当前位置:文档之家› ON ERROR ESTIMATES FOR GALERKIN SPECTRAL DISCRETIZATIONS OF PARABOLIC PROBLEMS WITH NONSMOO

ON ERROR ESTIMATES FOR GALERKIN SPECTRAL DISCRETIZATIONS OF PARABOLIC PROBLEMS WITH NONSMOO

ON ERROR ESTIMATES FOR GALERKIN SPECTRAL DISCRETIZATIONS OF PARABOLIC PROBLEMS WITH NONSMOO
ON ERROR ESTIMATES FOR GALERKIN SPECTRAL DISCRETIZATIONS OF PARABOLIC PROBLEMS WITH NONSMOO

MATHEMATICS OF COMPUTATION

Volume70,Number234,Pages525–531

S0025-5718(00)01195-9

Article electronically published on March1,2000

ON ERROR ESTIMATES

FOR GALERKIN SPECTRAL DISCRETIZATIONS

OF PARABOLIC PROBLEMS

WITH NONSMOOTH INITIAL DATA

JAVIER DE FRUTOS AND RAF AEL MU?NOZ-SOLA

Abstract.We analyze the Legendre and Chebyshev spectral Galerkin semi-

discretizations of a one dimensional homogeneous parabolic problem with non-

constant coe?cients.We present error estimates for both smooth and non-

smooth data.In the Chebyshev case a limit in the order of approximation is

established.On the contrary,in the Legendre case we?nd an arbitrary high

order of convegence.

1.Introduction

In this paper we give some results about Galerkin spectral polynomial approx-imations to a parabolic problem with nonconstant coe?cients.We treat both the Chebyshev and the Legendre cases.More precisely,we consider the one-dimensional parabolic problem:

u t?(a(x)u x)x=0,x∈Λ,t≥0,

u(?1,t)=u(1,t)=0,t≥0,

(1)

u(x,0)=u0(x),x∈Λ,

whereΛ=(?1,1),and a is a smooth function satisfying the classical assumption 0

Received by the editor January4,1999and,in revised form,April6,1999.

2000Mathematics Subject Classi?cation.Primary65M70,65M15.

Key words and phrases.Spectral Galerkin method,parabolic equation,nonsmooth initial data.

J.de Frutos was partially supported by project DGICYT PB95-705and project JCyL VA52/96. R.Mu?n oz-Sola was partially supported by project DGICYT PB96-0952.

c 2000American Mathematical Society

525

526JA VIER DE FRUTOS AND RAFAEL MU ?NOZ-SOLA

is closely related to the lack of di?erentiability of the solution at t =0.We do not know of any analogous results for spectral methods in the literature.The main di?erence is that the order of convergence in spectral methods is only limited by the regularity of the solution.Then,an O (N ?m t ?m/2)for any m should be expected when polynomials of degree N are used.

This is indeed the case for the Legendre spectral discretization,i.e.,spectral order of convergence is obtained even with no regularity hypothesis on the initial data.On the contrary,this is not true for the Chebyshev discretization.We prove that for nonsmooth data,the order of approximation is limited by 7/2.

The rest of the paper is as follows:In Section 2we establish our notations and recall the continuous problem and its discretization.In Section 3we state and prove our negative result for the Chebyshev weight.We restrict ourselves to the constant coe?cient case there.Finally,in Section 4we quote without proof some estimates obtained for the Legendre and Chebyshev discretizations.For the proofs,we refer to [7]. 2.Preliminares and notations

2.1.Basic notations.Thorough the paper,we will use the notation L 2ω= v :Λ→C |

Λ

|v |2ωdx <∞ ,where the weight ωwill be ω(x )=1or w (x )=(1?x 2)?1

vω)x dx,?u,v ∈H 1ω,0.

(2)Problem (1)can be written in variational form as

d

dt (u N (t ),v N )0,ω+a ω(u N (t ),v N )=0,

SPECTRAL DISCRETIZATIONS OF PROBLEMS WITH NONSMOOTH DATA 527for all v N ∈P N 0,plus the initial condition

u N (0)=P N (u 0).

Here,P N stands for the orthogonal projection operator from L 2ωonto P N 0.

We denote the error by e N (t )=u (t )?u N (t ).

3.A negative result for the Chebyshev discretization

In this section,the weight will be ω(x )=(1?x 2)?1

dx 2,

considered

as de?ned from D (A )?L 2ω→L 2ω.In an analogous way,we de?ne the operator

A N :P N 0→P N 0by

(A N v N ,ψN )0,ω=a ω(v N ,ψN ),?ψN ∈P N 0,

With this notations,we can write u (t )=e ?tA u 0and u N (t )=e ?tA N P N u 0.Follow-ing [13],we introduce the error operator de?ned by

E N (t )v =e ?tA v ?e ?tA N P N v,?v ∈L 2ω,

so that e N (t )=E N (t )u 0.

We shall also need the adjoint A ?(resp.A ?N )of the operator A (resp.A N ).From [5,Chapter 6],A ?is the operator de?ned by the triplet H 1ω,0,L 2ω,a ?ω

(·,·) with a ?ω(u,v )=

ω

d 2

ωd 2

dt

(φ(t ),v )0,ω+a ?ω(φ(t ),v )=0,?v ∈H 1ω,0,(5)

with initial condition φ(0)=φ0.(6)

In the same way,φN (t )=e ?tA ?N P N φ0is the solution of the spectral Galerkin discretization of (5)-(6).Hence (E N (t ))?is the associated error operator.

528JA VIER DE FRUTOS AND RAFAEL MU ?NOZ-SOLA

Now we are able to state our negative result.

Theorem 3.1.Let a (x )=1,?10such that,for any u 0∈L 2ω,there is a constant K =K (t,u 0)>0with e N (t ) 0,ω≤K (t,u 0)N ?s .Then s ≤7

2d j v

2,and let a >1.A norm in Z s ωwhich de?nes this space is

u =

u 2Z m ω

+ ?a |u (m )(x )?u (m )(y )|22dxdy 1a <1+η

(ξ,η)|ξ>0,1?ξ )be such that g (±1)=0,and let φ(x )=g (x )2.If,in addition,g x (1)=0or g x (?1)=0,then

φ/∈Z

7

SPECTRAL DISCRETIZATIONS OF PROBLEMS WITH NONSMOOTH DATA529 Taking into account that(E N(t))?is the error operator associated to problem (5),we have,for anyφ0∈L2,

φ(t)?φN(t) 0,ω≤K(t)N?s φ0 0,ω,

whereφ(t)=e?tA?φ0andφN(t)=e?tA?N P Nφ0.

