当前位置:文档之家› 半导体器件介绍及PN结

半导体器件介绍及PN结

半导体器件介绍及PN结
半导体器件介绍及PN结

第一章半导体器件

我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。所以我们在学习电子电路之前,一定要了解半导体的一些基本知识。

这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好

在学习时我们把它的内容分为三节,它们分别是:

§1、1 半导体的基础知识

§1、2 PN结

§1、3 半导体三极管

§1、1半导体的基础知识

我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。

在学习半导体之前我们还要了解一些物质导电性的基础知识:物质为什麽会导电.

一:本征半导体

纯净晶体结构的半导体我们称之为本征半导体。常用的半导体材料有:硅和锗。它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。

共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。

在外电场作用下,自由电子产生定向移动,形成电子电流;同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。

二:杂质半导体

在本征半导体中两种载流子的浓度很低,因此导电性很差。我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。

1.N型半导体

在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。

在N型半导体中自由电子是多数载流子,空穴是少数载流子。

2.P型半导体

在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。在P型半导体中,自由电子是少数载流子,空穴使多数载流子

§1、2 P—N结

我们通过现代工艺,把一块本征半导体的一边形成P型半导体,另一边形成N型半导体,于是这两种半导体的交界处就形成了P—N结,它是构成其它半导体的基础,我们要掌握好它的特性!

一:异形半导体接触现象

在形成的P—N结中,由于两侧的电子和空穴的浓度相差很大,因此它们会产生扩散运动:电子从N 区向P区扩散;空穴从P去向N区扩散。因为它们都是带电粒子,它们向另一侧扩散的同时在N区留下了带正电的空穴,在P区留下了带负电的杂质离子,这样就形成了空间电荷区,也就是形成了电场(自建场). 它们的形成过程如图(1),(2)所示

在电场的作用下,载流子将作漂移运动,它的运动方向与扩散运动的方向相反,阻止扩散运动。电场的强弱与扩散的程度有关,扩散的越多,电场越强,同时对扩散运动的阻力也越大,当扩散运动与漂移运动相等时,通过界面的载流子为0。此时,PN结的交界区就形成一个缺少载流子的高阻区,我们又把它称为阻挡层或耗尽层

二:PN结的单向导电性

我们在PN结两端加不同方向的电压,可以破坏它原来的平衡,从而使它呈现出单向导电性。

1.PN结外加正向电压

PN结外加正向电压的接法是P区接电源的正极,N区接电源的负极。这时外加电压形成电场的方向与自建场的方向相反,从而使阻挡层变窄,扩散作用大于漂移作用,多数载流子向对方区域扩散形成正向电流,方向是从P区指向N区。如图(1)所示

这时的PN结处于导通状态,它所呈现的电阻为正向电阻,正向电压越大,电流也越大。它的关系是指数关系:

其中:I D为流过PN结的电流,U为PN结两端的电压,

U T=kT/q称为温度电压当量,其中,k为波尔兹曼常数,T为绝对温度,q

为电子电量,在室温下(300K)时U T=26mv,I S为反向饱和电流。这个公

式我们要掌握好!

2.PN结外加反向电压

它的接法与正向相反,即P区接电源的负极,N区接电源的正极。此时的外加电压形成电场的方向与自建场的方向相同,从而使阻挡层变宽,漂移作用大于扩散作用,少数载流子在电场的作用下,形成漂移电流,它的方向与正向电压的方向相反,所以又称为反向电流。因反向电流是少数载流子形成,故反向电流很小,即使反向电压再增加,少数载流子也不会增加,反向电压也不会增加,因此它又被称为反向饱和电流。即:I D=-I S

此时,PN结处于截止状态,呈现的电阻为反向电阻,而且阻值很高。

由以上我们可以看出:PN结在正向电压作用下,处于导通状态,在

反向电压的作用下,处于截止状态,因此PN结具有单向导电性。

它的电流和电压的关系通式为:

它被称为伏安特性方程,如图(3)所示为伏安特性曲线。

三:PN结的击穿

PN结处于反向偏置时,在一定的电压范围内,流过PN结的电流很小,但电压超过某一数值时,反向电流急剧增加,这种现象我们就称为反向击穿。

击穿形式分为两种:雪崩击穿和齐纳击穿。

对于硅材料的PN结来说,击穿电压〉7v时为雪崩击穿,<4v时为齐纳击穿。在4v与7v之间,两种击穿都有。这种现象破坏了PN结的单向导电性,我们在使用时要避免。

击穿并不意味着PN结烧坏。

四:PN结的电容效应

由于电压的变化将引起电荷的变化,从而出现电容效应,PN结内部有电荷的变化,因此它具有电容效应,它的电容效应有两种:势垒电容和扩散电容。

势垒电容是由阻挡层内的空间电荷引起的。

扩散电容是PN结在正向电压的作用下,多数载流子在扩散过程中引起电荷的积累而产生的。

PN结正偏时,扩散电容起主要作用,PN结反偏时,势垒电容起主要作用。

五:半导体二极管

半导体二极管是由PN结加上引线和管壳构成的。它的类型很多。

按制造材料分:硅二极管和锗二极管。

按管子的结构来分有:点接触型二极管和面接触型二极管。

二极管的逻辑逻辑符号为:

1.二极管的特性

正向特性

当正向电压低于某一数值时,正向电流很小,只有当正向电压高于某一值时,二极管才有明显的正向电流,这个电压被称为导通电压,我们又称它为门限电压或死区电压,一般用U ON表示,在室温下,硅管的U ON 约为0.6----0.8V,锗管的U ON约为0.1--0.3v,我们一般认为当正向电压大于U ON时,二极管才导通。否则截止。

反向特性

二极管的反向电压一定时,反向电流很小,而且变化不大(反向饱和电流),但反向电压大于某一数值

时,反向电流急剧变大,产生击穿。

温度特性

二极管对温度很敏感,在室温附近,温度每升高1度,正向压将减小2--2.5mV,温度每升高10度,反向电流约增加一倍。

2.二极管的主要参数

我们描述器件特性的物理量,称为器件的特性。二极管的特性有:

