各短路点进行短路电流计算,计算过程如下所示:

最小运行方式下:

f 1点短路时

*

max 1d I =)

(1

*max *

l x x +=1/(0.06+0.05)=9.091 max

1)

3(d

I =*

max 1d I B

B U s =9.091×525250=4.338 1ch I =2.55×*

max

1)

3(d I =2.55×4.338=11.062kA

*

max 1)

2(d

I =2

3*

max 1)

3(d

I =

2

3

×4.338=3.757kA 最大运行方式下:

f 1点短路时

*

max 1d I =)

(1

*max *

l x x +=1/(0.04+0.05)=11.111 max

1)

3(d

I =*

max 1d I B

B U s =11.111×525250=5.302 1ch I =2.55×*

max

1)

3(d I

=2.55×5.302=13.520kA

*

max 1)

2(d

I =2

3*

max 1)

3(d

I =

2

3

×5.302=4.592 以下各点同上得短路计算值见表5-1。

表5-1 短路计算结果表

第六章电气设备选择及校验

电气设备按其在一次电路中的作用可分为:(1)变换设备,是按电力系统运行的要求改变电压或电流、频率的设备,如电力变压器、电压互感器和电流互感器等;(2)控制设备,是按电力系统运行的要求来控制一次电路通断的设备,如高低压开关设备;(3)保护设备,是用来对电力系统进行过电流和过电压等保护的设备,如高压熔断器和避雷器;(4)补偿设备,是用来补偿电力系统中的无功功率,提高系统功率因数的设备,如并联电容器;(5)成套设备,是按一次电路线路方案的要求,将有关一、二次设备组合为一体的电气装置,如高压开关柜、低压配电屏等。

电气设备的选择及校验是发电厂和变电所电气部分设计的重要内容之一。如何正确地选择电气设备,将直接影响到电气主接线和配电装置的安全及经济运行。因此,在进行电气设备的选择时,必须执行国家的有关技术经济政策,在保证安全、可靠的前提下,力求做到技术先进、经济合理、运行方便和留有适当的发展余地,以满足电力系统安全、经济运行的需要。另外,电力系统中的各种电气设备由于用途和工作条件各异,它们的具体选择方法也就不尽相同,但从基本要求上来说是相同的。电气设备要能可靠地工作,必须按正常工作条件进行选择,按短路条件校验其动、热稳定性[7]。

变电站内各种主要电气设备的选择见表6-1。

表6-1 主设备清单

变电站内各种主要电气设备的校验要求见表6-2[1]。

表6-2 电气设备的校验要求表

注:表中“√”表示校验要求项目

第一节按正常工作条件选择电气设备

一、电气设备选择的一般原则

(一)应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展;(二)应按当地环境条件校核;

(三)应力求技术先进和经济合理;

500kV超高压变电站毕业设计

本设计为500kV超高压变电站,为枢纽变电所。500kV电压等级在我国电力网中是一个重要的等级。伴随能源需求的不断增大,500kV超高压变电站在我国的电力网中有着重要的地位。本设计以佳木斯电业局提供的负荷资料及相关要求为设计依据,目的是构建坚强的500kV电力网,实现北电南送,进而缓解南方用电压力。介绍了变电站的发展形势及针对不同主接线方式进行比较选择。变电站位于佳木斯市郊区,为 500千伏输变电工程的首端变电站。工程规模主变容量为两组,一组容量为750千伏安。电气主接线中500kV出线8回,220kV出线4回,10kV出线3回。变电所总建筑面积3135平方米,主控楼建筑面积2764平方米。500kV变电所控制系统的特点是可靠性要求更高、被控制的对象多、控制对象的距离远、控制电缆用量大,要求自动化水平高和抗干扰问题突出。对其特点设计变电站,解决出现的问题。 关键词:变电站; 超高压; 500kV