Then,using Theorem3.3,we deduce that

φ(t)∈Z s?

ω,? >0.

(7)

On the other hand,it is clear thatω(x)φ(x,t)is the solution of problem(1)with initial conditionωφ0.Henceω(·)φ(·,t)∈C∞(

2(x+1)),

Lemma3.1gives

φ(·,t)∈Z72ω.

Then,comparing this with(7),we obtain the result.

4.Some positive results

In this section,we return to the variable coe?cient case.We state some error estimates.

4.1.The Legendre case.

Theorem4.1.Letω(x)=1and m∈N,m≥1,and l∈N.If a∈C m+1(

?t l (t)

ν,ω

≤CN?(m+2?ν)t?m+2

2,let a(x)be a function with?rst order continuous derivative in

530JA VIER DE FRUTOS AND RAFAEL MU?NOZ-SOLA

Let m∈N,and assume that the function a(x)is in C m?1(

2

,j∈Z}.

Theorem4.3.Let m be a nonnegative integer,and let us assume that the function a(x)∈C m+1(

?t l (t)

ν,ω

≤CN?(m+2?ν)t?1?l eμt u0 m,ω,ν=0,1.

This theorem gives essentially a gain of two units in the order of the method with respect to N.An arbitrary gain is not possible,due to Theorem3.1.We also have the following result,which can be considered an improvement of Theorem4.3 for m=0.

Theorem4.4.Let us assume that a(x)∈C3(

?t l (t)

ν,ω

≤CN?54+ν

SPECTRAL DISCRETIZATIONS OF PROBLEMS WITH NONSMOOTH DATA531 [10]H.Fujita and T.Suzuki,Evolution problems,in Handbook of numerical analysis,Vol.II,P.G.

Ciarlet and J.L.Lions eds.,North Holland,Amsterdam,1991,pp.789–928.MR92f:65001 [11]M.Luskin and R.Rannacher,On the smoothing property of the Galerkin method for para-

bolic equations,SIAM J.Numer.Anal.,19,1982,93-113.MR83c:65245

[12] A.Pazy,Semigroups of linear operators and applications to partial di?erential equations,

Springer-Verlag,New York,1983.MR85g:47061

[13]V.Thom′e e,Galerkin?nite element methods for parabolic problems,Lecture Notes in Math.,

vol.1054,Springer-Verlag,Berlin Heidelberg,1984.MR86k:65006

Departamento de Matem′a tica Aplicada y Computaci′o n,Universidad de V alladolid, V alladolid,Spain

E-mail address:frutos@mac.cie.uva.es

Departamento de Matem′a tica Aplicada,Universidad de Santiago de Compostela, Santiago de Compostela,Spain

E-mail address:rafa@https://www.doczj.com/doc/2512346887.html,c.es

接触器选用1

3.3控制电焊变压器用接触器的选用 当接通低压变压器负载时,变压器因为二次侧的电极短路而出现短时的陡峭大电流,在一次侧出现较大电流,可达额定电流的15~20倍,它与变压器的绕组布置及铁心特性有关。当电焊机频繁地产生突发性的强电流,从而使变压器的初级侧的开关承受巨大的应力和电流,所以必须按照变压器的额定功率下电极短路时一次侧的短路电流及焊接频率来选择接触器,即接通电流大于二次侧短路时一次侧电流。此类负载使用类别为AC-6a. 3.4电动机用接触器的选用 电动机用接触器根据电动机使用情况及电动机类别可分别选用AC-2~4,对于启动电流在6倍额定电流,分断电流为额定电流下可选用AC-3,如风机水泵等,可采用查表法及选用曲线法,根据样本及手册选用,不用再计算。 绕线式电动机接通电流及分断电流都是2.5倍额定电流,一般启动时在转子中串入电阻以限制启动电流,增加启动转矩,使用类别AC-2,可选用转动式接触器。 当电动机处于点动、需反向运转及制动时,接通电流为6Ie,使用类别为AC-4,它比AC-3严酷的多。可根据使用类别AC-4下列出电流大小计算电动机的功率。公式如下: Pe=3UeIeCOS¢η, Ue:电动机额定电流,Ie:电动机额定电压,COS¢:功率因数,η:电动机效率。 如果允许触头寿命短,AC-4电流可适当加大,在很低的通断频率下改为AC-3类。 根据电动机保护配合的要求,堵转电流以下电流应该由控制电器接通和分断。大多数Y 系列电动机的堵转电流≤7Ie,因此选择接触器时要考虑分、合堵转电流。规范规定:电动机运行在AC-3下,接触器额定电流不大于630A时,接触器应当能承受8倍额定电流至少10秒。 对于一般设备用电动机,工作电流小于额定电流,启动电流虽然达到额定电流的4~7倍,但时间短,对接触器的触头损伤不大,接触器在设计时已考虑此因数,一般选用触头容量大于电动机额定容量的1.25倍即可。对于在特殊情况下工作的电动机要根据实际工况考虑。如电动葫芦属于冲击性负载,重载启停频繁,反接制动等,所以计算工作电流要乘以相应倍数,由于重载启停频繁,选用4倍电动机额定电流,通常重载下反接制动电流为启动电流2倍,所以对于此工况要选用8倍额定电流。 3.5电容器用接触器选用 电容器接通时电容器产生瞬态充电过程,出现很大的合闸涌流,同时伴随着很高的电流频率振荡,此电流由电网电压、电容器的容量和电路中的电抗决定(即与此馈电变压器和连接导线有关),因此触头闭合过程中可能烧蚀严重,应当按计算出的电容器电路中最大稳态电流和实际电力系统中接通时可能产生的最大涌流峰值进行选择,这样才能保证正确安全的