最大整流电流I F它是二极管允许通过的最大正向平均电流。

最大反向工作电压U R它是二极管允许的最大工作电压,我们一般取击穿电压的一般作U R

反向电流I R二极管未击穿时的电流,它越小,二极管的单向导电性越好。

最高工作频率f M它的值取决于PN结结电容的大小,电容越大,频率约高。

二极管的直流电阻R D 加在管子两端的直流电压与直流电流之比,我们就称为直流电阻,它可表示为:R D=U F/I F 它是非线性的,正反向阻值相差越大,二极管的性能越好。

二极管的交流电阻r d 在二极管工作点附近电压的微变化与相应的微变化电流值之比,就称为该点的交流电阻。

六:稳压二极管

稳压二极管是利用二极管的击穿特性。它是因为二极管工作在反向击穿区,反向电流变化很大的情况下,反向电压变化则很小,从而表现出很好的稳压特性。

七:二极管的应用

我们运用二极管主要是利用它的单向导电性。它导通时,我们可用短线来代替它,它截止时,我们可认为它断路。

1.限幅电路

当输入信号电压在一定范围内变化时,输出电压也随着输入电压相应的变化;当输入电压高于某一个数值时,输出电压保持不变,这就是限幅电路。我们把开始不变的电压称为限幅电平。它分为上限幅和下限幅。

例1.试分析图(1)所示的限幅电路,输入电压的波形为图(2),画出它的限幅电路的波形

(1) E=0时限幅电平为0v。u i>0时二极管导通,u o=0,u i<0时,二极管截止,u o=u i,它的波形图为:如图(3)所示

(2) 当0+E时,二极管导通,u o=E,它的波

形图为:如图(4)所示

(3)当-U M

二:二极管门电路

二极管组成的门电路,可实现逻辑运算。如图(6)所示的电路,只要有一条电路输入为低电平时,输出即为低电平,仅当全部输入为高电平时,输出才为高电平。实现逻辑"与"运算.

§1、3半导体三极管

三极管是组成各电子电路的核心器件,它由三个电极。它是我们学习的重点

一:三极管的结构及类型

通过工艺的方法,把两个二极管背靠背的连接起来级组成了三极管。按PN结的组合方式有PNP型和NPN 型,它们的结构示意图和符号图分别为:如图(1)、(2)所示

不管是什麽样的三极管,它们均包含三个区:发射区,基区,集电区,同时相应的引出三个电极:发射极,基极,集电极。同时又在两两交界区形成PN结,分别是发射结和基点结。

二:三极管的放大作用(这一问题是重点)

我们知道,把两个二极管背靠背的连在一起,是没有放大作用的,要想使它具有放大作用,必须做到一下几点:

发射区中掺杂

基区必须很薄

基电结的面积应很大

工作时:发射结应正向偏置,集电结应反向偏置

载流子的传输过程

因为发射结正向偏置,且发射区进行重掺杂,所以发射区的多数载流子扩散注入至基区,又由于集电结的反向作用,故注入至基区的载流子在基区形成浓度差,因此这些载流子从基区扩散至集电结,被电场拉至

集电区形成集电极电流。而留在基区的很少,因为基区做的很薄。

我们再用图形来说明一下,如图(3)所示:

电流的分配关系

由于载流子的运动,从而产生相应电流,它们的关系如下:

其中:I

为发射结少数载流子形成的反向饱和电流;

I CBO为I B=0时,集电极和发射极之间的穿透电流。

为共基极电流的放大系数,为共发射极电流的

放大系数。它们可定义为:

放大系数有两种(直流和交流),但我们一般认为,它们二者是

相等的,不区分它们

三:三极管的特性曲线

它的特性曲线与它的接法有关,在学习之前,我们先来学习一下它的三种不同接法。

(1)共基极,如图(1)所示

(2)共发射极如图(2)所示

(3)共集电极如图(3)所示

我们以NPN管共发射极为例:

1.输入特性

它与PN结的正向特性相似,三极管的两个PN结相互影响,因此,输出电压U CE对输入特性有影响,且U CE>1,时这两个PN结的输入特性基本重合。我们用U CE=0和U CE>=1,两条曲线表示,如图(4)所示2.输出特性

它的输出特性可分为三个区:(如图(5)的特性曲线)

(1)截止区:I B<=0时,此时的集电极电流近似为零,管子的集电极电压等于电源电压,两个结均反偏

(2)饱和区:此时两个结均处于正向偏置,U CE=0.3V

(3)放大区:此时I C=?I B,I C基本不随U CE变化而变化,此时发射结正偏,集电结反偏。

四:三级管主要参数

1.放大系数

它主要是表征管子放大能力。它有共基极的放大系数和共发射极的放大系数。它们二者的关系是:

2.极间的反向电流(它们是有少数载流子形成的)

(1):基电极--基极的反向饱和电流。

(2)I CEO:穿透电流,它与I CBO关系为:I CEO=(1+?)I CBO

五:参数与温度的关系

由于半导体的载流子受温度影响,因此三极管的参数受温度影响,温度上升,输入特性曲线向左移,基极的电流不变,基极与发射极之间的电压降低。输出特性曲线上移。

温度升高,放大系数也增加。

PN结物理特性及玻尔兹曼常数测量

P N结物理特性及玻尔兹 曼常数测量 Prepared on 21 November 2021

PN 结物理特性及玻尔兹曼常数测量 半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压be U 与热力学温度T 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。 【实验目的】 1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。 2、在不同温度条件下,测量玻尔兹曼常数。 3、学习用运算放大器组成电流—电压变换器测量10-6A 至10-8A 的弱电流。 4、测量PN 结结电压be U 与温度关系,求出结电压随温度变化的灵敏度。 5、计算在0K 时半导体(硅)材料的禁带宽度(选作)。 6、学会用最小二乘法拟合数据。 【实验仪器】 FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。 FD-PN-4 型PN 节物理特性测定仪 【实验原理】 1. 测量三极管发射极与基极电压U 1和集电极与基极电压U 2之间的关系 (a)PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足: [] 1/0-=KT eU e I I (1) 式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,kT /e ≈ ,而PN 结正向压降约为十分之几伏,则KT eU e />>1,(1)式括号内-1项完全可以忽略,于是有: KT eU e I I /0= (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出e /kT 。在测得温度T 后,就可以得到e /k 常数,把电子电量作为已知值代入,即可求得玻尔兹曼常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分: [1]扩散电流,它严格遵循(2)式; [2]耗尽层复合电流,它正比于KT eU e 2/; [3]表面电流,它是由Si 和SiO 2界面中杂质引起的,其值正比于mKT eU e /,一般m >2。

(整理)半导体基础知识.