500kV EHV substation design Abstract The transformer substation that is designed this time is the key position transformer substation of 500kV. It is the hub of Substation. The grade of 500kV voltage is an important grade in the power network of our country. With the increasing demand for energy, 500kV EHV substation power network in China has an important role. The Jiamusi Electric Power Bureau designed to provide information and the load requirements for the design basis. Aim is to build a strong 500kV power grid, nortel to achieve Southern delivery, and ease the pressure on the South Side. Introduced the situation of the development of substation and the main connection for different ways to compare options. Substation is located in the outskirts of the city of Jiamusi and in the first-side substation of a 500-kilovolt power transmission project. Scale divided into two main transformer capacities, a group of 750 kVA capacities. Main Electrical Wiring in 500kV round 8 times altogether, 220kV round 4 times altogether, 10kV round 3 times altogether. Substation total construction area is 3135 square meters,main building area of 2764 square meters 500 kV substation control system is characterized by higher reliability requirements, the object of control, and control of the object distance and the amount of control cable, and require a high level of automation and anti-jamming problems. Substation design of its features to solve problems. Key words: Substation; EHV; 500kV

《220kV变电站电气部分初步设计》开题报告

电气与信息学院 毕业设计(论文)开题报告

《220kV变电站电气部分初步设计》开题报告 一、课题的目的和意义 随着国民经济的迅速发展,电力工业的腾飞,人们对能源利用的认识越来越重视。现在根据电力系统的发展规划,拟在某地区新建一座220KV的变电站。 本次设计是在掌握变电站生产过程的基础上完成的。通过它我不仅复习巩固了专业课程的有关内容,而且拓宽了知识面,增强了工程观念,培养了变电站设计的能力。同时对能源、发电、变电和输电的电气部分有个详细的概念,能熟练的运用有些知识,如短路计算的基本理论和方法、主接线的设计、导体电气设备的选择以及变压器的运行等。 二、文献综述 1 变电站的概述 随着经济的发展,工业水平的进步,人们生活水平不断的提高,电力系统在整个行业中所占比例逐渐趋大。现代电力系统是一个巨大的、严密的整体。各类发电厂、变电站分工完成整个电力系统的发电、变电和配电的任务。电力系统是国民经济的重要能源部门,而变电站的设计是电力工业建设中必不可少的一个项目。由于变电站的设计内容多,范围广,逻辑性强,不同电压等级,不同类型,不同性质负荷的变电站设计时所侧重的方面是不一样的。设计过程中要针对变电站的规模和形式,具体问题具体分析。 变电站是电力系统中变换电压、接受和分配电能、控制电力的流向和调整电压的电力设施,它通过其变压器将各级电压的电网联系起来。我国电力系统的变电站大致分为四大类:升压变电站,主网变电站,二次变电站,配电站。我国电力工业的技术水平和管理水平正在逐步提高,对变电所的设计提出了更高的要求,更需要我们提高知识理解应用水平,认真对待。[1] 结合我国电力现状,为国民经济各部门和人民生活供给充足、可靠、优质、廉价的电能,优化发展变电站,规划以220KV、110KV、10KV电压等级设计变电站。从我国目前部分地区用电发展趋势来看,新建变电站应充分体现出安全性、可靠

110kV变电站电气一次部分课程设计

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经

变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19) 结束语 (25)

110kV变电站电气部分设计

毕业设计(论文、作业)毕业设计(论文、作业)题目: 110kV变电站电气部分设计 分校(站、点): 年级、专业: 09秋机械 教育层次:本科 学生姓名: 学号: 指导教师: 完成日期: 2012年5月5日

中文摘要 变电站作为电力系统中的重要组成部分,直接影响整个电力系统的安全与经济运行。本论文中待设计的变电站是一座降压变电站,在系统中起着汇聚和分配电能的作用,担负着向该地区工厂、农村供电的重要任务。该变电站的建成,不仅增强了当地电网的网络结构,而且为当地的工农业生产提供了足够的电能,从而达到使本地区电网安全、可靠、经济地运行的目的。 本论文《110kv变电站一次部分电气设计》,首先通过对原始资料的分析及根据变电站的总负荷选择主变压器,同时根据主接线的经济可靠、运行灵活的要求,选择了两种待选主接线方案进行了技术比较,淘汰较差的方案,确定了变电站电气主接线方案。 其次进行短路电流计算,从三相短路计算中得到当短路发生在各电压等级的母线时,其短路稳态电流和冲击电流的值。再根据计算结果及各电压等级的额定电压和最大持续工作电流进行主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器等)。 最后,并绘制了电气主接线图、电气总平面布置图、防雷保护配置图等相关设计图纸。 关键词电气主接线设计;短路电流计算;电气设备选择;设计图纸 Abstract Power system substation as an important part of the entire power system directly affects the safety and economic operation. To be designed in this paper is a step-down substation substation in the system plays the role of aggregation and distribution of electric energy, charged with the factory to the region, the important task of rural electrification. The completion of the substation will not only strengthen the local power grid network structure, but also for the local industrial and agricultural production provides enough power, so that the regional power grid so as to achieve safe, reliable and economic operation purposes. The paper "110kv substation once part of the electrical design," the first original data through the analysis and selection based on total load of the substation main transformer, the main wiring under both economical and reliable, flexible operation requirements, select the main connection of two programs to be selected A technical comparison, out of poor program to determine the main electrical substation connection program. Second, the short-circuit current calculation, obtained from the three-phase short circuit calculation occurs when short-circuit the voltage level of the bus, its steady-state current and the impact of short-circuit current value. According to the results and the voltage level of voltage and maximum continuous operating current of the main electrical equipment selection and validation (including circuit breaker, disconnecting switch, current transformer, voltage transformer, etc.). Finally, the main draw of the electrical wiring diagram, electrical general layout map, lightning protection and other related design layout plan drawings.