如何选择和运用教学方法

如何选择和运用教学方法 郝慧敏 新课程改革能否顺利进行,关键在于教师能否转变教育观念,形成新的教育理念,而新的教育理念只有落实到教学方法的改革、创新上,才能真正提高课堂教学效益,提高教学质量。 教师如何才能实现教学方法的革新呢? 教学方法应该是指在教学过程中,教师和学生为实现教学目的、完成教学任务而采用的教与学相互作用的活动方式的总称。它既包括教师的教,也包括学生的学的方法,是教授方法与学习方法的统一。是解决教师如何教,学生如何学,教与学的互动及其调节等的问题。 布鲁纳指出:“任何学科的教学原理都能够按照某种正确的方式,教给任何年龄段的任何儿童”。由此可见,正确的教学方法对完成教学目标有着极其重要的作用。正确的教学方法指最适当的教学方法,最适当的教学方法首先来源于全面、具体地掌握、选择教学方法的依据。 教学方法的选择一般是三个方面的根据:1、根据目前的学习任务,是传授学习知识,还是形成某种技能技巧;2、根据教材内容的特点,是事实性知识,还是理论性知识,是多是少,是科学强的还是艺术性强的,等等; 3、根据学生的年龄特征,是高年级还是低年级,知识基础和心理准备如何。当然还要考虑其他因素,如学校与地方可提供的条件,包括社会条件、自然条件、物质设备等;教师自身条件,学生的年龄特征等。 教学方法既有历史的继承性,又具有时代的特征,教学方法的选择要全面、具体、综合地考虑各种相关的因素进行权衡,加以取舍,在科学技术高度发达、知识激增的今天,尤其是新课改当前,教学方法的选择和运

用应把握好以下几个原因: 第一,重视教学方法的总体功能,力求多种教学方法互相配合,科学组合。教学实践证明,每种教学方法都有其适用范围、使用条件及其功能,在教学过程中没有一种教学方法是万能的或孤立存在的,每种教学方法都有其突出的优点,当然也有不足之处,正如前苏联教育理论家巴班斯基所说:“每种教学方法按其本质说都是相对辩证的,既有优点又有缺点,每种教学方法都可能有效地解决某些问题,而解决另一些则无效。每种方法都可能有助于达到某种目的,却妨碍着达到另一种目的。”因此,在全面、具体掌握选择教学方法的依据和了解多种多样的教学方法的基础上,还要正确把握各种教学方法之间的相互相系,相互渗透和转换的辩证关系,对各种教学法进行比较。加以即选、组合,以便发挥其整体功能。在选择教学方法时,可参照考下表对每一种教学方法进分析。 一种教学方法只能服务于一定的具体内容,达到特定的教学目的,而教学内容是丰富多彩的,教学目的是多方面的,只有对多种教学方法进分析、比较,使教学方法互相配合,科学组合,才能高效地完成教学任务。 第二,注重学生的内容活动,立足于学生的智力发展。《基础教育课程改革纲要(试行)》指出:“教师在教学过程中应与学生积极互动,共同发展,处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生质疑、调查、探究,在实践中学习,促进学生在教师指导下主动地、富有个性地学习,教师应尊重学生的人格,关注个性差异,满足不同同学的需要,创造能引导学生主动参与的教育环境,激发学生的学习积极性,培养学生掌握和运用知识的态度和能力,使每个学生都能得到充分的发展。”教师选择和运用的教学方法,应该注重引导学生独立探索,倡导学

接触器的选型与使用

接触器的选型与使用 接触器是一种通用性很强的自动电磁式开关电器,可用于频繁操作和远距离的控制。文章简要介绍了接触器的选用原则、安装及使用。 [关键词]电磁系统触点系统线圈选型与使用 0、引言 接触器是一种通用性很强的自动电磁式开关电器,是电力拖动与自动控制系统中重要的低压电器。它可以频繁地接触和分段交直流主电路及大容量控制电路。其主要控制对象是电动机,也可以控制其他设备,如电焊机、电阻炉和照明器具等电力负荷。它利用电磁力的吸合和反向弹力作用使接触点闭合和分断,从而使电路接通和断开。它具有欠电压释放保护和零压保护,控制容量大,可用于频繁操作和远距离的控制。且工作可靠,寿命长,性能稳定,维护方便。接触器不能切断短路电流,因此通常与熔断器配合使用。 1、接触器的工作原理与结构组成 接触器主要由电磁系统、触点系统、灭弧系统及其它部分组成。 (1)电磁系统:电磁系统包括电磁线圈和铁心,是接触器的重要组成部分,依靠它带动触点的闭合与断开。 (2)触点系统:触点是接触器的执行部分,包括主触点和辅助触点。主触点的作用是接通。 (3)分断主回路,控制较大的电流,而辅助触点是在控制回路中,以满足各种控制方式的要求。 (4)灭弧系统:灭弧装置用来保证触点断开电路时,产生的电弧能可靠的熄灭,减少电弧对触点的损伤。为了迅速熄灭断开时的电弧,通常接触器都装有灭弧装置,一般采用半封式纵缝陶土灭弧罩,并配有强磁吹弧回路。 (5)其它部分:绝缘外壳、弹簧、短路环、传动机构等。 工作原理:当线圈通电时,静铁心产生电磁吸力,将动铁心吸合,由于触头系统是与动

铁心联动的,因此动铁心带动三条动触片同时运行,触点闭合,从而接通电源。当线圈断电时,吸力消失,动铁心联动部分依靠弹簧的反作用力而分离,使主触头断开,切断电源。 2、交流接触器的选用原则 接触器作为通断负载电源的设备,接触器的选用应按满足被控制设备的要求进行,除额定工作电压与被控设备的额定工作电压相同外,被控设备的负载功率、使用类别、控制方式、操作频率、工作寿命、安装方式、安装尺寸以及经济性是选择的依据。选用原则如下: (1)交流接触器的电压等级要和负载相同,选用的接触器类型要和负载相适应。 (2)负载的计算电流要符合接触器的容量等级,即计算电流小于等于接触器的额定工作电流。接触器的接通电流大于负载的启动电流,分断电流大于负载运行时分断需要的电流,负载的计算电流要考虑实际工作环境和工况,对于启动时间长的负载,半小时峰值电流不能超过约定发热电流。 (3)按短时的动、热稳定校验。线路的三相短路电流不应超过接触器允许的动、热稳定电流,当使用接触器断开短路电流时,还应校验接触器的分断能力。 (4)接触器吸引线圈的额定电压、电流及辅助触头的数量、电流容量,应满足控制回路接线要求。要考虑接在接触器控制回路的线路长度,一般推荐的操作电压值,接触器要能够在85%~110%的额定电压下工作。如果线路过长,由于电压降太大,接触器线圈对合闸指令有可能不起反映;由于线路电容太大,可能对跳闸指令不起作用。 (5)根据操作次数校验接触器所允许的操作频率。如果操作频率超过规定值,额定电流应该加大一倍。 (6)短路保护元件参数应该和接触器参数配合选用。 (7)接触器和其它元器件的安装距离要符合相关国标,要考虑维修和走线距离。 (8)有特殊要求情况下交流接触器的选用 ①防晃电型交流接触器 电力系统由于雷击、短路后重合闸以及单相人为短时故障接地后自动恢复等原因使供电系统晃电,晃电时间一般在几秒以下。

