当前位置:文档之家› 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版
蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal.

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式

蒸汽过热器(锅炉)爆管剖析——调节

蒸汽温度正式版

下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。

为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2:

图2 面式减温器与省煤器进水示意图注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀

过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉

工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。

(1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

(2)当蒸汽温度升高时:开启或开大11减温器出水阀,由于冷却水出口的流动或加大,使10面式减温器内水压降低,把滞流在减温装置内的高温冷却水不断流出(此时常发生水冲击),水温随着流动而逐渐降低,蒸汽放热与冷却水吸热之间的温差越来越大,则蒸汽传热的速度越来越快,传播给冷却水的热也就越多,蒸汽温度也就下降。

——此位置可填写公司或团队名字——

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

锅炉过热器爆管原因分析及对策(正式)

编订:__________________ 审核:__________________ 单位:__________________ 锅炉过热器爆管原因分析及对策(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8363-82 锅炉过热器爆管原因分析及对策(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:锅炉承压部件的安全运行对整个电厂的安全至关重要。文章结合微水电厂实际,分析了过热器爆管泄漏的机理、原因及实际采取的一些对策,以求对锅炉过热器设备的完好运行有所裨益。 关键词:锅炉过热器爆管电网 1 前言 据统计,河北省南部电网锅炉各种事故约占发电厂事故的63.2%,而承压部件泄漏事故又占锅炉事故的86.7%。因此迫切需要大幅度降低锅炉临修次数。下面结合微水电厂实际,分析过热器爆管泄漏的机理、原因及采取的一些对策。 微水发电厂锅炉型号为HG-220/100-4,露天布置,固态排渣煤粉炉,四角切圆燃烧,过热器由辐

射式炉顶过热器、半辐射屏式过热器、对流过热器和包墙管4部分组成。减温水采用给水直接喷入,分两级减温。炉顶管、包墙管和第二级过热器管用?38×4.5的20号碳钢管组成。第一级过热器和屏过热器用?42×5的12Cr1 MoV钢管组成。 2 过热器爆管的主要原因 2.1 超温、过热和错用钢材 2.2 珠光体球化及碳化物聚集 针对12Cr1 MoV钢分析,试验表明当12Cr1 MoV 钢严重球化到5级时,钢的室温强度极限下降约11kg /mm2。微水发电厂1993年4月过热器爆管的统计资料表明:因局部长期过热,珠光体耐热钢已达到了5级球化现象,而它的塑性水平仍然比较高。发生球化现象以后,钢的蠕变极限和持久强度下降。通过580℃下对12Cr1 MoV钢的持久爆管试验,可以看出到了球化4级的钢管,其持久强度降低1/3。影响珠光体耐热钢发生球化的因素主要有温度、时间、应力和钢材的化学成份等。在钢中掺入“V”这种强碳化物元素,

化工换热器的常见腐蚀现象及防腐措施

化工换热器的常见腐蚀现象及防腐措施 摘要:如何采取合理的措施来减缓甚至消除金属设备的腐蚀是一个永恒的科研课题。换热器的腐蚀问题一直是石化企业面临的棘手问题,探究腐蚀机理以及提出切实可行的防腐蚀办法一直是值得研究的课题。本文介绍了化工换热器的常见腐蚀现象,并提出了针对性强的防腐措施,同时,也为国内外石化行业参考借鉴。 关键词:换热器;腐蚀;防腐 1 概述 换热器是将热流体的部分热量传递给冷流体或将冷流 体的热量传递给热流体的的设备,又称热交换器。管式换热器由于技术成熟、维修方便,因而在石油化工、钢铁、纺织、化纤、制药等各行各业中应用十分广泛。换热器由于在各行各业应用的普及性,因而出现维修的概率也越来越广泛,特别是由于换热介质的物理、化学不同,导致换热器的损坏形式也不同,而据全世界的报导所知,换热器的损坏90%是由于腐蚀而引起的,因此换热器的腐蚀问题一直是石化企业面临的棘手问题。 随着工业的迅速发展,腐蚀问题越来越严重,在各个领域,包括炼油厂化工厂等企业均见报道。从日常生活到工农