500KV变电站主变压器保护的设计

青岛大学本科生毕业论文(设计) The Design of Protecting the Main Transformer in 500KV Substation

摘要 在本篇设计中,我选择了纵联差动保护作为变压器的主保护,还选择了瓦斯保护作为变压器油箱内发生故障时的主保护。而变压器的后备保护,我选择的是过电流保护。 首先介绍了主变压器保护的重要性及其保护的发展历史,然后详细地介绍了此篇设计所采用的三种保护措施,主要内容有:纵联差动保护、瓦斯保护和过电流保护。最后对主变压器保护进行了总结及对在我做毕业论文的过程中给予我帮助的人的致谢。 关键词主变压器纵联差动保护瓦斯保护过电流保护 Abstract In this design, I chose the longitudinal differential protection as the main protection of transformer, also chose the gas protection when fault occurs as in the oil tank of the transformer main protection. But the transformer backup protection, I choose the overcurrent protection. First introduced the main transformer protection and the importance of protection of historical development, and then introduces in detail the design by the use of three kinds of protective measures, main content has: longitudinal differential protection, gas protection and overcurrent protection. At the end of the main transformer protection are summarized and doing in my graduation thesis in the process of people helped me thank you. Keywords main transformer differential protection gas protection over current protection

220kV变电站电气一次部分设计

毕业设计(论文)任务书

220kV变电站设计 摘要 本设计书主要介绍了220kV区域变电所电气一次部分的设计内容和设计方法。设计的内容有220kV区域变电所的电气主接线的选择,主变压器、所用变压器的选择,母线、断路器和隔离刀闸的选择,互感器的配置,220kV、110kV、35kV线路的选择和短路电流的计算。设计中还对主要高压电器设备进行了选择与计算,如断路器、隔离开关、电压互感器、电流互感器等。此外还进行了防雷保护的设计和计算,提高了整个变电所的安全性。 关键词:变电站;主接线;变压器

220kV substation design ABSTRACT The design of the book introduces the regional 220kV electrical substation design a part of the content and design. The design of the contents of the electrical substation 220kV main regional cable choice, the main transformer, the transformer used in the choice of bus, circuit breakers and isolation switch option, the configuration of transformer, 220kV, 110kV, 35kV line choice and short-circuit current calculations. The design of the main high pressure also had a choice of electrical equipment and computing, such as circuit breakers, isolating switches, voltage transformers, current transformers and so on. In addition, a lightning protection design and computing, increased the safety of the entire substation. Keywords: substation; main connection; transformer

110KV变电站电气部分设计

110KV变电站电气部分设计 二〇〇九年八月 目录 设计任务书 (4) 第一部分主要设计技术原则 (5) 第一章主变容量、形式及台数的选择 (6) 第一节主变压器台数的选择 (6) 第二节主变压器容量的选择 (7) 第三节主变压器形式的选择 (8) 第二章电气主接线形式的选择 (10) 第一节主接线方式选择 (12) 第三章短路电流计算 (13) 第一节短路电流计算的目的和条件 (14) 第四章电气设备的选择 (15) 第一节导体和电气设备选择的一般条件 (15) 第二节断路器的选择 (18) 第三节隔离开关的选择 (19) 第四节高压熔断器的选择 (20) 第五节互感器的选择 (20) 第六节母线的选择 (24) 第七节限流电抗器的选择 (24) 第八节站用变压器的台数及容量的选择 (25) 第九节 10kV无功补偿的选择 (26) 第五章 10kV高压开关柜的选择 (26) 第二部分计算说明书 附录一主变压器容量的选择 (27) 附录二短路电流计算 (28) 附录三断路器的选择计算 (30) 附录四隔离开关选择计算 (32) 附录五电流互感器的选择 (34) 附录六电压互感器的选择 (35) 附录七母线的选择计算 (36) 附录八 10kV高压开关柜的选择 (37) (含10kV电气设备的选择) 第三部分相关图纸 一、变电站一次主结线图 (42) 二、10kV高压开关柜配置图 (43) 三、10kV线路控制、保护回路接线图 (44) 四、110kV接入系统路径比较图 (45) 第四部分 一、参考文献 (46)