《选择题练习题库》特点及使用方法

一.《选择题练习题库》特点: 1.自动出题 2.自动给出答案 3.自动统计正答率 4.自动记住“做错题”的题号,然后从“错题”中,再随机出题;不断重复,直到都最对为止5.可以进行“综合练习”,也可以进行“专题练习”6.可以应用于任意学科 7.具有“打印”功能,可打印“错题本”、“任意专题”,并且在下一页上,自动给出上一页答案。 5.可以进行“综合练习”,也可以进行“专题练习”二.选择题练习题库运行方法 1.双击“选择题考试系统”,在屏幕的左侧上方会有一个“安全警告”,位置见下图箭头所示,点击“安 全警告”右侧的“选项”(见下图); 2.点击“安全警告”右侧的“选项”后,出现下图提示,请选中“启用此内容”,然后点击“确定”;

3.再点击下图所示中的“运行”;

4.在下图界面中,点击“开始”即可;(首次运行要先点击“初始化”后,再点击“开始”) 5.出现下图所示,就可以用鼠标点击“对应选项”来作答(可以是多选),作答完毕,点击“完成”按钮。

6.用鼠标选中对应选项,然后点击“完成”按钮,软件会自动评判“正确”、“错误”,并给出该题正确答 案、正答率,见下图: 7.点击“下一题”按钮,自动出现下一道题目,继续答卷即可。 8.当退出EXCEL时,会询问是否保存更改,见下图,选择“是”:(这样,软件会记住你的作答情况)

9.再次运行本如软件时,在下图界面中,点击“出题”,本软件自动调出你以前的答题情况,并且可以继 续答题:

10.本系统适用于所有学科,只要改变题库即可!多选也行! (按照试题模板和答案模板排版,不要改变页面模式,一道题占用一页,答案和试题要一一对应!然后将试题和答案一起发给我;我打包后,再发给你,即可使用!) 11.谢谢您的使用,请多提宝贵建议。(邮箱:dingbin99@https://www.doczj.com/doc/2512346887.html,)

矿山资源量与储量计算方法

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。 (一)地质块段法 计算步骤: 1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如 根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段 的体积和储量; 3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置

②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。 缺点:误差较大。当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。 (二)开采块段法 开采块段主要是按探、采坑道工程的分布来划分的。可以为坑道四面、三面或两面包围形成矩形、三角形块段;也可为坑道和钻孔联合构成规则或不甚规则块段。同时,划分开采块段时,应与采矿方法规定的矿块构成参数相一致,与储量类别相适应。 该法的储量计算过程和要求与地质块段法基本相同。 适用条件:适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但因为开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用。一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三)断面法 定义:矿体被一系列勘探断面分为若干个矿段或称块段,先计算各断面上矿体面积,再计算各个矿段的体积和储量,然后将各个块段储量相加即得矿体的总储量,这种储量计算方法称为断面法或剖面法。 根据断面间的空间位置关系分为水平断面法和垂直断面法,凡是用勘探(线)网法进行勘探的矿床,都可采用垂直断面法;对于按一定间距,以穿脉、沿脉坑道及坑内水平钻孔为主勘探的矿床,一般采用水平断面法计算矿床资源量和储量。根据断面间的关系分为平行断面法和不平行断面法。 1平行断面法 无论是垂直平行断面法还是水平平行断面法,均是把相邻两平行断面间的矿段,作为基本储量计算单元。首先在两断面图上分别测定矿体面积,然后计算块段的体积和储量。体积(V)的计算有下述几种情况:

储量计算方法的基本原理

储量计算方法的基本原理 在矿产勘查工作中,利用各种方法、各种技术手段获得大量有关矿床的数据,这些数据是计算储量的原始材料。计算储量通常的步骤如下: (1)工业指标及其确定方法: 1)工业指标:工业指标是圈定矿体时的标准。主要有下列个项: 可采厚度(最低可采厚度):可采厚度是指当矿石质量符合工业要求时,在一定的技术水平和经济条件下可以被开采利用的单层矿体的最小厚度。矿体厚度小于此项指标者,目前就不易开采,因经济上不合算。 工业品位(最低工业品位、最低平均品位):工业品位是工业上可利用的矿段或矿体的最低平均品位。只有矿段或矿体的平均品位达到工业品位时,才能计算工业储量。 最低工业品位的实质是在充分满足国家需要充分利用资源并使矿石在开采和加工方面的技术经济指标尽可能合理的前提下寻找矿石重金属含量的最低标准。所以确定工业品位应考虑的因素是:国家需要和该矿种的稀缺程度;资源利用程度;经济因素,如产品成本及其与市场价格的关系;技术条件,如矿石开采和加工得难易程度等。 工业品位和可采厚度对于不同矿种和地区各不相同,就是同一矿床,在技术发展的不同时期也有变化。 边界品位:边界品位是划分矿与非矿界限的最低品位,即圈定矿体的最低品位。矿体的单个样品的品位不能低于边界品位。 最低米百分比(米百分率、米百分值):对于品位高、厚度小的矿体,其厚度虽然小于最小可采厚度,但因其品位高,开采仍然合算,故在其厚度与品位之乘积达到最低米百分比时,仍可计算工业储量。计算公式为:K=M×C。(K-最低米百分比(m%);M-矿体可采厚度(m);C-矿石工业品位(%))。 夹石剔除厚度(最大夹石厚度):夹石剔除厚度实质矿体中必须剔除的非工业部分,即驾驶的最大允许厚度。它主要决定于矿体的产状、贫化率及开采条件等。小于此指标的夹石可混入矿体一并计算储量。夹石剔除厚度定得过小,可以提高矿石品位,但导致矿体形状复杂化,定得过大,会使矿体形状简化,但品位降低。