业生产,凡是使用材料的地方都存在腐蚀问题,对国计民生的危害十分严重,据不完全统计,全世界每年因腐蚀报废和损耗的钢铁约为2亿多吨,约占当年钢产量的10%-20%,目前我国的钢铁产量己高达数亿吨,但其中却有30%由于腐蚀而白白损失掉了。据此测算,我国每年因钢铁腐蚀损失约有2700多亿元人民币,远远大于自然灾害和各类事故损失的总和。国家科技部门、各工厂对这个问题也越来越重视。对于化工企业,腐蚀造成的危害更大,不仅在于金属资源受到损失,还在于正常的生产受到影响,因腐蚀造成的设备事故对于职工人身安全也会带来严重的威胁。由于腐蚀问题越来越受到重视,因此对于腐蚀的研究也越来越多。 2 化工换热器的常见腐蚀现象 引起换热器腐蚀的原因是多方面的,主要有换热器表面的腐蚀磨损、沉积物引起的电化学腐蚀、换热管水侧的腐蚀等,下面就几个主要方面加以说明。 2.1 换热器表面的腐蚀磨损 磨损腐蚀是高速流体对金属表面已经生成的腐蚀产物的机械冲刷作用和新裸露金属表面的腐蚀作用的综合。 2.2 沉积物引起的电化学腐蚀 当介质流动不均或滞留时很容易在换热管表面形成沉积物,由于沉积物是不连续不牢固且不均匀的,在某些部位形成了裂缝和间隙,由于缝内外氧的差异而形成了电化学腐

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P)。其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值。当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,

△P),即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P)。 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联”在一起,但并不是串级控制系统。

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式 版

蒸汽过热器(锅炉)爆管剖析——调节 蒸汽温度正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2 面式减温器与省煤器进水示意图注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉

工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

换热器局部腐蚀原因分析

换热器局部腐蚀泄漏原因分析及预防措施 陶志远 (山东华鲁恒升化工股份有限公司山东德州253000) 【摘要】对一台换热器换热管泄漏原因进行分析,并研究预防换热管泄漏措施,提高换热器运行周期,保证装置稳定运行。 【关键词】换热器泄漏局部腐蚀蒸汽加热 在化工生产中,由于工艺的需要,在流程中往往存在着各种不同的换热过程,换热器就是用来进行此项热传递过程的设备,它可以使热量从温度较高的流体传递给温度较低的流体,以满足工艺的需要。换热器的稳定运行在工艺生产中起着相当重要的作用,一旦泄漏会严重影响工艺,造成两种流体混合,导致不安全因素的产生。 某公司甲醇装置中有一换热器为该装置关键设备,该换热器在投用一年后发生泄漏。 1设备技术参数 设备技术参数及操作数据见表1 筒体材质为16MnR(热轧状态),规格为∮1500mm*14mm,总高8152mm。管板材质为16Mn。厚度88mm,锻件。换热管材质为10#钢,规格∮25mm*2.5mm,退火状态。折流板5件,厚度16mm,材质Q235-A.换热面积:669m2。 表1 2泄漏情况 该换热器于2004年投入运行,2006年7月系统停车时发现泄露。打压试漏时发现有34根换热管泄露。其中有10根比较严重。由于当时生产任务较紧,该换热器堵漏完毕后,投入运行,没有做深入的分析。 堵漏完毕后的换热器投入运行3个月后又发现泄露,再次拆开检查维修。在这次检查时,发现有的换热管在距上管板90毫米处有断开,随即技术人员仔细检查。用焊条在换热器上管板上探测换热管内壁,发现大部分换热管在距管板90毫米处用焊条滑动时内壁不光滑。于是技术人员决定将换热管抽出一根检查。换热管抽出后,将怀疑有缺陷的部位刨开,发现该处有一不规则的环状凹坑(见图1),换热管内表面其他部位良好,这说明其他换热管也存在环状凹坑。通过查看设备制造图纸,换热器管板厚度为80毫米,凹坑距管板大约10毫米。