二、心得体会 (47) 设计任务书 一、设计任务: ***钢厂搬迁昌北新区,一、二期工程总负荷为24.5兆瓦,三期工程总负荷为31兆瓦,四期工程总负荷为20兆瓦;一、二、三、四期工程总负荷为75.5兆瓦,实际用电负荷 34.66兆瓦,拟新建江西洪都钢厂变电所。本厂用电负荷设施均为Ⅰ类负荷。 第一部分主要设计技术原则 本次110kV变电站的设计,经过三年的专业课程学习,在已有专业知识的基础上,了解了当前我国变电站技术的发展现状及技术发展趋向,按照现代电力系统设计要求,确定设计一个110kV综合自动化变电站,采用微机监控技术及微机保护,一次设备选择增强自动化程度,减少设备运行维护工作量,突出无油化,免维护型设备,选用目前较为先进的一、二次设备。 将此变电站做为一个终端用户变电站考虑,二个电压等级,即110kV/10kV。 设计中依据《变电所总布置设计技术规程》、《交流高压断路器参数选用导则》、《交流高压断路器订货技术条件》、《交流电气装置的过电压保护和绝缘配合》、《火力发电厂、变电所二次接线设计技术规程》、《高压配电装置设计技术规程》、《110kV-330kV变电所计算机监控系统设计技术规程》及本专业各教材。 第一章主变容量、形式及台数的选择 主变压器是变电站(所)中的主要电气设备之一,它的主要作用是变换电压以利于功率的传输,电压经升压变压器升压后,可以减少线路损耗,提高了经济效益,达到远距离送电的目的。而降压变压器则将高电压降低为用户所需要的各级使用电压,以满足用户的需要。主变压器的容量、台数直接影响主接线的形式和配电装置的结构。因此,主变的选择除依据基础资料外,还取决于输送功率的大小,与系统的紧密程度,同时兼顾负荷性质等方面,综合分析,合理选择。 第一节主变压器台数的选择 由原始资料可知,我们本次设计的江西洪都钢厂厂用电变电站,主要是接受由220kV双港变110kV的功率和220KV盘龙山变供110kV的功率,通过主变向10kV线路输送。由于厂区主要为I类负荷,停电会对生产造成重大的影响。因此选择主变台数时,要确保供电的可靠性。 为了提高供电的可靠性,防止因一台主变故障或检修时影响整个变电站的供电,变电站中一般装设两台主变压器。互为备用,可以避免因主变故障或检修而造成对用户的停电,若变电站装设三台主变,虽然供电可靠性有所提高,但是投资较大,接线网络较复杂,增大了占地面积和配电设备及继电保护的复杂性,并带来维护和倒闸操作的许多复杂化,并且会造成短路容量过大。考虑到两台主变同时发生故障的几率较小,适合负荷的增长和扩建的需要,而当一台主变压器故障或检修时由另一台主变压器可带动全部负荷的70%,能保证正常供电,故可选择两台主变压器。 第二节主变压器容量的选择 主变压器容量一般按变电站建成后5--10年规划负荷选择,并适当考虑到远期10--20年的负荷发展,对于城郊变电站主变压器容量应与城市规划相结合,该变电站近期和远期负荷都已给定,所以,应接近期和远期总负荷来选择主变容量。根据变电站所带负荷的性质和电网的结构来确定主变压器的容量,对于有重要负荷的变电站应考虑当一台主变压器停用时,其余变压器容量在计及过负荷能力的允许时间内,应保证用户的一级和二级负荷,对一般性变电站当一台主变压器停用时,其余变压器容量应能保证全部负荷的70--80%。该变电站的主变压器是按全部负荷的70%来选择,因此装设两