染发剂的选择及使用方法

第四章染发剂的选择及使用方法 第一节染发剂的分类 引言: 有什么样的染发剂可以提供给我们去选择呢?什么样的染发剂才适合顾客的实际情况呢?不同的发质怎样去选择适合发质本身的染发剂。. 一、非氧化染发剂 非氧化染发剂是不与显色剂混合使用的可直接涂到头发上的染发剂。这种染发剂只是在头发中沉淀颜色,产生物理变化,颜色会被一次次地洗掉。 1、临时性染发剂:顾名思义,临时性染发剂用于产生暂时性的颜色变化,并且会随着洗发次数的增加而逐渐褪色。它们是非反应性的直接使用的染发剂,也就是说,它们不需使用化学物来使之显色。它们含有较大的颜色分子,只能覆盖表皮的表面,因此只在头发中产生物理变化(而非化学变化)。产品中不含任何能漂浅头发的物质,配方或头发中也不发生任何化学变化。临时性染发剂不需要进行皮试或过敏测试,因为它们不含碱性衍生物,否则必须进行皮试。 临时性染发剂包括周染、彩色摩丝、彩色啫喱、彩色笔、彩色油、彩色喷发胶、彩色洗发水和冲洗剂等。与其他染发产品不同的是,暂时性染发剂涂到头发中之后,不须冲水。你只要将头发吹干并造型即可。 周染通常是在洗头盆中染发,用于为褪色的头发增加色调,中和掉不想要的色调或对未使用化学手段改变结构的头发暂时性增加色彩。 ⑴、彩色摩丝和彩色啫喱有多种颜色,用于使原有颜色更加鲜艳,为灰白发改善色调以及产生夸张效果。由于彩色摩丝也可增加发量,所以也在造型中使用。 ⑵、彩笔和彩油也有多种颜色,可用于产生各种效果,包括连接新旧发色,以及产生有趣的色彩缤纷的设计。 ⑶、彩色润发油的颜色范围也很广,除了包括为头发增加光泽,还能为头发增加色调或产生特殊的颜色效果。 ⑷、彩色喷发胶是气雾剂,密封罐装,属于易燃物质,所以不要在正在吸烟的人周围使用,也不要在明火周围使用。彩色喷发胶有许多种颜色,它能够快速而方便地在头发中建立颜色,产生特殊效果。 ⑸、染后洗发水和护发素用于染后头发的颜色维护,或增加色调,它们也可用来去除不想要的色调。 2、半永久性染发剂: 这种染发剂是碱性的,一般在洗数次头发后就褪色了,具体褪色情况还取决于头发的多孔性。它们含有大小两种颜 色分子,较小的颜色分子能够穿透头发的表皮层而进入皮质,而非象暂时性染发剂一样只能覆盖在头发表面。由于这些染发剂不使用化学方法来改变发色,所以它们只能沉淀颜色而不能漂浅头发,因此,根据所使用的颜色半永久性染发剂用来直接染发,不需混合,沉淀到头发中的颜色就是染发剂,这种染发剂在褪色的时候不会留下分界线,也不需要补染。 半永久性染发剂包括许多颜色,它们都被称为光泽剂或颜色加强剂,尽管这种染发剂不需与显色剂混合,但如果产 品中含有碱性衍生物成分,就必须先进行皮试。 根据产品中的成分以及头发的多孔性,重复使用半永久性染发剂会改变头发的结构,特别是

储量计算方法

金属、非金属矿产储量计算方法 邓善德 (国土资源部储量司) 一、储量计算方法的选择 矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似的用规则的几何体来描述或代替真实的矿体,求出矿体的体积。由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法在。比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法),断面法(包括垂直剖面法和水平断面法)及等值线法等,其中以算术平均法、地质块段法、开采块段法和断面法最为常见。现将几种常用的方法简要说明如下。 1.算术平均法 是一种最简单的储量计算方法,其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。 算术平均法应用简便,适用于矿体厚度变化小,工程分布比较均匀,矿产质量及开采条件比较简单的矿床。 2.地质块段法

它是在算术平均法的基础上加以改进的储量计算方法,此方法原理是将一个矿休投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板状体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。各部分储量的总和,即为整个矿体的储量。地质块段法应用简便,可按实际需要计算矿体的不同部分的储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。 地质块段法按其投影方向的不同垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁琐,所以一般不常应用。 3.开采块段法 是以坑道为主要勘探手段的矿床中常用的储量计算方法,由于矿体被坑道切割成大小不同的块段,即将矿体化作一组密集的、厚度和品位一致的平行六面体(即长方形的板状体)。因此实质上开采块段法仍是算术平均法在特定情况下的具体运用。 计算储量时,是根据块段周边的坑道资料,(有时还包括部分钻孔资料)分别计算各块段的矿体面积,平均厚度,平均品位和矿石体重等,然后求得每个块段的体积和矿产储量,各块段储量的总和,即为整个矿体的储量。 开采块段法能比较如实地反映不同质量和研究程度的储量及其

透析袋的选择和使用方法

透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,就叫做透析袋。 自ThomasGraham1861年发明透析方法至今已有一百多年。透析已成为生物化学实 验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”。 透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国UnionCarbide(联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管, 截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为 1万左右。 商品透析袋制成管状,其扁平宽度为23mm~50mm不等。为防干裂,出厂时都用10% 的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01mol/L碳酸氢钠和0.001mol/LEDTA溶液洗涤,最后用蒸馏水冲洗即可使用。实 验证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。使用后的透析袋洗净后可存 于4℃蒸馏水中,若长时间不用,可加少量NaN2,以防长菌。洗净凉干的透析袋弯折时易 裂口,用时必须仔细检查,不漏时方可重复使用。 新透析袋如不作如上的特殊处理,则可用沸水煮五至十分钟,再用蒸馏水洗净,即可使用。使用时,一端用橡皮筋或线绳扎紧,也可以使用特制的透析袋夹夹紧,由另一端灌满水,用手指稍加压,检查不漏,方可装入待透析液,通常要留三分之一至一半的空间,以防透析过程中,透析的小分子量较大时,袋外的水和缓冲液过量进入袋内将袋涨破。含盐量很高的蛋白质溶液透析过夜时,体积增加50%是正常的。为了加快透析速度,除多次更换透析液外,还可使用磁子搅拌。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒或两端封口的玻璃管,以使透析袋沉入液面以下。 检查透析效果的方法是:用1%BaCl2检查(NH4)2SO4,用1%AgNO3检查NaCl、 KCl等。 为了提高透析效率,还可以使用各种透析装置。使用者也可以自行设计与制作各种简易的透析装置。美国生物医学公司(BiomedInstrumentsInc.)生产的各种型号的Zeineh透 析器,由于使用对流透析的原理,使透析速度和效率大大提高。 根据个人使用经验,建议使用透析袋效果比较好,还有具体需要什么规格的 要看你的目的蛋白量有多大,才能决定使用多大的截留分子量的透析袋,一般截 留量越大价格也就会越高,还有就是透析袋宽度的选择,要看你的实验一次需要 透析多少量来决定。目前我的实验室使用的是上海生工的透析袋,宽度70mm普 通型的!

