当前位置:文档之家› 齿轮齿条传动系统的运动学及动力学仿真分析

齿轮齿条传动系统的运动学及动力学仿真分析

齿轮齿条传动系统的运动学及动力学仿真分析
齿轮齿条传动系统的运动学及动力学仿真分析

齿轮系的运动分析

16.2齿轮系的运动分析 齿轮系由曲轴齿轮、惰齿轮和凸轴齿轮。本例要模拟三个齿轮键的运动。 (1)设置齿轮系的连接。须分别定义简易曲轴齿轮、简易惰性轮、简易凸轮轴齿轮与简易机体之间的旋转运动副。 (2)设置齿轮副连接。定义曲轴齿轮与惰齿轮之间、凸轮轴齿轮与惰齿轮之间的齿轮副连接。 (3)模拟仿真。 (4)运动分析。 16.2.1设置齿轮系的连接 1.新建组文件 (1)点击“开始”选取“机械设计”中的“装配件设计”模块。 (2))进入装配件设计模块后,点击添加现有组件图标,再点击模型树上的Product1图标,此时会出现文件选择对话框,按住Ctrl键,分别选取“Chapter16/ duo-gear.CATPart、qu-zhou-gear.CATPart、tu-lun-gear.CATPart、duolunzhou.CATproduct、jianyi-quzhou.CATpart、jianyi-tulunzhou. CATPart、jianyi-jizuo. CATpart”,将这些零件体载入到Product1中. (3) 此时,零件体载入后重合到一起,点击分解图标,出现分解对话框,然后点击模型树上的Product1,点击确定,此时弹出警告对话框,警告各零件的位置会发生变,点击警告对话框的按钮“是”,我们会发现各个零件分解开来。如图16-101所示。

图16-101 分解重和的各个零件 2.设置各简易齿轮轴与简易机座之间的运动连接 (1)点击“开始”选取“数字模型”中的“DMU Kinematics(数字模型运动)”模块,进入模型运动工作台。 (2)单击“Kinematics Joint(运动饺)”工具栏中的“Revolnte Joint(旋转铰)”按 钮,弹出“Joint Creation: Revolute(生成旋转铰)”对话框。如图16-101所示。 图16-101 “Joint Creation: Revolute(生成旋转铰)”对话框 (3)单击对话框中的“New Mechanism(新运动机构)“按钮弹出“Mechanism Creation(生成运动机构)”对话框,单击对话框中的“确定”按钮,按照对话框中的默认机构名称“Mechanism.1”生成新的运动机构。同时“Mechanism Creation(生成运动机构)”对话框被关闭,回到“Joint Creation:Revolute(生成旋转铰)”对话框。