1.1 半导体基础知识概念归纳 本征半导体定义:纯净的具有晶体结构的半导体称为本征半导体。 电流形成过程:自由电子在外电场的作用下产生定向移动形成电流。 绝缘体原子结构:最外层电子受原子核束缚力很强,很难成为自由电子。 绝缘体导电性:极差。如惰性气体和橡胶。 半导体原子结构:半导体材料为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚得那么紧。 半导体导电性能:介于半导体与绝缘体之间。 半导体的特点: ★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。 ★在光照和热辐射条件下,其导电性有明显的变化。 晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。 自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。 空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。 本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。 载流子:运载电荷的粒子称为载流子。 导体电的特点:导体导电只有一种载流子,即自由电子导电。 本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。 本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。 复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,

PN结物理特性测定2015

半导体PN 结的物理特性实验 实验目的 1.测量PN 结电流与电压关系,证明此关系符合指数分布规律。 2.测量玻尔兹曼常数。 3.测量PN 结电压与温度的关系,求出该PN 结温度传感器的灵敏度。 4.计算在0K 温度时,半导体硅材料的近似禁带宽度。 实验原理 1. PN 结伏安特性及玻尔兹曼常数测量 由半导体物理学可知,PN 结的正向电流-电压关系满足: []1)/exp(0-=kT eU I I (1) 式中I 是通过PN 结的正向电流,0I 是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,e kT /≈0.026v ,而PN 结正向压降 约为十分之几伏,则)/exp( kT eU >>1,(1)式括号内-1项完全可以忽略,于是有: )/exp(0kT eU I I = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出 kT e /。在测得温度T 后,就可以得到k e /常数,把电子电量作为已知值代入,即可求得玻尔兹曼 常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:1)扩散电流,

它严格遵循(2)式;2)耗尽层符合电流,它正比于)2/exp(kT eU ;3)表面电流,它是由硅和二氧 化硅界面中杂质引起的,其值正比于)/exp( mkT eU ,一般m >2。因此,为了验证(2)式及求出准确的e /k 常数,不宜采用硅二极管,而采用硅三极管接成共基极线路,因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。复合电流主要在基极出现,测量集电极电流时,将不包括它。本实验中选取性能良好的硅三极管(TIP31型),实验中又处于较低的正向偏置,这样表面电流影响也完全可以忽略,所以此时集电极电流与结电压将满足(2)式。实验线路如图1所示。 图1 PN 结扩散电源与结电压关系测量线路图 2.PN 结的结电压be U 与热力学温度T 关系测量。 当PN 结通过恒定小电流(通常电流A I μ1000=),由半导体理论可得be U 与T 近似关系: go be U ST U += (5) 式中S ≈-2.3C mV o /为PN 结温度传感器灵敏度。由go U 可求出温度0K 时半导体材料的近似禁带宽度go E =go qU 。硅材料的go E 约为1.20eV 。 实验仪器 1. 直流电源、数字电压表、温控仪组合装置(包括±15V 直流电源、0-1.5V 及3.0V 直流电源、三位半数字电压表、四位半数字电压表、温控仪)。 2. TIP31型三极管(带三根引线)1个,3DG 三极管1个。

半导体基础知识学习

我们知道,电子电路是由晶体管组成,而晶体管是由半导体制成的。所以我们在学习电子电路之前, 一定要了解半导体的一些基本知识。 这一章我们主要学习二极管和三极管的一些基本知识,它是本课程的基础,我们要掌握好在学习时我们把它的内容分为三节,它们分别是: 1、1 半导体的基础知识 1、2 PN结 1、3 半导体三极管 1、1 半导体的基础知识 我们这一章要了解的概念有:本征半导体、P型半导体、N型半导体及它们各自的特征。一:本征半导体 纯净晶体结构的半导体我们称之为本征半导体。常用的半导体材料有:硅和锗。它们都是四价元素,原子结构的最外层轨道上有四个价电子,当把硅或锗制成晶体时,它们是靠共价键的作用而紧密联系在一起。 共价键中的一些价电子由于热运动获得一些能量,从而摆脱共价键的约束成为自由电子,同时在共价键上留下空位,我们称这些空位为空穴,它带正电。我们用晶体结构示意图来描述一下;如图(1)所示:图中的虚线代表共价键。 在外电场作用下,自由电子产生定向移动,形成电子电流; 同时价电子也按一定的方向一次填补空穴,从而使空穴产生定向移动,形成空穴电流。 因此,在晶体中存在两种载流子,即带负电自由电子和带正电空穴,它们是成对出现的。二:杂质半导体 在本征半导体中两种载流子的浓度很低,因此导电性很差。我们向晶体中有控制的掺入特定的杂质来改变它的导电性,这种半导体被称为杂质半导体。 1.N型半导体 在本征半导体中,掺入5价元素,使晶体中某些原子被杂质原子所代替,因为杂质原子最外层有5各价电子,它与周围原子形成共价键后,还多余一个自由电子,因此使其中的空穴的浓度远小于自由电子的浓度。但是,电子的浓度与空穴的浓度的乘积是一个常数,与掺杂无关。在N型半导体中自由电子是多数载流子,空穴是少数载流子。 2.P型半导体 在本征半导体中,掺入3价元素,晶体中的某些原子被杂质原子代替,但是杂质原子的最外层只有3个价电子,它与周围的原子形成共价键后,还多余一个空穴,因此使其中的空穴浓度远大于自由电子的浓度。在P型半导体中,自由电子是少数载流子,空穴使多数载流子。 1、2 P—N结

第一章半导体基础知识(精)