蒸汽过热器爆管剖析-调节蒸汽温度(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 蒸汽过热器爆管剖析-调节蒸汽 温度(新版)

蒸汽过热器爆管剖析-调节蒸汽温度(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2面式减温器与省煤器进水示意图 注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

过热器爆管的根本原因及对策

过热器爆管的根本原因及对策 二十世纪八十年代初,美国电力研究院经过长期大量研究,把锅炉爆管机理分成六大类,共22种。在22种锅炉爆管机理中,有7种受到循环化学剂的影响,12种受到动力装置维护行为的影响。我国学者结合我国电站锅炉过热器爆管事故做了大量研究,把电站锅炉过热器爆管归纳为以下九种不同的机理。 1、长期过热 1.1失效机理 长期过热是指管壁温度长期处于设计温度以上而低于材料的下临界温度,超温幅度不大但时间较长,锅炉管子发生碳化物球化,管壁氧化减薄,持久强度下降,蠕变速度加快,使管径均匀胀粗,最后在管子的最薄弱部位导致脆裂的爆管现象。这样,管子的使用寿命便短于设计使用寿命。超温程度越高,寿命越短。在正常状态下,长期超温爆管主要发生在高温过热器的外圈和高温再热器的向火面。在不正常运行状态下,低温过热器、低温再热器的向火面均可能发生长期超温爆管。长时超温爆管根据工作应力水平可分为三种:高温蠕变型、应力氧化裂纹型、氧化减薄型。 1.2产生失效的原因 (1)管内汽水流量分配不均; (2)炉内局部热负荷偏高; (3)管子内部结垢; (4)异物堵塞管子; (5)错用材料; (6)最初设计不合理。 1.3故障位置 (1)高温蠕变型和应力氧化裂纹型主要发生在高温过热器的外圈的向火面;在不正常的情况下,低温过热器也可能发生; (2)氧化减薄型主要发生在再热器中。 1.4爆口特征 长期过热爆管的破口形貌,具有蠕变断裂的一般特性。管子破口呈脆性断口特征。爆口粗糙,边缘为不平整的钝边,爆口处管壁厚度减薄不多。管壁发生蠕胀,管

径胀粗情况与管子材料有关,碳钢管径胀粗较大。20号钢高压锅炉低温过热器管破裂,最大胀粗值达管径的15%,而12CrMoV钢高温过热器管破裂只有管径5%左右的胀粗。 (1)高温蠕变型 a.管子的蠕胀量明显超过金属监督的规定值,爆口边缘较钝; b.爆口周围氧化皮有密集的纵向裂纹,内外壁氧化皮比短时超温爆管厚,超温程度越低,时间越长,则氧化皮越厚和氧化皮的纵向裂纹分布的范围也越广; c.在爆口周围的较大范围内存在着蠕变空洞和微裂纹; d.向火侧管子表面已完全球化; e.弯头处的组织可能发生再结晶; f.向火侧和背火侧的碳化物球化程度差别较大,一般向火侧的碳化物己完全球化。 (2)应力氧化裂纹型 a.管子的蠕胀量接近或低于金属监督的规定值,爆口边缘较钝,呈典型的厚唇状; b.靠近爆口的向火侧外壁氧化层上存在着多条纵向裂纹,分布范围可达整个向火侧。内外壁氧化皮比短时超温爆管时的氧化皮厚; c.纵向应力氧化裂纹从外壁向内壁扩展,裂纹尖端可能有少量空洞; d.向火侧和背火侧均发生严重球化现象,并且管材的强度和硬度下降; e.管子内壁和外壁的氧化皮发生分层; f.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集。 (3)氧化减薄型 a.管子向火侧、背火侧的内外壁均产生厚度可达1.0~1.5mm的氧化皮; b.管壁严重减薄,仅为原壁厚的1/3~l/8 ; c.内、外壁氧化皮均分层,为均匀氧化。内壁氧化皮的内层呈环状条纹; d.向火侧组织己经完全球化,背火侧组织球化严重,并且强度和硬度下降; e.燃烧产物中的S、Cl、Mn、Ca等元素在外壁氧化层沉积和富集,促进外壁氧化。