220KV变电站设计毕业设计论文

引言 随着经济的腾飞,电力系统的发展和负荷的增长,电力网容量的增大,电压等级和综合自动化水平也不断提高,科学技术突飞猛进,新技术、新电力设备日新月异,该地原有变电所设备陈旧,占地较大,自动化程度不高,为满足该地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对变电所的设计提出了更高、更新的要求。建设新的变电所,采用先进的设备,使其与世界先进变电所接轨,这对提高电力网的供电可靠性,降低线路损耗,改善电能质量,增加电力企业的经济效益有很大的现实意义。 1、绪论 由于经济社会和现代科学技术的发展,电力网容量的增大,电压等级的提高,综合自动化水平的需求,使变电所设计问题变得越来越复杂。除了常规变电所之外,还出现了微机变电所、综合自动化变电所和无人值班变电所等。目前,随着我国城乡电网建设与改革工作的开展,对变电所设计也提出了更高、更新的要求。 1.1 我国变电所发展现状 变电技术的发展与电网的发展和设备的制造水平密切相关。近年来,为了满足经济快速增长对电力的需求,我国电力工业也在高速发展,电网规模不断扩大。目前我国建成的500kV变电所有近200座,220kV变电所有几千座;500kV电网已成为主要的输电网络,大经济区之间实现了联网,最终将实现全国联网。电气设备的制造水平也在不断提高,产品的性能和质量都有了较大的改进。除空气绝缘的高压电气设备外,GIS、组合化、智能化、数字化的高压配电装置也有了新的发展;计算机监控微机保护已经在电力系统中全面推广采用;代表现代输变电技术最高水平的750kV直流输电,500kV交流可控串联补偿也已经投入商业运行。我国电网供电的可靠性近年来也有了较大的提高,在发达国家连续发生严重的电网事故的同时,我国电网的运行比较稳定,保证了经济的高速发展。 1.2 变电所未来发展需要解决的问题

220KV变电站电气设计说明书

220KV变电站电气设计说 明书 第1章引言 1.1 国外现状和发展趋势 (1) 数字化变电站技术发展现状和趋势 以往制约数字化变电站发展的主要是IEC61850的应用不成熟,智能化一次设备技术不成熟,网络安全性存在一定隐患。但2005年国网通信中心组织的IEC61850互操作试验极大推动了IEC61850在数字化变电站中的研究与应用。目前IEC61850技术在变电站层和间隔层的技术已经成熟,间隔层与过程层通信的技术在大量运行站积累的基础上正逐渐成熟。 (2) 当前的变电站自动化技术 20世纪末到21世纪初,由于半导体芯片技术、通信技术以及计算机技术飞速发展,变电站自动化技术也已从早期、中期发展到当前的变电站自动化技术阶段。其重要特点是:以分层分布结构取代了传统的集中式;把变电站分为两个层次,即变电站层和间隔层,在设计理念上不是以整个变电站作为所要面对的目标,而是以间隔和元件作为设计依据,在中低压系统采用物理结构和电器特性完全独立,功能上既考虑测控又涉及继电保护这样的测控保护综合单元对应一次系统中的间隔出线,在高压超高压系统,则以独立的测控单元对应高压或超高压系统中的间隔设备;变电站层主单元的硬件以高档32位工业级模件作为核心,配大容量存、闪存以及电子固态盘和嵌入式软件系统;现场总线以及光纤通信的应用为功能上的分布和地理上的分散提供了技术基础;网络尤其是基于TCP/IP的以太网在变电站自动化系统中得到应用;智能电子设备(IED)的大量应用,诸如继电保护装置、自动装置、电源、五防、电子电度表等可视为IED而纳入一个统一的变电站自动化系统中;与继电保护、各种IED、远方调度中心交换数据所使用的规约逐渐与国际接轨。这个时期国代表产品有CSC系列、NSC系列及BSJ系列。 (3) 国外变电站自动化技术 国外变电站自动化技术是从20世纪80年代开始的,以西门子公司为例,该公司第一套全分散式变电站自动化系统LSA678早在1985年就在德国汉诺威正式投入运行,至1993年初,已有300多套系统在德国和欧洲的各种电压等级的变电站运行。在中国,1995年亦投运了该公司的LSA678变电站自动化系统。LSA678的系统结构有两类,一类是全分散式,另一类是集中和分散相结合,两类系统均由6MB测控系统、7S/7U保护系统、8TK开关闭锁系统三部分构成。 (4) 原始变电站自动化系统存在的问题 资料分目前国际上关于变电站自动化系统和通讯网络的国际标准还没有正式公布,国也没有相应的技术标准出台。标准和规的出台远落后于技术的发展,导致变电站自动化系