第一章半导体基础知识 〖本章主要内容〗 本章重点讲述半导体器件的结构原理、外特性、主要参数及其物理意义,工作状态或工作区的分析。 首先介绍构成PN结的半导体材料、PN结的形成及其特点。其后介绍二极管、稳压管的伏安特性、电路模型和主要参数以及应用举例。然后介绍两种三极管(BJT和FET)的结构原理、伏安特性、主要参数以及工作区的判断分析方法。〖本章学时分配〗 本章分为4讲,每讲2学时。 第一讲常用半导体器件 一、主要内容 1、半导体及其导电性能 根据物体的导电能力的不同,电工材料可分为三类:导体、半导体和绝缘体。半导体可以定义为导电性能介于导体和绝缘体之间的电工材料,半导体的电阻率为10-3~10-9 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。半导体的导电能力在不同的条件下有很大的差别:当受外界热和光的作用时,它的导电能力明显变化;往纯净的半导体中掺入某些特定的杂质元素时,会使它的导电能力具有可控性;这些特殊的性质决定了半导体可以制成各种器件。 2、本征半导体的结构及其导电性能 本征半导体是纯净的、没有结构缺陷的半导体单晶。制造半导体器件的半导体材料的纯度要达到99.9999999%,常称为“九个9”,它在物理结构上为共价键、呈单晶体形态。在热力学温度零度和没有外界激发时,本征半导体不导电。 3、半导体的本征激发与复合现象 当导体处于热力学温度0 K时,导体中没有自由电子。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。这一现象称为本征激发(也称热激发)。因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 游离的部分自由电子也可能回到空穴中去,称为复合。 在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。 4、半导体的导电机理 自由电子的定向运动形成了电子电流,空穴的定向运动也可形成空穴电流,因此,在半导体中有自由电子和空穴两种承载电流的粒子(即载流子),这是半导体的特殊性质。空穴导电的实质是:相邻原子中的价电子(共价键中的束缚电子)依次填补空穴而形成电流。由于电子带负电,而电子的运动与空穴的运动方向相反,因此认为空穴带正电。

PN结物理特性及玻尔兹曼常数测量.

PN 结物理特性及玻尔兹曼常数测量 半导体PN 结的物理特性是物理学和电子学的重要基础内容之一。使用本实验的仪器用物理实验方法,测量PN 结扩散电流与电压关系,证明此关系遵循指数分布规律,并较精确地测出玻尔兹曼常数(物理学重要常数之一),使学生学会测量弱电流的一种新方法。本实验的仪器同时提供干井变温恒温器和铂金电阻测温电桥,测量PN 结结电压be U 与热力学温度T 关系,求得该传感器的灵敏度,并近似求得0K 时硅材料的禁带宽度。 【实验目的】 1、在室温时,测量PN 结扩散电流与结电压关系,通过数据处理证明此关系遵循指数分布规律。 2、在不同温度条件下,测量玻尔兹曼常数。 3、学习用运算放大器组成电流—电压变换器测量10-6A 至10-8A 的弱电流。 4、测量PN 结结电压be U 与温度关系,求出结电压随温度变化的灵敏度。 5、计算在0K 时半导体(硅)材料的禁带宽度(选作)。 6、学会用最小二乘法拟合数据。 【实验仪器】 FD-PN-4型PN 结物理特性综合实验仪(如下图),TIP31c 型三极管(带三根引线)一只,长连接导线11根(6黑5红),手枪式连接导线10根,3DG6(基极与集电极已短接,有二根引线)一只,铂电阻一只。 FD-PN-4 型PN 节物理特性测定仪 【实验原理】 1. 测量三极管发射极与基极电压U 1和集电极与基极电压U 2之间的关系 (a)PN 结伏安特性及玻尔兹曼常数测量由半导体物理学可知,PN 结的正向电流-电压关系满足: [] 1/0-=KT eU e I I (1) 式(1)中I 是通过PN 结的正向电流,I 0是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,kT /e ≈0.026v ,而PN 结正向压降约为十分之几伏,则KT eU e />>1,(1)式括号内-1项完全可 以忽略,于是有: KT eU e I I /0= (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)

半导体物理与器件基础知识

9金属半导体与半导体异质结 一、肖特基势垒二极管 欧姆接触:通过金属-半导体的接触实现的连接。接触电阻很低。 金属与半导体接触时,在未接触时,半导体的费米能级高于金属的费米能级,接触后,半导体的电子流向金属,使得金属的费米能级上升。之间形成势垒为肖特基势垒。 在金属与半导体接触处,场强达到最大值,由于金属中场强为零,所以在金属——半导体结的金属区中存在表面负电荷。 影响肖特基势垒高度的非理想因素:肖特基效应的影响,即势垒的镜像力降低效应。金属中的电子镜像到半导体中的空穴使得半导体的费米能级程下降曲线。附图:

电流——电压关系:金属半导体结中的电流运输机制不同于pn结的少数载流子的扩散运动决定电流,而是取决于多数载流子通过热电子发射跃迁过内建电势差形成。附肖特基势垒二极管加反偏电压时的I-V曲线:反向电流随反偏电压增大而增大是由于势垒降低的影响。 肖特基势垒二极管与Pn结二极管的比较:1.反向饱和电流密度(同上),有效开启电压低于Pn结二极管的有效开启电压。2.开关特性肖特基二极管更好。应为肖特基二极管是一个多子导电器件,加正向偏压时不会产生扩散电容。从正偏到反偏时也不存在像Pn结器件的少数载流子存储效应。 二、金属-半导体的欧姆接触

附金属分别与N型p型半导体接触的能带示意图 三、异质结:两种不同的半导体形成一个结 小结:1.当在金属与半导体之间加一个正向电压时,半导体与金属之间的势垒高度降低,电子很容易从半导体流向金属,称为热电子发射。

2.肖特基二极管的反向饱和电流比pn结的大,因此达到相同电流时,肖特基二极管所需的反偏电压要低。 10双极型晶体管 双极型晶体管有三个掺杂不同的扩散区和两个Pn结,两个结很近所以之间可以互相作用。之所以成为双极型晶体管,是应为这种器件中包含电子和空穴两种极性不同的载流子运动。 一、工作原理 附npn型和pnp型的结构图 发射区掺杂浓度最高,集电区掺杂浓度最低

半导体PN结的物理特性研究数据处理特例

半导体PN结的物理特性数据处理数据记录: 室温:28.0℃θ1=28.0℃θ2=28.0℃ 0. 28 = θ℃ 数据处理: 1.按U2=BU1+A处理 表2 第2、和第1列数据的相关系数γ=0.844996;斜率B=54.03297 ;截距A= –18.3031。拟合方程为: U2=54.03297U1-18.3031 (1) 根据(1)式计算出表2中的第3 列U2的期望值U20;再根据(U2-U20)2 算出表2中第4列数据,第4列数据的 总和为: Σ(U2-U20)2=26.60278 (2) 根据表2第1、2列数据作图如图 1所示。从U1和U2的相关系数和图中数 据点的分布和线性趋势线的走向均可 看出,U1和U2并不相关,因此采用线性 相拟合并不好。 2.按U2=BU12+A进行拟合 表3 图 1 按线性拟合