换热器的腐蚀分析正式样本

文件编号:TP-AR-L2856 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 换热器的腐蚀分析正式 样本

换热器的腐蚀分析正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 (1)管子本身材料缺陷在腐蚀介质和高温条件 下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点 腐蚀。 (2)管子与管板的接口采用强度焊、强度胀因苛 刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介 质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段 和未胀管间过渡区,管子内外壁存在较大拉应力,易 产生应力腐蚀破裂;管子与折流板处产生局部应力集 中,加之间隙存在,腐蚀介质浓聚,其结合部位易产 生应力腐蚀。

(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。 (4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。 (5)大多数换热器失效都发生在管子与管板的连接处。连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力

火力发电厂高温过热器失效原因分析及寿命评估

火力发电厂高温过热器失效原因分析及寿命评估 刘东辉 神华神东电力有限责任公司,陕西神木719300 摘要:随着社会科技的不断发展,人们对于能源的获取方式还有利用已经发生了天翻地覆的变化,时至今日可以说电力资源的使用已经成为了人们不能或缺的能源。为了能够给人们提供稳定的电力能源,各种发电厂起着重要的作用,其中火力发电厂已经是重要的发电地点之一。而火力发电厂当中的高温过热器则是核心之一,人们对它的关注从来没有减少。 关键词:火力发电厂高温过热器失效寿命评估 火力发电厂是人们最主要的电力能源提供地点之一,其中最重要的操作机器可以说是电站锅炉,而电站锅炉当中过热器又是最主要的运行设备,但是由于高温或者是工作条件相对恶劣等种种原因,过热器在运行的过程当中经常会发生爆管一类的事故,当过热器发生故障的时候,机组的安全运行也就失去了保障,而且还会消耗大量无谓的能量。 过热器的运作原理其实并不复杂,就是利用烟气所产生的热量来加热饱和蒸汽,而高温加热器却是一般都会布置在炉膛的高温烟区进行运作,这些高温加热器一般指的是屏式过热器或者是高温对流过热器。 正如左图所表示的一样,加热器的内部有高温蒸汽作为构件,而外部则是高温烟气,这样的工作环境可以说已经是非常简单的。特别是对于大容量机组来说,因为它不仅机组本身的内外两个部分都要承受很高的蒸汽压力,而且两者还要同时的承受烟气腐蚀和高温蒸汽腐蚀的危害。在锅炉运作的时候会对内部很多因素产生影响,这些影响对于过热器