110kV变电站电气一次部分初步设计论文

电力高等专科学校 教培中心教学点 毕业论文 专业:电力系统自动化 班级:变检0602 二OO九年四月

容提要 根据设计任务书的要求,本次设计为110kV变电站电气一次部分初步设计,并绘制电气主接线图及其他图纸。该变电站设有两台主变压器,站主接线分为110kV、35kV和10kV三个电压等级。各个电压等级分别采用单母线分段接线、单母线分段带旁母线和单母线分段接线。 本次设计中进行了电气主接线的设计。电路电流计算、主要电气设备选择及效验(包括断路器、隔离开关、电流互感器、母线等)、各电压等级配电装置设计及防雷保护的配置。 本设计以《电力工程专业毕业设计指南》、《电力工程电气设备手册》、《高电压技术》、《电气简图用图形符号(GB/T4728.13)》、《电力工程设计手册》、《城乡电网建设改造设备使用手册》等规规程为依据,设计的容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。

目录前言 第一部分 110kV变电站电气一次部分设计说明书第1章原始资料 第2章电气主接线设计 第2.1节主接线的设计原则和要求 第2.2节主接线的设计步聚 第2.3节本变电站电气接线设计 第3章变压器选择 第3.1节主变压器选择 第3.2节站用变压器选择 第4章短路电流计算 第4.1节短路电流计算的目的 第4.2节短路电流计算的一般规定 第4.3节短路电流计算的步聚 第4.4节短路电流计算结果 第5章高压电器设备选择 第5.1节电器选择的一般条件 第5.2节高压断路器的选择 第5.3节隔离开关的选择 第5.4节电流互感器的选择 第5.5节电压互感器的选择 第5.6节高压熔断器的选择 第6章配电装置设计 第7章防雷保护设计 第二部分 110kV变电站电气一次部分设计计算书第1章负荷计算 第1.1节主变压器负荷计算 第1.2节站用变压器负荷计算 第2章短路电流计算 第2.1节三相短路电流计算 第2.2节站用变压器低压侧短路电流计算第3章线路及变压器最大长期工作电流计算第3.1节线路最大长期工作电流计算 第3.2节主变进线最大长期工作电流计算第4章电气设备选择及效验 第4.1节高压断路器选择及效验 第4.2节隔离开关选择及效验 第4.3节电流互感器选择及效验 第4.4节电压互感器选择及效验 第4.5节熔断器选择及效验 第4.6节母线选择及效验 第5章防雷保护计算

500kv变电站设计

500k v变电站的设计 摘要 变电站是直接影响整个电力系统的安全性和经济性的一个重要组成部分,它是联系发电厂和用户的中间环节,起着变换和分配电能的作用。[1]本次毕业设计针对500kV变电站的特点,以电气设计部分为核心,通过分析拟建变电站的进出线方向和负荷等原始资料,从可靠性、安全性、经济性等其他方面的考虑,确定电气主接线方式,主变压器的容量、数量的确定,负荷分析及计算,以及短路电流的计算和变电所主要电气设备的选择(包括断路器,隔离开关,互感器等),并在选择时对电气设备进行了必要的计算和校验。同时,针对本次设计,完成相应图纸的绘制。[1][2] 关键词:变电站;短路电流;电力系统 ABSTRACT Substation is the important part of power system, it directly influences the whole power system safe and economic operation of the power plant and the user, is the intermediate link, plays a role in transformation and distribution of electricity. The graduation design for 500kV the characteristics of substation, electrical design as the core, through the analysis of the substation and the orientation of a line and load data from the original, reliability, safety, economic and other aspects to consider, determine the main electrical wiring mode. Mainly from the main transformer capacity, quantity determination, load analysis and calculation, and the short circuit current calculation and substation main electrical equipment selection ( including circuit breaker, isolating switch, transformer and so on ), and the choice of electrical equipment is necessary to calculate and check. At the same time, according to the design, complete the drawing. Key words: Substation;Short circuit current;Power system 目录 摘要 .................................................................. I ABSTRACT ................................................................ I 1 前言 (1) 2负荷统计及计算 (2) 2.1 负荷统计 (2) 2.2 负荷计算 (2) 3 主变压器及电气主接线的选择 (3) 3.1 主变压器的选择 (3) 3.2 主接线的设计 (4) 4短路计算 (7) 4.1 短路电流计算 (7) 4.2 短路电流和短路容量 (7)