地热资源储量计算方法

地热资源储量计算方法 一、地热资源/储量计算的基本要求 地热资源/储量计算应建立在地热田概念模型的基础上, 根据地热地质条件和研究程度的不同, 选择相应的方法 进行。概念模型应能反映地热田的热源、储层和盖层、储层 的渗透性、内外部边界条件、地热流体的补给、运移等特征。 依据地热田的地热地质条件、勘查开发利用程度、地热 动态,确定地热储量及不同勘查程度地热流体可开采量。 表3—1地热资源/储量查明程度 类别验证的探明的控制的推断的 单泉多年动态资 料年动态资料调查实测资 料 文献资料 单井多年动态预 测值产能测试内 插值 实际产能测 试 试验资料 外推 地热田钻井控制 程度 满足开采阶 段要求 满足可行性 阶段要求 满足预可行 性阶段要求 其他目的 勘查孔开采程度全面开采多井开采个别井开采自然排泄动态监测 5年以上不少于1年短期监测或 偶测值 偶测值

计算参数依据勘查测试、多 年开采与多 年动态 多井勘查测 试及经验值 个别井勘查、 物探推测和 经验值 理论推断 和经验值 计算方法数值法、统计 分析法等解析法、比拟 法等、 热储法、比拟 法、热排量统 计法等 热储法及 理论推断 二、地热资源/储量计算方法 地热资源/储量计算重点是地热流体可开采量(包括可利用的热能量)。计算方法依据地热地质条件及地热田勘查研究程度的不同进行选择。预可行性勘查阶段可采用地表热流量法、热储法、比拟法;可行性勘查阶段除采用热储法及比拟法外, 还可依据部分地热井试验资料采用解析法;开采阶段应依据勘查、开发及监测资料, 采用统计分析法、热储法或数值法等计算。 (一)地表热流量法 地表热流量法是根据地热田地表散发的热量估算地热资源量。该方法宜在勘查程度低、无法用热储法计算地热资源的情况下,且有温热泉等散发热量时使用。通过岩石传导散发到空气中的热量可以依据大地热流值的测定来估算,温泉和热泉散发的热量可根据泉的流量和温度进行估算。

选择接触器

1.接触器的选用原则 (1)按使用类别选用: 中小型工厂的生产实际,90kW及以下的笼型电动机占全厂电机总数的90%以上,基本属于按AC-3使用类别选用。 (2)确定容量等级: 接触器的容量即主触头在额定电压等技术条件下,其额定电流的确定,应注意如下几点: ①工作制及工作频率的影响: 选用接触器时,应注意其控制对象是长期工作制,还是重复短时工作制。在操作频率高时,还必须考虑电弧能量的影响。在水泥厂属于长期工作制,但操作频率不高,应尽可能选用银、银合金或镶银触头的接触器,如CJ20型系列产品。 ②环境条件的影响: 在水泥厂,生产流程的环境是比较恶劣的,粉尘污染严重,通风条件差,工作场所温度较高。因此,对接触器的选择宜采取降容使用的技术措施。在水泥厂,低压多选用380V,高压多选用6000V。 2.接触器额定电流的对表速查 例如一台Y180L-4型220kW电动机,从速查表查得应配用CF20-63型接触器。该电机额定电流42.5A,接触器额定电流63A,按一般AC-3工作类别,该接触器可控制380V电动机功率为30kW,现在控制380V、22kW电动机,属于降容使用,考虑水泥厂生产时间及环境等特点,符合选用要求。 2. 55KW的电机其电流在110A之间,(按经验算法每个千瓦两个电流计算),选CJ20-150型的接触器,按负荷的电流来选择的. 经验算法每个千瓦2.5个电流计算,接触器一般选2倍额定电流. 交流接触器的选用方法 接触器的选用应按满足被控制设备的要求进行,除额定工作电压应与被控设备的额定电压相同外,被控设备的负载功率、使用类别、操作频率、工作寿命、安装方式及尺寸以及经济性等是选择的依据。 选择接触器时应从其工作条件出发,主要考虑下列因素: 1、控制交流负载应选用交流接触器; 2、接触器的使用类别应与负载性质相一致。 3、主触头的额定工作电流应大于或等于负载电路的电流;还要注意的是接触器主触头的额定工作电流是在规定的条件下(额定工作电压、使用类别、操作频率等)能够正常工作的电流值,当实际使用条件不同时,这个电流值也将随之改变。 4、主触头的额定工作电流应大于或等于负载电路的电压。 5、吸引线圈的额定电压应与控制回路电压相一致,接触器在线圈额定电压85%及以上时应能可靠地吸合 交流接触器的选用,应根据负荷的类型和工作参数合理选用。具体分为以下步骤: 1.选择接触器的类型 交流接触器按负荷种类一般分为一类、二类、三类和四类,分别记为AC1 、AC2 、AC3和AC4 。一类交流接触器对应的控制对象是无感或微感负荷,如白炽灯、电阻炉等;二类交流接触器用于绕线式异步电动机的起动和停止;三类交流接触器的典型用途是鼠笼型异步电动机的运转和运行中分断;四类交流接触器用于笼型异步电动机的起动、反接制动、反转和点动。2.选择接触器的额定参数 根据被控对象和工作参数如电压、电流、功率、频率及工作制等确定接触器的额定参数。 1)接触器的线圈电压,一般应低一些为好,这样对接触器的绝缘要求可以降低,使用时也较安全。但为了方便和减少设备,常按实际电网电压选取。 2)电动机的操作频率不高,如压缩机、水泵、风机、空调、冲床等,接触器额定电流大于负荷额定电流即可。接触器类型可选用CJl0、CJ20等。