的运行参数会有复杂而巨大的影响,这些因素包括了燃料品质、负荷还有机组太过于频繁的启动和停止,这些因素共同作用之下,让过热器失效的速度加快。 一、高温过热器失效的影响因素 导致供温过热器失效的影响因素有很多,但是有几种最是经常也是最明显的影响因素,包括蠕变、疲劳、劳损还有腐蚀这四种方式。 1、蠕变对高温过热器的影响 所谓蠕变的影响指的是过热器的当中由金属材料组成的部件因为过热器本身不断的高温工作,在这样的条件之下发生了永久变形的行为。我们知道,过热器的工作温度一般来说都是在540摄氏度以上,有的时候甚至会高达600摄氏度。而钢材在温度大概是350摄氏度的时候就会产生蠕变的现象,在这样的工作环境之下,发生蠕变其实是很正常的事情,所以高温蠕变损伤其实对管道影响很普遍,也是它失效的一个重要因素。 2、疲劳对高温过热器的影响 一般来说,金属材料在经过反复交变的载荷作用之后会逐渐的失去本身的一些特性,这样之后金属的作用就会慢慢的失去。高温过热器的机组启动或者是变荷运行的时候,过热器的内部会产生剧烈的变动,这些变动的源头来自于蒸汽压力还有内部温度的变化还有波动,在这种时候过热器的内部需要承受着反复的交变应力,这样的变化直接的导致管道金属的疲劳寿命有剧烈的损耗。因为过热器的管道构造一般都是比较薄的,所以它管道壁的内外温度相差并不大,所以产生的热应力也比较小,所以说热应力造成的疲劳失效对高温过热器的影响基本小到可以忽略不计。 3、磨损对高温过热器的影响 磨损指的是由于高温过热器的烟气当中通常会携带固体颗粒,然后在流过受热面的时候因为速度过快对壁管撞击造成了磨损。过热器的外表面因为长期的暴露在高温烟道当中,而这样每天有大量的烟气经过,并且携带颗粒对管道外表面造成很大程度的磨损伤害。除此之外,还有存在一定量的飞灰沉积在管道的表面,这样子就直接的导致了传热热阻数值的增大,炉内传热功能弱化,过热器在这些部分就会有高温的现象,局部的超温也对过热器使用有很大影响。这些烟尘会对管壁产生腐蚀的作用让管壁不断的变得薄,这样使用的寿命也会急剧缩短,引起

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计 一、摘要 这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。 二、锅炉设备的介绍及设计任务的分析 1、锅炉设备介绍 锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。

过热蒸汽送负荷设备 热空气汽包 炉膛 烟气排出 冷空气送入 水送入 热空气送往炉膛过热器 减温器 空气预热器 图1锅炉设备主要工艺流程图 锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下: 锅炉汽包水位控制系统,要求保证汽包水位平稳; 锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行; 锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。 锅炉安全连锁控制系统,以防止回火和脱火。 本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。 2、任务分析与设计思路 锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。 蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器

锅炉各种指标解释

锅炉指标解释

第一节锅炉技术经济指标 1.1 锅炉运行技术经济指标 1.1.1 锅炉实际蒸发量 锅炉实际蒸发量是指锅炉的主蒸汽流量(kg/h)。应取锅炉末级过热器出口的蒸汽流量值,或者根据进入锅炉省煤器的给水流量来进行计算确定,具体计算可根据汽轮机运行技术经济指标中主蒸汽流量的计算方法确定。 1045吨/小时 1.1.2 锅炉主蒸汽压力 锅炉主蒸汽压力是指锅炉出口的蒸汽压力值(Mpa)。应取锅炉末级过热器出口的蒸汽压力值。如果锅炉末级过热器出口有多路主蒸汽管,应取算术平均值。 17.5MPa 1.1.3 锅炉主蒸汽温度 锅炉主蒸汽温度是指锅炉过热器出口的蒸汽温度值(℃)。应取锅炉末级过热器出口的蒸汽温度值。如果锅炉末级过热器出口有多路主蒸汽管,应取算术平均值。 540度 1.1.4 再热蒸汽压力 锅炉再热蒸汽压力是指锅炉再热器出口的再热蒸汽压力值(Mpa)。应取锅炉末级再热器出口的蒸汽压力值。如果锅炉末级再热器出口有多路再热蒸汽管,应取算术平均值。 3.2MPa 1.1.5 再热蒸汽温度 锅炉再热蒸汽温度是指锅炉再热器出口的再热蒸汽温度值(℃)。应取锅炉末级再热器出口的蒸汽温度值。如果锅炉末级再热器出口有多路主蒸汽管,应取算术平均值。 540度 1.1.6 锅炉给水温度