220kV变电站电气设计

摘要 随着我国科学技术的发展,特别是计算机技术的进步,电力系统对变电站的更要求也越来越高。 本设计讨论的是220KV变电站电气部分的设计。首先对原始资料进行分析,选择主变压器,在此基础上进行主接线设计,再进行短路计算,选择设备,然后进行防雷接地以及保护、配电装置设计。 关键字:变电站;短路计算;设备选择;防雷保护。

目录 摘要 (1) 引言 (4) 任务书 (5) 第一章主变压器的选择 (6) 1.1主变压器的选择原则 (6) 1.1.1 主变压器容量和台数的选择原则 (6) 1.1.2 主变压器容量的选择 (6) 1.1.3 主变压器型式的选择 (7) 1.1.4 绕组数量和连接形式的选择 (7) 1.2主变压器选择结果 (8) 1.3所用变选择 (8) 第二章电气主接线的设计 (10) 2.1主接线概述 (10) 2.2主接线设计原则 (10) 2.3主接线的选择 (10) 第三章 220KV变电站电气部分短路计算 (14) 3.1变压器的各绕组电抗标幺值计算 (14) 3.210KV侧短路计算 (15) 3.3220KV侧短路计算 (18) 3.4110KV侧短路计算 (20) 第四章导体和电气设备的选择 (22) 4.1断路器和隔离开关的选择 (23) 4.1.1 220KV出线、主变侧 (23) 4.1.2 主变110KV侧 (27) 4.1.3 10KV断路器隔离开关的选择 (29) 4.2电流互感器的选择 (34) 4.2.1 220KV侧电流互感器的选择 (34) 4.2.2 110KV侧的电流互感器的选择 (36) 4.2.3 10KV侧电流互感器的选择 (37) 4.3电压互感器的选择 (38) 4.3.1 220KV侧母线电压互感器的选择 (38) 4.3.2 110KV母线设备PT的选择 (39) 4.3.3 10KV母线设备电压互感器的选择 (39) 4.4导体的选择与校验 (39)

110kV变电站电气一次部分课程设计

110k V变电站电气一次部分课程设计 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

课程设计任务书 设计题目: 110kV变电站电气 一次部分设计 前言 变电站(Substation)改变电压的场所。是把一些设备组装起来,用以切断或接通、改变或者调整电压。在电力系统中,变电站是输电和配电的集结点。主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远

距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。 随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。 目录 第1章原始资料及其分析 (4) 1原始资料 (4) 2原始资料分析 (6) 第2章负荷分析 (6) 第3章变压器的选择 (8) 第4章电气主接线 (11) 第5章短路电流的计算 (14) 1短路电流计算的目的和条件 (14) 2短路电流的计算步骤和计算结果 (15) 第6章配电装置及电气设备的配置与选择 (18) 1 导体和电气设备选择的一般条件 (18) 2 设备的选择 (19)

220kv变电站电气部分设计

220kv变电站电气部分设计

******毕业生论文 题目:220kV降压变电所电气部分设计 系别电力工程系_ 专业供用电技术 班级 ********** 学号*********** _ 姓名

Keywords: main electrical wiring;transformers;short circuit current;lightning protection。 目录 摘要 (2) ABSTRACT (2) 引言 (6) 第一章电气主接线选择 (7) 第1节概述 (7) 第2节主接线的接线方式选择 (6) 第二章主变压器容量、台数及型式的选择 (9) 第1节概述 (9) 第2节主变压器台数的选择 (9) 第3节主变压器容量的选择 (10) 第4节主变压器型式的选择 (10) 第三章短路电流计算 (12) 第1节概述 (14) 第2节短路计算的目的及假设 (15) 第四章电气设备的选择 (18) 第1节概述 (18)