齿轮箱动力学模拟实验台

齿轮箱动力学综合实验台 齿轮箱动力学研究最佳实验台

S I M U L A T O R S 齿轮箱动力学综合实验台 (G D S ) 特点: v 齿轮可以沿着平行轴滑动来改变系统的刚度,并且为其他设备提供足够的空间。 v 适用于直齿轮和斜齿轮。 v 损伤或磨损故障齿轮可用于振动特性的研究。 v 通过更换轴承安装板来得到研究所需的齿间隙。 v 通过模块化设计可更好地引入轴承故障和齿轮故障。 v 复合安装定位件便于各类传感器的安装。 v 便于故障诊断技术和先进信号处理方法研究。 v 扭转负载可变速加载。 v 制动器可用附加装置替换。 齿轮箱可靠性研究最佳实验台 SpectraQuest 公司为实验和教学专门设计了可模拟工业齿轮箱的齿轮箱动力学综合实验台(GDS)。齿轮箱包括一个带有滚动轴承的两级平行轴和磁力制动器。该实验台所有组件的设计适用于基于诊断技术、润滑条件、磨损颗粒分析的齿轮箱动力学和噪声特性、健康监测、振动特性的研究。该实验台性能稳定,可承受猛烈的载荷冲击,有充足的空间便于齿轮的更换、安装以及监测装置的安装。该两级平行轴传动齿轮箱便于齿轮传动比的改变。 柔性齿轮箱故障诊断 该实验台可模拟直齿和斜齿的齿面磨损、轮齿裂纹、齿面点蚀和缺齿等故障。也可模拟滚动轴承内圈、外圈、滚动体故障及其耦合故障。可通过调节侧隙来研究齿间隙的影响:增加齿间隙不会产生严重的后果(除了噪声的增加和旋转窜动),减少齿间隙可能导致齿面胶合和运行温度升高。可引入单一故障,或同时引入多个故障,研究其相互间的耦合效应。通过加载扭转负载来研究损伤及扩展特性,扭转负载可通过3马力交流变频驱动电机编程自定义速度来加载。 易于装配 该实验台可快速方便更换齿轮箱和轴承部件,适用于直齿轮和斜齿轮。通过模块化设计可更好地引入齿轮故障。复合安装定位件便于各类传感器的安装。电机、齿轮箱和磁力制动器安装在一个半英寸厚的铝制基座上,基座带有加强板和隔振块以减小振动。 传感器和数据采集系统 齿轮箱的设计便于各类传感器的安装。加速度计可以安装在齿轮箱及轴承座上,用来测量三个方向的振动信号。输入、输出轴与编码器、转数计匹配,用于测量传动误差和时域同步平均,其他的传感器也可以根据顾客的需求进行安装。Spectra Quest 设计的数据采集软硬件系统可用于信号采集和时域、频域分析。

iNVENTOR 运动仿真分析

第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer 中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定

可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。 如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

齿轮传动系统的动力学仿真分析

齿轮传动系统的动力学仿真分析 摘要:本文对建立好的整体机械系统的虚拟样机模型进行运动学和动力学的仿真分析,通过仿真分析,可以方便地得出齿轮传动系统在特定负载和特定工况下的转矩,速度,加速度,接触力等,仿真分析后,可以确定各个齿轮之间传递的力和力矩,为零件的有限元分析提供基础。 关键词:传动系统动力学仿真 adams 虚拟样机 中图分类号:th132 文献标识码:a 文章编号: 1007-9416(2011)12-0207-01 随着计算机图形学技术的迅速发展,系统仿真方法论和计算机仿真软件设计技术在交互性、生动性、直观性等方面取得了较大进展,它是以计算机和仿真系统软件为工具,对现实系统或未来系统进行动态实验仿真研究的理论和方法。 运动学仿真就是对已经添加了拓扑关系的运动系统,定义其驱动方式和驱动参数的数值,分析其系统其他零部件在驱动条件下的运动参数,如速度,加速度,角速度,角加速度等。对仿真结果进行分析的基础上,验证所建立模型的正确性,并得出结论。 本文中所用的动力学仿真软件是adams软件。adams软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。adams

软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。虚拟样机就是在adams软件中建的样机模型。 1、运动参数的设置 先在造型软件ug中将齿轮传动系统造型好,如下图所示。在已经设置好运动副的齿轮传动系统的第一级齿轮轴上绕地的旋转副上 给传动系统添加一个角速度驱动。然后进行仿真。在进行仿真的过程中,单位时间内仿真步数越多,步长越短,越能真实反映系统的真实结果,但缺点是仿真时间也随之变长,占用的系统空间也就越大。所以应该在兼顾仿真真实性与所需物理资源和仿真时间的基础上,选择一个合适的仿真时间和仿真的步长。 在仿真之前先设置系统所用到的物理量的单位,在工程实际中,角速度一般使用的单位是r/min,所以在系统的基本单位中把时间的单位设为min,角度的单位设成rad,而在adams中转速单位为 rad/min。本过程仿真的运动过程为:系统从加速运动到额定转速,平稳运动一段时间后,再减速运动直到停止。运动过程用函数来模拟,输入的角速度驱动的函数表达式为: step( time ,0 ,0 ,2.5 ,9168.8)+ step(time ,7.5 ,0 ,10 ,-9168.8),此函数表达式的含义为:系统从开始加速运动一直到2.5s时达到了系统的额定转速 9168.8rad/min(1460r/min),从2.5s到7.5s的时间段内,系统以额定转速运动,在7.5s到10s的时间段内,系统从额定转速减速