锅炉给水温度是锅炉省煤器入口的给水温度值(℃)。应取锅炉省煤器前的给水温度值。 272.2度 1.1.7 过热器减温水流量 过热器减温水流量是指进入主蒸汽系统的减温水流量(t/h)。对于主蒸汽系统有多级减温器设置的锅炉,过热器减温水流量为各级主蒸汽减温水流量之和。 一级14.5、二级7.35 1.1.8 再热器减温水流量 再热器减温水流量是指进入再热汽系统的减温水流量(t/h)。对于再热汽系统有多级减温器设置的锅炉,再热器减温水流量为各级再热汽减温水流量之和。 0 t/h 1.1.9 排烟温度 排烟温度指锅炉末级受热面后的烟气温度(℃)。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道排烟温度的算术平均值。 149度 1.1.10 锅炉氧量 锅炉氧量是指锅炉省煤器后的烟气中氧的容积含量百分率(%)。对于锅炉省煤器出口有两个或两个以上烟道,锅炉氧量应取各烟道烟气氧量的算术平均值。 3-5% 1.1.11 送风温度 送风温度指锅炉空气系统风机入口处的空气温度(℃)。对于有两台送风机,送风温度为两台送风机入口温度的算术平均值;对于采用热风再循环的系统,送风温度应为冷风与热风再循环混合之前的冷风温度。 26度 1.1.12 飞灰含碳量

(仅供参考)换热器泄漏原因分析及对策

换热器泄漏原因分析及对策 在装置运行和检修过程中,换热器泄漏是经常遇到的现象。就泄漏产生的形态而言,主要有腐蚀泄漏、磨损泄漏、静密封失效泄漏。原因有工艺方面的问题,也有设备的先天不足,还有施工习惯、质量控制等方面的缺陷。本文讨论的重点是通过加强对制造、安装、检修质量的控制来防止泄漏。 1·换热器芯子的泄漏 1.1管束与管板连接焊缝的泄漏 管束与管板间的连接有强度胀、强度焊、胀焊结合3种方式。强度胀如无过大的振动、温度变化和应力腐蚀,是比较理想的连接方式,但由于其工序复杂,对管束端部表面质量、硬度、管板的机加工精度、胀管经验要求很高,因此绝大部分芯子都是焊接方式。但该方式存在着不足:管束与管板的强度焊缝都是焊一遍,很容易出现焊接缺陷,因此,新制作的芯子在进行水压实验时从强度焊缝处泄漏是常有的事。同时,只进行强度焊接的芯子,管束与管孔之间存在着深且窄的间隙,焊缝在间隙内有很大的焊接残余应力,而且间隙中会积聚大量的Cl-,又处于贫氧状态,很容易产生缝隙腐蚀和应力腐蚀而出现腐蚀泄漏。1.2管束的腐蚀泄漏 1.2.1腐蚀泄漏的主要原因 (1)管束质量缺陷。管束表面往往存在着一些缺陷,如细小的砂眼、重皮、凹坑、局部擦伤等,这些缺陷可导致腐蚀的加强,容易产生泄漏。在制造管束的过程中,对管束的表面质量重视不够,认为只要试压不漏就行,实际上管束表面的这些缺陷往往是管束腐蚀泄漏的根源。

(2)折流板或支持板的负作用。主要表现在其管孔不合适或与管板间相互对中不好时会局部挤压管束。使受挤压处的防腐层难以涂上,如果由于外因而折流板或支持板相对于管束稍有错动,未防腐的部分就会裸露出来,从而加速管束的腐蚀。而且该处容易藏污纳垢,形成小的滞流区,导致缝隙腐蚀的产生。管孔外的锐角未去掉,穿管时会刮伤管束。另外,管孔不合适会造成管束的振动破坏。(3)吊装时钢丝绳对管束防腐层的破坏作用。在运输、安装过程中,采用的吊装工具几乎都是钢丝绳,由于其硬度高,很容易将管束的防腐层破坏,这也会造成腐蚀的产生。 (4)检修时吹扫、清洗、试压的负作用。检修时都是用蒸汽吹扫,用新鲜水清洗芯子和试压,而且试压从上水到放水经历的时间很长,结束后又不按要求吹干,这就会导致水分的增加,为腐蚀性介质的充分电离创造了条件;Cl-含量的增加,它们与管束中吸附的Cl-及H2S共同作用,会加剧腐蚀反应的进行;氧含量的增加,氧对碳钢芯子腐蚀起着很大的促进作用。水、腐蚀性介质、氧气的共同作用,使其腐蚀速度远高于水、氧含量低时的腐蚀速度。这就是“检修负效应”产生的主要原因。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式