表3第2、和第3列数据的相关系 数γ=0.8675393;斜率B=73.881948; 截距A=–8.550421。拟合方程为: U 2=73.881948U 12 -8.550421 (3) 根据(3)式计算出表3中的第4列U 2的期望值U 20;再根据(U 2-U 20)2 算出表3中第5列数据,第5列数据的 总和为: Σ(U 2-U 20)2 =23.011569 (4) 根据表3第3、2列数据作图如图1所示。从U 12 和U 2的相关系数和图中 数据点的分布和线性趋势线的走向均 可看出,U 12 和U 2并不相关,因此采用幂函数拟合并不好。 3.按U 2=AU 1B 进行拟合 对表4的第1、2列数据取对数构成表4中的第3 、4列。 图 2 按幂函数拟合

PN结的物理特性—实验报告

半导体PN 结的物理特性实验报告 姓名:陈晨 学号:12307110123 专业:物理学系 日期:2013年12月16日 一、引言 半导体PN 结是电子技术中许多元件的物质基础具有广泛应用,因此半导体PN 结的伏安特性是半导体物理学的重要内容。本实验利用运算放大器组成电流-电压变换器的方法精确测量弱电流,研究PN 结的正向电流I ,正向电压U ,温度T 之间的关系。本实验桶过处理实验数据得到经验公式,验证了正向电流与正向电压的指数关系,正向电流与温度的指数关系以及正向电压与温度的线性关系,并由此与计算玻尔兹曼常数k 与0K 时材料的禁带宽度E ,加深了对半导体PN 节的理解。 二、实验原理 1、 PN 结的物理特性 (1)PN 结的定义:若将一块半导体晶体一侧掺杂成P 型半导体,即有多余电子的半导体,另一侧掺杂成N 型半导体,即有多余空穴的半导体,则中间二者相连的接触面就称为PN 结。 (2)PN 结的正向伏安特性:根据半导体物理学的理论,一个理想PN 结的正向电流I 与正向电压U 之间存在关系 ①,其中I S 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,e 为电子电量。在常温(T=300K )下和实验所取电压U 的范围内, 故①可化为 ②,两边取对数可得 。 (3)当温度T 不变时作lnI-U 图像并对其进行线性拟合,得到线性拟合方程的斜率为e/kT ,带入已知常数e 和T ,便得玻尔兹曼常数k 。 2、反向饱和电流I s (1)禁带宽度E :在固体物理学中泛指半导体或是绝缘体的价带顶端至传导带底端的能量差距。对一个本征半导体而言,其导电性与禁带宽度的大小有关,只有获得足够能量的电子才能从价带被激发,跨过禁带宽度跃迁至导带。 (2)根据半导体物理学的理论,理想PN 结的反向饱和电流Is 可以表示为 ③,代入②得 ,其中I 0为与结面积和掺杂浓度等有关的常数,γ取决于少数载流子迁移率对温度的关系,通常取γ=3.4,k 为玻尔兹曼常数,T 为热力学温度.E 为0K 时材料的禁带宽度。两边取对数得 ,其中γlnT 随温度T 的变 化相比(eU-T )/kT 很缓慢,可以视为常数。 (3)当正向电压U 不变时作lnI-1/T 图像并进行线性拟合,得到拟合方程斜率(eU-E )/k ,代入已知常数便得0K 时PN 结材料的禁带宽度E ;当正向电流I 不变时作U-T 图并进行线性拟合,得到拟合直线截距E/e ,带入已知常数,便得0K 时PN 结材料的禁带宽度E 。 3、实验装置及其原理 (1)如图所示为由运算放大器组成的电流-电压变换器电路图,电压表V1测量的是正向电压U1,电压表V2测量的是正向电流I 经运算放大器放大后所对应的电压U2,分析电路后可知,正向电流I ≈U 2/R f ,其中R f 为反馈电阻。通过二极管的正向电流除了扩散电流外,还 (1)eU kT s I I e =-1 eU kT e >>eU kT s I I e =lnI lnI s eU kT =+0E kT s I I T e γ - =0eU E kT I I T e γ-=0ln lnI ln eU E I T kT γ-=++

半导体的基本特性

半導體的基本特性 自然界的物質依照導電程度的難易,可大略分為三大類:導體、半導體和絕緣體。顧名思義,半導體的導電性介於容易導電的金屬導體和不易導電的絕緣體之間。半導體的種類很多,有屬於單一元素的半導體如矽(Si)和鍺(Ge),也有由兩種以上元素結合而成的化合物半導體如砷化鎵(GaAs)和砷磷化鎵銦(GaxIn1-xAsyP1-y)等。在室溫條件下,熱能可將半導體物質內一小部分的原子與原子間的價鍵打斷,而釋放出自由電子並同時產生一電洞。因為電子和電洞是可以自由活動的電荷載子,前者帶負電,後者帶正電,因此半導體具有一定程度的導電性。 電子在半導體內的能階狀況,可用量子力學的方法加以分析。在高能量的導電帶內(Ec以上),電子可以自由活動,自由電子的能階就是位於這一導電帶內。最低能區(Ev以下)稱為「價帶」,被價鍵束縛而無法自由活動的價電子能階,就是位於這一價帶內。導電帶和價帶之間是一沒有能階存在的「禁止能帶」(或稱能隙,Eg),在沒有雜質介入的情況下,電子是不能存在能隙裡的。 在絕對溫度的零度時,一切熱能活動完全停止,原子間的價鍵完整無損,所有電子都被價鍵牢牢綁住無法自由活動,這時所有電子的能量都位於最低能區的價帶,價帶完全被價電子占滿,而導電帶則完全空著。價電子欲脫離價鍵的束縛而成為自由電子,必須克服能隙Eg,提升自己的能階進入導電帶。熱能是提供這一能量的自然能源之一。 近導電帶,而游離後的施體離子則帶正電。這種半導體稱為n型半導體,其費米能階EF比較靠近導電帶。一般n型半導體內的電子數量遠比電洞為多,是構成電流傳導的主要載子(或稱多數載子)。