齿轮箱中某工况下齿轮啮合动态激励计算及仿真

齿轮箱中某工况下齿轮啮合动态激励计算及仿真 一、研究齿轮啮合动态激励的意义 齿轮箱作为机械设备中一种必不可少的传递运动和动力的通用零部件,在金属切削机床、航空工业、航海设备、电力系统、农业机械、运输机械、冶金等现代化工业发展中得到了广泛的应用。 齿轮系统是由齿轮、轴、轴承和箱体等组成的机械系统。齿轮由于自身的制造误差和安装误差,在啮合过程中会引起周期性的加速分离或加速啮合,导致齿与齿之间的撞击,引起齿轮振动并产生啮合噪声。齿轮的振动又会引起轴的振动,并通过轴承将振动传递给齿轮箱,引起箱体的振动,从而产生噪声。所以齿轮激振是引起噪声的主要原因。由于传统的齿轮箱结构设计基本上是凭经验进行的,仅停留在静态设计阶段,而没有从动态优化方面作认真考虑,因此迄今国产齿轮箱大多存在严重的振动和噪声问题。为了解决这个问题,系统的方法是从结构动态性能优化出发,通过建立齿轮箱的动力学模型进行其动态特性分析,从而设计出全新的低噪声齿轮箱。但是,目前更现实更迫切的针对已有的产品,进行动态分析和测试,找出它的主要振动源和噪声源,并采取有效的局部改进措施,降低它的噪声。 二、齿轮箱动力载荷计算分析 2.1齿轮啮合动态激励 齿轮啮合动态激励是齿轮系统产生振动和噪声的主要原因。 齿轮系统的动态激励有内部激励和外部激励两类。 内部激励是齿轮传动与一般机械的不同之处,它是由于同时啮合齿对数的变化、轮齿的受载变形、齿轮误差等引起了啮合过程中的轮齿动态啮合力产生的,因而即使没有外部激励,齿轮系统也会受这种内部的动态激励而产生振动噪声。外部激励是指除齿轮啮合时产生的内部激励外,齿轮系统的其它因素对齿轮啮合和齿轮系统产生的动态激励。如齿轮旋转质量不平衡、几何偏心、原动机(电动机、发动机等)和负载的转速与扭矩波动、以及系统中有关零部件的激励特性,如滚动轴承的时变刚度、离合器的非线性等。在这些因素中质量不平衡产生的惯性力和离心力将引起齿轮系统的转子耦合型问题,它是一种动力耦合型问题。对于几何偏心,它引起啮合过程的大周期误差,是以位移形式参与系统激励的。由于质量不平衡和几何偏心是由加工误差引起的,因此常常将它们的影响与内部激励一起进行研究。通常,齿轮啮合的动态激励主要是内部激励,本文的研究忽略外部激励的影响,只考虑齿轮啮合时的内部激励。 齿轮的内部激励包含三种形式:刚度激励、误差激励和啮合冲击激励。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