锅炉主汽温度控制系统设计说明书

内蒙古科技大学 本科生过程控制课程设计说明书 摘要 随着先进的电子和计算机技术的发展和控制功能的不断完善以及对热电厂中锅炉仪表控制系统进行的先进改造,以先进的DCS系统作为锅炉的控制核心,锅炉鼓风机和引风机采用变频驱动技术,以保护电机和节约能源,结合实际的现场仪表、变频调速器、DCS控制方案的具体实施方案。而在锅炉主汽温度控制系统中,也有越来越多的方法可以实现生产控制,这里需要我们对过热器的出口蒸汽温度进行检测,当温度不在控制范围内时就通过对过热器阀门的控制,设计锅炉主汽温度控制系统,实现对汽包主蒸汽温度的控制,以产生合格的产品,这个就是这次设计的主要内容。 关键词:锅炉;主汽;温度;控制

目录 第一章绪论 (3) 第二章热电厂概述 (4) 2.1锅炉概述 (4) 2.2锅炉、锅筒设备及结构 (5) 2.3锅炉控制的工作原理 (6) 第三章锅炉主汽温度控制系统概述 (7) 3.1锅炉蒸汽温度控制概述 (7) 3.2过热器的基本概念 (7) 3.3锅炉主汽温度控制系统的总体设计方案 (8) 第四章锅炉主汽温度控制的设计过程 (9) 4.1锅炉主汽温度控制说明 (9) 4.2锅炉主汽温度控制系统的分析与初步设计 (10) 4.3锅炉主汽温度串级控制系统图解及仪表选型 (11) 4.4锅炉主汽温度控制系统安全保护对策 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 这个学期的第一个课程设计是过程控制课程设计,通过上个学期的热电厂的实习,以及对热电厂的工艺和锅炉的生产设备及工艺的了解,我们选择了各自的课程设计题目,我的设计主要是介绍锅炉控制中的主汽温度控制系统的设计。随着科学的进步以及各种仪器的发展,现在已经有很成熟的控制方法来控制锅炉的生产,我这里是根据一般的场合所需要的控制方案,设计了一个串级的控制系统。对一些大的生产设备和一些有大的延迟或者是大的滞后的生产过程就不做叙述了。