1. 導電性介於導體和半導體之間的物體,稱為半導體 2. 此物體需要高溫和高電量才能通電的物體. 3.在溫度是0和電導率是0,當溫度上升後,價能帶內的電子,由於熱激發躍進到導帶,致使導帶內充滿一些電子,導電率隨之增加----------這就是半導體. #半導體的特性: 1. 溫度上升電阻下降的特性 2. 整流效應 3 光伏特效應 4. 光電導效應

半导体PN结的物理特性

半导体PN结的物理特性 简介:半导体PN结的物理特性是物理学和电子学的重要基础内容之一,它在实践中有着广泛的应用,如各种晶体管、太阳能电池、半导体制冷、半导体激光器、发光二极管都是由半导体PN结组成。本实验主要研究的两个问题是: (1)测量PN结扩散电流与电压的关系; (2)研究PN结电压与热力学温度的关系。 一、实验目的 (1)了解用运算放大器测量弱电流的原理和方法; (2)测量PN结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数; (3)测量PN结结电压与温度的关系,求出PN结温度传感器的灵敏度; (4)计算在绝对零度时,半导体材料的禁带宽度。 二、实验仪器:FD-PN-4 PN结物理特性实验仪

三、 实验原理 1.PN 结伏安特性及玻尔兹曼常数的测量 半导体在常温下PN 结电压与电流有如下指数关系: 0qU kT S I I e = (1) 公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。 2.弱电流测量 实验装置如图1所示,所用PN 结由三极管提供,LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器,它可对弱电流放大并转换成电压形式。其工作原理如图2所示,S I 为被测弱电流,r Z 为电路的等效输入阻抗, f R 为负反馈电阻,运放的开环放大倍数为0K ,运算放大器的输出电压为: 00i U K U =- (2) 由于运放输入阻抗i r 为无限大,反馈电阻f R 流过的电流近似为S I , 00 00 1 () (1)i S f f f U U U I U R R R K -= =-+ ≈- (3) 只要测得输出电压0U 和已知f R 值,即可求得S I ,将上式代入0qU kT S I I e =可 得: 102qU kT U U Ae == (4) 图1 PN 结扩散电源与结电压关系测量线路图

实验报告半导体PN结的物理特性及弱电流测量

成都信息工程学院 物理实验报告 姓名: 石朝阳 专业: 班级: 学号: 实验日期: 2009-9-15下午 实验教室: 5102-1 指导教师: 【实验名称】 PN 结物理特性综合实验 【实验目的】 1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律 2. 在不同温度条件下,测量玻尔兹曼常数 3. 学习用运算放大器组成电流-电压变换器测量弱电流 4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度 5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】 半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】 1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足: ]1)/[ex p(0-=kT eU I I (1) 当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有: 0exp(/)I I eU kT = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I U -关系值,则利用(1)式可以求出 /e kT 。在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。 实验线路如图1所示。

2、弱电流测量 LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。 运算放大器的输入电压0U 为: 00i U K U =- (3) 式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。因而有: 00(1) i i s f f U U U K I R R -+= = (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为 00 1i f f x s U R R Z I K K = =≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即: 图1 PN 结扩散电源与结电压关系测量线路图 图2 电流-电压变换器

半导体物理---PN结习题

PN 结作业题 1、 For a silicon step pn junction, the n side has a net doping of 183210D N cm -=? and the p side has a net doping of 153510A N cm -=?. (1) Find the junction width. (2) Find the widths of the n side of the depletion region and the p side of the depletion region . (3) What is the built-in voltage? 2、 对GaAs 材料突变PN 结,完成第1题给出的计算要求。 3、(1) 如果PN 结的N 区长度远大于L p , P 区长度为W p , 而且P 区引出端处少数 载流子电子的边界浓度一直保持为0,请采用理想模型推导该PN 结电流-电压关系式的表达形式(采用双曲函数表示) (2) 若P 区长度远小于n L ,该PN 结电流-电压关系式的表达形式将简化为什么形式? (3) 若P 区长度远小于n L ,由上述(2)的结果推导PN 结总电流中()n p I x -和 ()p n I x 这两个电流分量之比的表达式? (4) 如果希望提高比值()/()n p p n I x I x -, 应该如何调整掺杂浓度A N 和D N 的大小? 提示: 两个区域可以分别采用两个坐标系,将坐标原点分别位于势垒区两个边界处,可以大大简化推导过程中的表达式 4. 已知描述二极管直流特性的三个电流参数是S I =1410-A 、SR I =1110-A 、KF I =0.1A 。请采用半对数坐标纸,绘制正偏情况下理想模型电流,势垒区复合电流和特大注入电流这三种电流表达式的I -V 曲线,并在此基础上绘制实际二极管电流随电压变化的曲线。 (提示:特大注入条件下,?? ? ??=KT eVa I I I 2exp KF S ) 5、A one-side step n p +junction diode with 17310a N cm -= and 19310d N cm -=has a junction area of 2100m μ. It is known that, for the minority carrier, 6310n s τ-=?, 220/n D cm s = (1) Please compare the junction capacitance and the diffusion capacitance under reverse bias (5a V V =-) (2) Compare the junction capacitance and the diffusion capacitance under forward bias (0.75a V V =+)