第四章 斜齿行星齿轮传动系统动力学分析精选

第四章斜齿行星齿轮传动系统动力学分析 4.1 引言 行星齿轮传动由于具有重量轻、结构紧凑、传动比大、效率高等优点,在民用、国防领域中都得到了广泛的应用,行星齿轮传动的振动和噪声是影响传动系统寿命和可靠性的重要因素。近年来,国内外学者对行星齿轮传动的动态特性进行了大量研究:J.Lin、R.G.Parker、宋轶民等分析了行星齿轮传动的固有特性[42-49]; A.Kahraman等研究了行星齿轮传动的均载特性 [50-52],并分析了加工误差对动态响应的影响[53-54];R.G.Parker等还提出了通过控制啮合相位差抑制系统振动的方法[55-57];潜波、罗玉涛、D.R.Kiracofe等探讨了复杂行星齿轮传动的动力学建模与分析[59-65];沈允文、孙涛、孙智民等对星型齿轮传动和行星齿轮传动的非线性动力学特性进行了深入研究[66-70]。 目前,关于行星齿轮传动的研究多针对直齿行星轮系,而对斜齿行星传动的研究还很少,所建立的模型也有待进一步完善。建立精确的动力学模型,是研究动态特性的首要工作,本章针对斜齿行星齿轮传动,以变形协调分析为基础,建立了其耦合非线性动力学模型,推导了其运动微分方程,最后分析了斜齿行星轮系的自由振动特性,对固有频率和固有振型的特点进行了总结。 4.2 系统的动力学模型及方程 4.2.1 传动系统的动力学模型 行星齿轮传动平移-扭转耦合动力学模型考虑的自由度非常多,因此其动力学方程也非常复杂。为方便动力学方程的推导,建立各个集中质量的坐标系如下:OXY为静坐标系,其原点在行星轮系的几何中心,坐标系不随行星轮系运动;Oxy 为行星架随动坐标系,其原点在行星架回转中心,固连在行星架上随行星架的运 O x y为行动而等速运动,其x轴正向通过第一个行星轮中心平衡位置;坐标系n n n 星轮坐标系,也固连在行星架上随之等速旋转,其原点位于行星轮的中心平衡位置,x轴通过太阳轮中心与行星轮中心的连线指向内齿圈,y轴与行星架相切指