分隔屏过热器爆管分析及处理

分隔屏过热器爆管分析及处理 翟德双 (田集发电厂232098) 摘要:分析田集发电厂1号锅炉分隔屏过热器超温爆管的原因,介绍所采取的针对性运行调整措施及实施结果。关键词:超临界;直流锅炉;分隔屏过热器;爆管;原因分析 1 概述 田集发电厂一期工程装有2台600MW超临界燃煤机组,2台机组分别于2007年7月26日和10月15日投产。该机组锅炉为超临界压力螺旋管圈直流炉,炉膛四角布置直流式喷燃器,配置6台中速磨煤机直吹式制粉系统,锅炉采用等离子方式点火(四角A层布置),启动系统采用容量为30%BMCR的不带循环泵的内置式启动系统,汽轮机设高低压两级串联旁路系统,旁路容量为35%BMCR。 2 锅炉爆管经过 2007年5月30日,机组首次整套启动,顺利进行锅炉点火、汽机冲转、发电机并网,机组带10%初始负荷4小时进行暖机,机组与系统解列后,做汽轮机超速试验,做汽机主汽门及调速汽门严密性试验。 2007年5月31日,机组再次启动,6月1日1时53分发电机并网,逐渐加负荷,14时22分向调度申请机组加负荷,进行锅炉安全门校验, 17时30分左右,锅炉转干态运行,发现机组补给水量异常,各系统进行全面检查,未发现明显异常情况,在对给水和疏放水系统进行全面检查和隔离后,机组补给水量有所下降,于是按计划带负荷进行锅炉安全门校验,23时20分发现捞渣机卡涩现象,发现内部有疑似受热面钢管。即向调度申请停炉,当时机组负荷330MW,分离器压力22MPa,过热器出口温度正常,给水量860~920t,燃煤量178t。确定锅炉爆管,经调度同意,于6月2日1时42分锅炉停炉。 3 爆管检查及分析 3.1 爆管情况检查和试验 (1)停炉后进入炉膛检查发现分隔屏过热器爆管断裂,部分管屏及定位管变形严重。 (2)光谱分析检查:分隔屏管进口段材质为T12,出口段材质为T23,下部外三圈为T91,T91与T12间用T23短管过渡,通过对现场管光谱分析检查,材质与设计图纸相符。 (3)硬度检查:对爆管管子和现场管子进行硬度检查,T91管子HB基本在170左右,T23管子HB基本在140~150左右,T12管子HB基本在120~130左右,参考ASTM SA213标准,T12 114

电厂锅炉过热器管失效分析及残余寿命预测

2003年3月第21卷第1期 长沙铁道学院学报 JOURNAL OF CHANGSHA RAILWAY UNIVERSITY No1 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Mar.2003文章编号:1000-2499(2003)01-0108-05 电厂锅炉过热器管失效分析及残余寿命预测 贺株莉" (长沙电力学院,湖南长沙410077) 摘要:对运行后的管材进行金相分析、蠕变孔洞观察及评级、高温持久实验等.采用综合分析法对其寿命进行预测. 关键词:锅炉管;后屏过热器;蠕变损伤;珠光体球化 中图分类号:TK223.13;TG146.2文献标识码:A Anaiysis on Invaiidation of Overheater Pipes in Power Piants and Prediction of Their Life Expectancy HE Zhu-ii (Changsha University of Eiectric Power,Changsha410075,China) Abstract:Based on the metaiiographicai anaiysis,observation,grading creeping hoies as weii as the exper-iment with the high-temperature creeprupture,this paper predicts the iife expectancy of the overheater pipes after https://www.doczj.com/doc/2b16452099.html,prehensive anaiysis is adopted here. Keywords:boiier pipe;rear screen overheater;creeping damage;spheroidization of pear iife 电厂锅炉过热器是火力发电厂中的高温承压部件,它能否安全工作对整个机组的安全运行有着十分重要的意义,因此,对其进行寿命预测,使其超期安全运行,经济效益十分可观.作者从材料学方面对平圩发电厂2号炉后屏过热器进行寿命分析,采用综合分析法对其寿命进行预测.对运行后管材进行金相分析、蠕变孔洞观察及评级、高温持久实验等.根据实验数据及分析结果,结合壁温的结果,判断在影响材料寿命的诸因素(蠕变、球化、碳化物形成、材料的氧化腐蚀等)中,哪一个是主要因素,从而对其寿命作出比较科学全面的评判. 1试验条件 为了对后屏过热器的管壁进行实时监控,现场布置了几十个壁温测点,测量结果表明,左侧后屏过热器壁温高于右侧.本次从左侧后屏中共取6根管子,材料为12CriMoV,规格为!60 mm X11mm.已运行43510.74h,试验设备为4x1金相显微镜和HITACHIx-650型扫描电镜. "收稿日期:2002-12-30 作者简介:贺株莉(1963-),女,湖南株洲人,长沙电力学院工程师.

相关主题
文本预览
相关文档 最新文档