交流接触器的选用步骤

交流接触器的选用步骤 交流接触器的选用,应根据负荷的类型和工作参数合理选用。具体分为以下步骤: 1.选择接触器的类型 交流接触器按负荷种类一般分为一类、二类、三类和四类,分别记为AC1 、AC2 、AC3和AC4 。一类交流接触器对应的控制对象是无感或微感负荷,如白炽灯、电阻炉等;二类交流接触器用于绕线式异步电动机的起动和停止;三类交流接触器的典型用途是鼠笼型异步电动机的运转和运行中分断;四类交流接触器用于笼型异步电动机的起动、反接制动、反转和点动。 2.选择接触器的额定参数 根据被控对象和工作参数如电压、电流、功率、频率及工作制等确定接触器的额定参数。 1)接触器的线圈电压,一般应低一些为好,这样对接触器的绝缘要求可以降低,使用时也较安全。但为了方便和减少设备,常按实际电网电压选取。 2)电动机的操作频率不高,如压缩机、水泵、风机、空调、冲床等,接触器额定电流大于负荷额定电流即可。接触器类型可选用CJl0、CJ20等。 3)对重任务型电机,如机床主电机、升降设备、绞盘、破碎机等,其平均操作频率超过100次/min,运行于起动、点动、正反向制动、反接制动等状态,可选用CJl0Z、CJl2型的接触器。为了保证电寿命,

可使接触器降容使用。选用时,接触器额定电流大于电机额定电流。4)对特重任务电机,如印刷机、镗床等,操作频率很高,可达600~12000次/h,经常运行于起动、反接制动、反向等状态,接触器大致可按电寿命及起动电流选用,接触器型号选CJl0Z、CJl2等。 5)交流回路中的电容器投入电网或从电网中切除时,接触器选择应考虑电容器的合闸冲击电流。一般地,接触器的额定电流可按电容器的额定电流的1.5倍选取,型号选CJ10、CJ20等。

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法 电流互感器的选用原则及方法1、额定电压电流互感器额定电压应大于装设点线路额定电压。 2、变比应根据一次负荷计算电流IC选择电流互感器变比。电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150、2×a/C)等多种规格,二次侧额定电流通常为1A或5A。其中2×a/C表示同一台产品有两种电流比,通过改变产品的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2×a/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 3、准确级应根据测量准确度要求选择电流互感器的准确级并进行校验。下表为不同准确级电流互感器的误差限值: 准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。准确度校验公式:S2≤S2n。 二次回路的负荷l:取决于二次回路的阻抗Z2的值,则: S2=I2n2︱Z2︱≈I2n2(∑︱Zi︱+RWl+RXC) 或S2V1≈∑Si+I2n2(RWl+RXC) 式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.1Ω,RWL为二次回路导线电阻, 计算公式化为:RWL=LC/(r×S)。 式中,r为导线的导电率,铜线r=53m/(Ωmm2),铝线r=32m(Ωmm2),S为导线截面积(mm2),LC为导线的计算长度(m)。设互感器到仪表单向长度为L1,

矿量计算方法

矿量计算方法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等。 (一)地质块段法计算步骤: 首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等;然 后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 块段编号 资源储量级别 块段 面积 (m2) 平均厚度(m) 块段 体积 (m3) 矿石体重(t/m3) 矿石储量(资源量) 平均品位(%) 金属储量(t) 备注 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置 ②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。

滚筒刷的选用与使用方法

滚筒刷的选用与使用方法 滚涂是使附有涂料的滚筒滚过制品表面而获得涂层的涂装技术。其技术特点是:可以调整漆膜的厚度;可以使大面积涂漆连续化;.可以在高固体份、高粘度下施工,溶剂用量小,污染小;生产效率高,较刷涂功效提高约2倍,涂层质量好、均匀,无刷痕、流挂等疵病,但边角需修补。工具灵活轻便,易于操作;使用不同的滚筒可以做出各种不同装饰效果的饰面。 滚涂作业的主要工具是滚筒刷,按照结构可分为欧式、美式和瑞典式三大类,欧式采用的是直插式滚刷架,滚筒内有抱芯,使用过程中抱芯抱紧滚刷架横梁,滚筒以抱芯为中心滚动,滚筒的轴向和径向的晃动量是由滚筒内盛装抱芯的空间与抱芯的径向与轴向尺寸差形成的。欧式滚筒毛套一般采用粘制和缝制工艺,由于热熔工艺的兴起,产生了美变欧的结构,用于安装直通式滚刷头,但原理没有任何变化。 美式滚刷架用于直通式滚刷头的安装,美式结构的最大特点是CAGE的存在,cage由正帽、背帽和连接正背帽的筋组成,一般有4-5根筋,滚刷架头部套制螺纹,后部打点,将cage结构固定在滚刷架横梁上,其轴向由螺母与打点形成的尺寸与cage安装尺寸的差值决定,径向晃动量由正背帽的孔径与滚刷架横梁直径的差值决定。美式滚刷架靠筋的弹性压紧滚刷头内壁。 瑞典式滚刷架与美式滚刷架均用于直通式滚刷头的安装,相对于美式取消了筋的结构,在滚刷架后端打点限制背帽的移动,正帽两侧均打点,用以控制滚筒的轴向晃动量,径向晃动量的控制方法与美式的相同。瑞典式滚刷架靠正帽的弹性压紧滚刷头内壁。 以上三种滚刷架均可以重复使用,达到节约环保的要求。好的滚刷架在安装滚刷头后,其重心应位于手柄的中心线上,与滚刷架横梁垂直,这样可以减轻滚刷作业的疲劳程度。所有塑料件均应采用原生料制作,且有足够的强度,以免运输和滚刷作业过程中发生碎裂。 滚刷的效果最终是由套筒的材料决定的,套筒按照所附面料材质不同分为:海绵滚、毛滚和橡胶辊。海绵滚一般用于胶液的涂覆和边角及小面积的涂刷,亦可用于喷涂作业的修补。拉毛海绵滚用于厚浆涂料和弹性涂料立体拉毛效果施工。橡胶滚一般在表面雕刻特定图案,用于在饰面上形成特定图案。毛滚是最常用的滚涂工具,其面料一般有羊皮、羊毛、涤纶、腈纶等制作。按照面料毛高分为短绒毛,中长绒毛、长绒毛和特长绒毛。套筒材料选择见下表: 涂料类别基层情况光滑面半糙面糙面或有纹理 面 乳胶漆无光或低光羊毛或化纤的中长度 绒毛 化纤长绒毛化纤特长绒毛 亚光马海毛的短绒毛或化 纤中长绒毛 化纤中长绒 毛 化纤特长绒毛 光化纤的短绒毛化纤的短绒 毛