第2节断路器的选择 (19) 第3节隔离开关的选择 (21) 第4节高压熔断器的选择 (23) 第5节互感器的选择 (23) 第6节母线的选择 (25) 第7节支持绝缘子及穿墙套管的选择 (27) 第8节限流电抗器的选择 (29) 第五章电气总平面布置及配电装置的选择 (30) 第1节概述 (30) 第2节高压配电装置的选择 (31) 第六章继电保护配置规划 (33) 第1节变电所主变保护的配置 (37) 第2节 220KV、110KV、10KV线路保护部分 (34) 第七章防雷设计规划 (35) 第1节概述 (35) 第2节防雷保护的设计 (36) 第3节主变中性点放电间隙保护 (37) 结论 (38) 致谢 (38) 参考文献 (38)

发电厂电气部分110KV变电站课程设计

二、设计原始资料 1、电力系统接线及参数如图1所示,待设计的变电站为丙变电站,是一个110系统的枢纽变电站。 2、待设计的变电站的电压等级为:110kV、35kV、10kV。5~10年规划负荷如下: 2.1 35kV电压级:架空出线6回,每回出线最大输送功率5MW,送电距离30km,功率 因数,Ⅰ、Ⅱ类负荷所占比例为60%. 负荷同时率取0。9。 2.2 10kV电压级:架空出线10回,每回架空出线最大输送功率2MW,送电距离6km,功 率因数:cosΦ=0.8。,Ⅰ、Ⅱ类负荷所占比例为70%.负荷同时率取0.9。 3、自然条件:站址为农田,土质为黏土,土壤电阻率ρ=60m海拔高度.处于 Ⅳ类气象区。 4、各电压级进出线方向110kV进线为同一方向进线;35kV出线为两个方向出线;10kV 出线为多方向出线。 5、各电压级母线后备保护的动作时间:10kV母线1s;35kV母线2s;110kV母线3s。 6、依据负荷曲线,变电站最大负荷利用小时数。 7、电力系统直流分量电流衰减时间常数,(冲击系数)。 8、系统运行方式:最大运行方式为发电厂机组全部投入,变电站110kV为4回进线、 最小运行方式为每个电厂停一台发电机,变电站110kV各发电厂只有一回进线。 .

此表装订在报告(论文)的前面。

摘要 本摘要主要进行110KV变电站设计。首先根据任务书上所给系统及线路和所有负荷的参数,通过对所建变电站及出线的考虑和对负荷资料分析,满足安全性、经济性及可靠性的要求确定了110KV、35KV、10KV侧主接线的形式,然后又通过负荷计算及供电范围确定了主变压器台数、容量、及型号,从而得出各元件的参数,进行等值网络化简,然后选择短路点进行短路计算,根据短路电流计算结果及最大持续工作电流,选择并校验电气设备,包括母线、断路器、隔离开关,并确定配电装置。根据负荷及短路计算为线路、变压器、母线配置继电保护并进行整定计算。本文同时对防雷接地及补偿装置进行了简单的分析,最后进行了电气主接线图的绘制。

某220kV变电站电气部分设计

某220kV变电站电气部分设计 摘要 本设计的主要内容是对一座220kV变电站的电气部分进行设计。设计要求采用2回220kV进线,110kV出线7回,10kV出线9回。分三期完成,一期完成220kV进线2回,110kV出线3回,10kV出线3回。具体设计项目包括:主变容量选择、电气主接线方案设计、电气总平面布置、短路电流计算、一次设备的选择及校验、各级电压配电装置的布置、二次回路方案的选择及继电保护的整定所用电设计、防雷接地方案的设计。 本设计中所涉及的主要计算包括:短路计算、一次设备校验计算、继电保护整定计算。 关键词:220kV;变电站;设计;短路计算;校验

Design for the electrical part of a 220kV substation Abstract The main target of this design is the electrical part of a 220kV substation. Design requires that using two 220kV back into line, seven to 110kV line and 9 to 10kV line. The whole project is divided into tree periods while two 220kV back into line, three 110kV line and three 10kV line are planed to be accomplished in the first period. This design includes following parts: selection of the capacity of the main transfer, main connection, plane arrangement, short circuit calculation, first side facility selection and verification, plane arrangement for each voltage part, rely protection design, substation-used electricity design, lightning protection design. The main calculation mentioned in this design including: short circuit calculation, verification calculation for first part facility, rely protection calculation. Keyword: 220kV;Substation;Design;Short circuit calculation;verification

相关主题
文本预览
相关文档 最新文档