半导体基础知识培训课件

外延基础知识 一、基本概念 能级:电子是不连续的,其值主要由主量子数N决定,每一确定能量值称为一个能级。 能带:大量孤立原子结合成晶体后,周期场中电子能量状态出现新特点:孤立原子原来一个能级将分裂成大量密集的能级,构成一相应的能带。(晶体中电子能量状态可用能带描述) 导带:对未填满电子的能带,能带中电子在外场作用下,将参与导电,形成宏观电流,这样的能带称为导带。价带:由价电子能级分裂形成的能带,称为价带。(价带可能是满带,也可能是电子未填满的能带) 直接带隙:导带底和价带顶位于K空间同一位置。 间接带隙:导带底和价带顶位于K空间不同位置。 同质结:组成PN结的P型区和N型区是同种材料。(如红黄光中的:GaAs上生长GaAs,蓝绿光中:U(undope)-GaN上生长N(dope)- GaN) 异质结:两种晶体结构相同,晶格常数相近,但带隙宽度不同的半导体材料生长在一起形成的结,称为异质结。(如蓝绿光中:GaN上生长Al GaN) 超晶格(superlatic):由两种或两种以上组分不同或导电类型各异的超薄层(相邻势阱内电子波函数发生交迭)的材料,交替生长形成的人工周期性结构,称为超晶格材料。 量子阱(QW):通常把势垒较厚,以致于相邻电子波函数不发生交迭的周期性结构,称为量子阱(它是超晶格的一种)。 二、半导体 1.分类:元素半导体:Si 、Ge 化合物半导体:GaAs、InP、GaN(Ⅲ-Ⅴ)、ZnSe(Ⅱ-Ⅵ)、SiC 2.化合物半导体优点: a.调节材料组分易形成直接带隙材料,有高的光电转换效率。(光电器件一般选用直接带隙材料) b.高电子迁移率。 c.可制成异质结,进行能带裁减,易形成新器件。 3.半导体杂质和缺陷 杂质:替位式杂质(有效掺杂) 间隙式杂质 缺陷:点缺陷:如空位、间隙原子 线缺陷:如位错 面缺陷:(即立方密积结构里夹杂着少量六角密积)如层错 4.外延技术 LPE:液相外延,生长速率快,产量大,但晶体生长难以精确控制。(普亮LED常用此生长方法) MOCVD(也称MOVPE):Metal Organic Chemical Vapour Deposition金属有机汽相淀积,精确控制晶体生长,重复性好,产量大,适合工业化大生产。 HVPE:氢化物汽相外延,是近几年在MOCVD基础上发展起来的,适应于Ⅲ-Ⅴ氮化物半导体薄膜和超晶格外延生长的一种新技术。生长速率快,但晶格质量较差。 MBE:分子束外延,可精确控制晶体生长,生长出的晶体异常光滑,晶格质量非常好,但生长速率慢,难以用于工业化大生产。 三、MOCVD设备 1.发展史:国际上起源于80年代初,我国在80年代中(85年)。 国际上发展特点:专业化分工,我国发展特点:小而全,小作坊式。 技术条件:a.MO源:难合成,操作困难。 b.设备控制精度:流量及压力控制 c.反应室设计:Vecco:高速旋转 Aixtron:气浮式旋转

半导体PN结的物理特性弱电流测量实验

半导体PN 结的物理特性及弱电流测量实验 【实验目的】 1.在室温时,测量PN 结电流与电压关系,证明此关系符合指数分布规律。 2.在不同温度条件下,测量玻尔兹曼常数。 3.学习用运算放大器组成电流-电压变换器测量弱电流。 4.测量PN 结电压与温度的关系,求出该PN 结温度传感器的灵敏度。 5.计算在0K 温度时,半导体硅材料的近似禁带宽度。 【实验原理】 1. PN 结伏安特性及玻尔兹曼常数测量 由半导体物理学可知,PN 结的正向电流-电压关系满足: []1)/ex p(0-=kT eU I I (1) 式中I 是通过PN 结的正向电流,0I 是反向饱和电流,在温度恒定是为常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降。由于在常温(300K)时,e kT /≈0.026v ,而PN 结正向压降约为十分之几伏,则)/exp(kT eU >>1,(1)式括号内-1项完全可以忽略,于是有: )/ex p(0kT eU I I = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I-U 关系值,则利用(1)式可以求出 kT e /。在测得温度T 后,就可以得到k e /常数,把电子电量作为已知值代入,即可求得玻尔兹曼 常数k 。 在实际测量中,二极管的正向I-U 关系虽然能较好满足指数关系,但求得的常数k 往往偏小。这是因为通过二极管电流不只是扩散电流,还有其它电流。一般它包括三个部分:1)扩散电流,它严格遵循(2)式;2)耗尽层符合电流,它正比于)2/exp(kT eU ;3)表面电流,它是由硅和二氧化硅界面中杂质引起的,其值正比于)/exp(mkT eU ,一般m >2。因此,为了验证(2)式及求出准确的e /k 常数,不宜采用硅二极管,而采用硅三极管接成共基极线路,因为此时集电极与基极短接,集电极电流中仅仅是扩散电流。复合电流主要在基极出现,测量集电极电流时,将不包括它。本实验中选取性能良好的硅三极管(TIP31型),实验中又处于较低的正向偏置,这样表面电流影响也完全可以忽略,所以此时集电极电流与结电压将满足(2)式。实验线路如图1所示。

【CN110085663A】一种半导体PN结及制作方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910373876.3 (22)申请日 2019.05.07 (71)申请人 无锡鸣沙科技有限公司 地址 214135 江苏省无锡市新吴区净慧东 道66号5号楼5307室 (72)发明人 何慧强  (51)Int.Cl. H01L 29/06(2006.01) H01L 21/331(2006.01) H01L 21/336(2006.01) (54)发明名称一种半导体PN结及制作方法(57)摘要本发明涉及一种半导体PN结及制作方法,在衬底N0的正面有外延层N1,N0和N1是同种类杂质,并且N0的浓度比N1的浓度高;扩散掺杂区P1和P2连接为联合体,P1和P2是同种类型杂质,扩散掺杂区P1和P2联合体穿透外延层N1,P1和P2组成同类掺杂区与N0和N1组成的同类型掺杂区的界面连接,相比于衬底区PN结两侧的掺杂浓度,外延层区域PN结两侧的掺杂浓度低,因此拉伸了反向偏压状态下表面PN结空间电荷区的宽度,减小了表面PN结的电场强度,将击穿区域引导到衬底区,这样,PN结表面在受到外界不利因素的影响时,仍然拥有较理想的击穿值,而且击穿更稳定、 更可靠。权利要求书1页 说明书5页 附图4页CN 110085663 A 2019.08.02 C N 110085663 A