储量计算方法

油、气储量是油、气油气勘探开发的成果的综合反应,是发展石油工业和国家经济建设决策的基础。油田地质工作这能否准确、及时的提供油、气储量数据,这关系到国民经济计划安排、油田建设投资的重大问题。 油、气储量计算的方法主要有容积法、类比法、概率法、物质平衡法、压降法、产量递减曲线法、水驱特征曲线法、矿场不稳定试井法等,这些方法应用与不同的油、气田勘探和开发阶段以及吧同的地质条件。储量计算分为静态法和动态法两类。静态法用气藏静态地质参数,按气体所占孔隙空间容积算储量的方法,简称容积法;动态法则是利用气压力、产量、累积产量等随时间变化的生产动态料计算储量的方法,如物质平衡法(常称压降法)、弹性二相法(也常称气藏探边测试法)、产量递法、数学模型法等等。 容积法: 在评价勘探中应用最多的容积法,适用于不同勘探开发阶段、不同圈闭类型、储集类型和驱动方式的油、气藏。容积法计算储量的实质是确定油(气)在储层孔隙中所占的体积。按照容积的基本计算公式,一定含气范围内的、地下温压条件下的气体积可表达为含气面积、有效厚度。有效孔隙度和含气饱和度的乘积。对于天然气藏储量计算与油藏不同,天然气体积严重地受压力和温度变化的影响,地下气层温度和眼里比地面高得多,因而,当天然气被采出至地面时,由于温压降低,天然气体积大大的膨胀(一般为数百倍)。如果要将地下天然气体积换算成地面标准温度和压力条件下的体积,也必须考虑天然气体积系数。 容积法是计算油气储量的基本方法,但主要适用与孔隙性气藏(及油藏气顶)。对与裂缝型与裂缝-溶洞型气藏,难于应用容积法计算储量 纯气藏天然气地质储量计算 G = 0.01A ·h ·φ(1-S wi )/ B gi = 0.01A ·h ·φ(1-S wi )T sc ·p i / (T ·P sc ·Z i ) 式中,G----气藏的原始地质储量,108m3; A----含气面积, km2; h----平均有效厚度, m; φ ----平均有效孔隙度,小数; Swi ----平均原始含水饱和度,小数; Bgi ----平均天然气体积系数 Tsc ----地面标准温度,K;(Tsc = 20oC) Psc ----地面标准压力, MPa; (Psc = 0.101 MPa) T ----气层温度,K; pi ----气藏的原始地层压力, MPa; Zi ----原始气体偏差系数,无因次量。 凝析气藏天然气地质储量计算 G c = Gf g f g = n g /(n g + n o ) = GOR / ( GOR + 24056γ o /M o ) 式中,Gc ----天然气的原始地质储量, 108m3; G----凝析气藏的总原始地质储量, 108m3; fg----天然气的摩尔分数;

数控机床工装夹具的选择和使用方法

数控机床工装夹具的选择和使用方法 目前,机械加工按生产批量可分为两大类:一类是单件、多品种、小批量(简称小批量生产);另一类是少品种、大批量(简称大批量生产)。其中前者大约占到机械加工总产值的70~80%,是机械加工的主体。 同样一款机床,为何生产效率却相差好几倍?得出的结论是:数控机床选用的夹具不合适,从而使数控机床的生产效率大幅降低。下面介绍数控机床夹具的合理选择及应用。 如何提高数控机床利用率?通过技术分析,夹具的使用有很大的关系。据不完全统计,国内企业数控机床选用夹具不合理的比例高达50%以上。至2010年底,中国数控机床保有量近一百万台,也就是说有50万台以上的数控机床由于夹具选择不合理或应用不当,而出现了“窝工”现象;从另外一个角度来讲,在数控机床夹具的选择与应用上大有文章可做,因为其中蕴含枱可观的潜在经济效益。 小批量生产周期﹦生产(准备/等待)时间+工件加工时间由于小批量生产“工件加工时间”很短,因此“生产(准备/等待)时间”的长短对于加工周期有枱至关重要的影响。要想提高生产效率,就必须想办法缩短生产(准备/等待)时间。 1、下面推荐三类小批量生产可优先考虑的数控机床夹具: 组合夹具

组合夹具又称为“积木式夹具”,它由一系列经过标准化设计、功能各异、规格尺寸不同的机床夹具元件组成,客户可以根据加工要求,象“搭积木”一样,快速拼装出各种类型的机床夹具。由于组合夹具省去了设计和制造专用夹具时间,极大地缩短了生产准备时间,因而有效地缩短了小批量生产周期,即提高了生产效率。另外,组合夹具还具有定位精度高、装夹柔性大、循环重复使用、制造节能节材、使用成本低廉等优点。故小批量加工,特别是产品形状较为复杂时可优先考虑使用组合夹具。 精密组合平口钳 精密组合平口钳实际上属于组合夹具中的“合件”,与其它组合夹具元件相比其通用性更强、标准化程度更高、使用更简便、装夹更可靠,因此在全球范围内得到了广泛的应用。精密组合平口钳具有快速安装(拆卸)、快速装夹等优点,因此可以缩短生产准备时间,提高小批量生产效率。目前国际上常用的精密组合平口钳装夹范围一般在1000mm以内的,夹紧力一般在5000Kgf以内。 需要注意的是,这里所说的精密组合平口钳并不是老式机加虎钳,老式机加虎钳功能单一、制造精度低、无法成组使用、使用寿命短,不适宜在数控机床、加工中心上使用。这里所说的精密组合平口钳是起源于欧美等工业发达国家,专门针对数控机床、加工中心特点所设计的一系列新型平口钳,此类产品具有装夹柔性大、定位精度高、夹紧快速、可成组使用等特点,特别适合数控机床、加工中心使用。 电永磁夹具

相关主题
文本预览
相关文档 最新文档