1.一种半导体PN结,特征在于:在衬底N0的正面有外延层N1,N0 和N1 是同种类杂质,并且N0 的浓度比N1的浓度高;扩散掺杂区P1和P2 连接为联合体, P1 和P2 是同种类型杂质,扩散掺杂区P1和P2 联合体穿透外延层N1,P1和P2 组成同类掺杂区与N0 和N1 组成的同类型掺杂区的界面连接。 2.根据权利要求1所述的半导体PN结,其特征在于:所述P1和P2的光刻窗口区面积相等。 3.根据权利要求1所述的半导体PN结,其特征在于:所述P1和P2的光刻窗口区重合。 4.根据权利要求1所述的半导体PN结,其特征在于:所述P1在P2的光刻窗口里或所述P2在P1的光刻窗口里面。 5.根据权利要求1所述的半导体PN结,其特征在于:所述衬底N0 的浓度在1e13 ~1e17atom/cm 3,衬底N0的厚度在100um ~750um。 6.根据权利要求1所述的半导体PN结,其特征在于:所述外延层N1的浓度1e12 ~1e16atom/cm 3,外延层的厚度1um ~100um。 7.根据权利要求1所述的半导体PN结,其特征在于:所述正面掺杂区P1 的峰值浓度1e15~1e21 atom/cm 3, 正面掺杂区P1的结深1-200um。 8.根据权利要求1所述的半导体PN结,其特征在于:所述正面掺杂区P2 的表面浓度1e15~1e21 atom/cm 3, 正面掺杂区P2的结深1-100um。 9.一种半导体PN结的制作方法,特征在于:包含以下加工步骤: 步骤一:在衬底N0 正面做P1掺杂,然后推进; 步骤二:在衬底N0 正面做N1 外延; 步骤三:在外延层N1上做正面P2掺杂,然后推进; 步骤四:在芯片正面做钝化; 步骤六:在芯片正反面做金属化。 权 利 要 求 书1/1页2CN 110085663 A

半导体基础知识

一.名词解释: 1..什么是半导体?半导体具有那些特性? 导电性介于导体与绝缘体之间的物质称为半导体 热敏性:导电能力受温度影响大,当环境温度升高时,其导电能力增强。可制作热敏元件。 光敏性:导电能力受光照影响大,当光照增强时候,导电能力增强。可制作光敏元件。 掺杂性:导电能力受杂质影响极大,称为掺杂性。 2.典型的半导体是SI和Ge , 它们都是四价元素。Si是一种化学元素,在地壳中含量仅次于氧,其核外电子排布是?。 3.半导体材料中有两种载流子,电子和空穴。电子带负电,空穴带正电,在纯净半导体中掺入不同杂质可得到P型和N型半导体,常见P型半导体的掺杂元素为硼,N型半导体的掺杂元素为磷。P型半导体主要空穴导电,N型半导体主要靠电子导电。 4. 导体:导电性能良好,其外层电子在外电场作用下很容易产生定向移动,形成电流,常见的导体有铁,铝,铜等低价金属元素。 5.绝缘体:一般情况下不导电,其原子的最外层电子受原子核束缚很强,只有当外电场达到一定程度才可导电。惰性气体,橡胶等。 6.半导体:一般情况下不导电,但在外界因素刺激下可以导电,例如强电场或强光照射。 其原子的最外层电子受原子核的束缚力介于导体和绝缘体之间。Si,Ge等四价元素。 7. 本征半导体:无杂质的具有稳定结构的半导体。 8晶体:由完全相同的原子,分子或原子团在空间有规律的周期性排列构成的有一定几何形状的固体材料,构成晶体的完全相同的原子,分子,原子团称为基元。 9.晶体结构:简单立方,体心立方,面心立方,六角密积,NACL结构,CSCL结构,金刚石结构。 10.七大晶系:三斜,单斜,正交,四角,六角,三角,立方。 11.酸腐蚀和碱腐蚀的化学反应方程式: SI+4HNO3+HF=SIF4+4NO2+4H2O SI+2NaOH+H2O=Na2SiO3+2H2 12.自然界的物质,可分为晶体和非晶体两大类。常见的晶体有硅,锗,铜,铅等。常见的非晶体有玻璃,塑料,松香等。晶体和非晶体可以从三个方面来区分:1.晶体有规则的外形 2.晶体具有一定的熔点 3.晶体各向异性。 13.晶胞:晶体中有无限在空间按一定规律分布的格点,叫空间点阵。组成空间点阵最基本的单元叫晶胞。晶胞具有很多晶体的性质,很多晶胞在空间重复排列起来就得到整个晶体。不同的晶体,晶胞的形状不同。 14.根据缺陷相对晶体尺寸或影响范围大小,可分为以下几类: A:点缺陷 B:线缺陷 C:面缺陷 D:体缺陷 15.位错:一种晶体缺陷。晶体的位错是围绕着一条很长的线,在一定范围内原子都发生规律的错动,离开它原来的平衡位置,叫位错。 16. CZ 法生长单晶工艺过程: 装炉-融化-引晶-缩细颈-转肩-放肩-等径生长-收尾-停炉 A装炉:将腐蚀好的籽晶装入籽晶夹头,装正,装好,装牢。将清理干净的石墨器件装入单晶炉,调整石墨器件位置,使加热器,保温罩,石墨托碗保持同心。

半导体PN结的物理特性测量 终定稿

半导体PN 结的物理特性测量 实验目的 (1) 了解用运算放大器测量弱电流的原理和方法。 (2) 测量PN 结结电压与电流关系,证明此关系符合指数分布规律,用作图法求玻尔兹曼常数。 实验仪器 PN 结物理特性实验仪 实验原理 1.PN 结 介于导体与绝缘体之间的物质叫半导体,在半导体中只有一种载流子导电,只有电子(负电荷)导电的半导体叫N 型半导体,只有空穴(正电荷)导电的半导体叫P 型半导体。以一定的工艺制成的P 型半导体和N 型半导体相邻的交接处,由于自由扩散形成的结叫PN 结。 三极管制造工艺的特点:发射极高掺杂浓度;基极很薄几微米到十几微米,减小复合电流;集电极低掺杂浓度,面积较大,有利于接收电子。发射结正向偏置,集电结反向偏置。 2.PN 结伏安特性及玻尔兹曼常数的测量 半导体在常温下PN 结电压与电流有如下指数关系: 0qU kT S I I e = (1) 公式(1)中0I 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,q 为电子电量,U 为电压。本实验用常规方法测量时,当PN 结电压较小时,PN 结没导通,通过的电流很弱,普通电流表很难准确测量,无法验证真实的电压电流关系和测量玻尔兹曼常数,而采用集成运放对弱电流放大可解决这些问题。 3. 弱电流测量 实验装置如图1所示,所用PN 结由三极管提供,加在三极管B 、E 间的电压1U 则通过的电流为e I ,三极管电流分布满足e b c I I I =+,又因为b I 很小,所以e c I I ≈;LF356是一个高输入阻抗 集成运算放大器,用它组成电流-电压变换器,把c I 放大成2U ,且它们之间满足线性关系,因此可以说1U 与2U 之间满足指数函数关系,那么1U 与流过PN 结的电流e I 也满足指数关系。其工作原理

相关主题
相关文档 最新文档