管道机器人运动学分析与变径机构仿真

MECHANICAL ENGINEER 机械工程师 管道机器人运动学分析与变径机构仿真 史继新1a,1b,刘芙蓉1a,1b,胡啸2,袁显宝1a,1b,陈保家1a,1b,李响1a,1b (1.三峡大学 a.湖北省水电机械设备设计与维护重点实验室;b.机械与动力学院,湖北宜昌443002;2.中核武汉核电运行技 术股份有限公司,武汉430223) 摘要:基于对核电站压力容器和主管道接管内部检查的需要,研发了一种多履带可变径式管道检查机器人。分析机器人四种不同的运动情况,得出机器人履带轮角速度和机器人在管道内旋转速度及行走线速度的函数,建立了机器人在管道内的运动学模型。针对机器人可变径机构,建立力学模型,得出变径机构中弹簧的理论数据,并运用Inventor运动仿真分析验证了其合理性。 关键词:管道机器人;运动学模型;变径机构;Inventor运动仿真 中图分类号:TP242.3;TH122文献标志码:粤文章编号:员园园圆原圆猿猿猿(圆园员9)04原园014原园3 Kinematics Analysis and Variable Diameter Mechanism Simulation of Pipeline Robot SHI Jixin1a,1b,LIU Furong1a,1b,HU Xiao2,YUAN Xianbao1a,1b,CHEN Baojia1a,1b,LI Xiang1a,1b (1.China Three Gorges University a.Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance;b.College of Mechanical and Power Engineering,Yichang443002,China;2.China Nuclear Power Operation Technology Co.,Ltd.,Wuhan430223,China) Abstract院Based on the need for internal inspection of nuclear power plant pressure vessels and main pipelines,a multi-track variable-diameter pipeline inspection robot is developed.The four different motions of the robot are analyzed,and the angular velocity of the robot crawler wheel and the rotation speed of the robot in the pipeline and the traveling linear velocity are obtained.The kinematics model of the robot in the pipeline is established.For the robot variable diameter mechanism,the mechanical model is established,the theoretical data of the spring in the variable diameter mechanism is calculated,and the rationality is verified by Inventor motion simulation analysis. Keywords:pipeline robot;kinematics model;variable diameter mechanism;Inventor motion simulation 0引言 随着核电厂运行时间的增加,各种规格管道内表面可能会出现一些问题需要实施检查与维修。因这些部位处于强辐射区,人员无法直接实施这些工作,必须开发具有行走功能的管道机器人携带摄像头完成核电厂管道检查工作。目前,发达国家对于管道机器人的研究处于领先地位[1]:德国ECA公司研制出一系列管道爬行机器人,在满足多尺寸规格管道的前提下,能搭载多种检测工具,其检查的管道范围从150耀2000mm;日本东京工业大学研制出Thes系列管道机器人[2];韩国汉城汉阳大学研制出双模块协作管道检测机器人[3]。中国在管道检查机器人领域起步较晚,北京德朗检视科技有限公司研发的DNC100、DNC150等管道爬行器,已在核电领域中得到运用;东华大学研制除了自主变位履带足管道机器人[4];上海交通大学针对煤气管道的检测,研制出煤气管道检测机器人样机[5]。 针对目前国内外传统机器人在面对垂直、微小、复杂管时,存在通行性能差、稳定性弱、牵引力不足等缺点。本项目所研制的多履带可变径式管道检查机器人,在机器人的机械结构、移动方式等方面做出改进,能适应150耀160mm管径的管道内部运动,分析了其管道内部运动的运动学模型和变径机构的力学模型,并针对变径机构进行了仿真分析,验证设计的合理性。 1管道检查机器人整体结构设计 为了满足核电厂管道内部检查的需要,机器人必须具备三项基本能力:1)机器人的速度调节能力;2)机器人的转向能力;3) 析, 构设计,如图1 道机器人具有三组履带轮, 很好的夹紧力。 立的电动机控制, 每组履带轮的独立运动, 节不同电动机的转速来使机器人顺利通过弯管。履带轮和主体之间的连杆机构配上弹簧的特性使机器人具有很好的管道适应能力,可以适应150耀160mm管道直径的运动。2运动学分析 机器人每组履带轮的角速度决定机器人整体的运动情况,因此本节根据机器人履带轮角速度和机器人整体运动情况的函数关系建立运动学模型。该模型的坐标系、关节变量和参数如图2所示。XY Z表示全局坐标参考系,并且xyz表示附接到管线检查机器人的中心的局部坐标系;i、j 和k是局部坐标系的单位矢量。无论机器人如何移动,x轴 图1管道机器人 三维模型 1.履带轮组 2.变径机构 3.主体 3 2 1 基金项目:国家自然科学基金(11805112);湖北省教育厅 科学技术研究计划重点项目(D2*******);湖北省水电机械 设备设计与维护重点实验室开放基金项目(2016KJX15、 2017KJX04) 14 圆园员9年第4期网址:https://www.doczj.com/doc/2014607287.html,电邮:hrbengineer@https://www.doczj.com/doc/2014607287.html,

某船用齿轮箱动态响应仿真分析

作者:哈尔滨工程大学丁豹周刘斌靳国永李玩幽 摘要:LMS Virtual. Lab 大型商业计算软件是目前国际最通用的振动噪声计算软件之一,本文是在其多体动力学模块求解出其轴承座处的支反力,将此支反力加在箱体的有限元模型上,对某船用齿轮箱进行动力学特性分析。为此齿轮传动系统的动态设计奠定基础。 1 引言 大型齿轮传动装置是机械系统的重要设备之一,其结构十分复杂,精度要求很高,且处于高速、重载的运行条件下,工作环境十分复杂。齿轮系统在运行过程中,能量大部分由齿轮箱传递到隔板和壳体上,较大的振动和噪声有可能导致系统某些环节的失灵或损坏,甚至会导致齿轮系统本身的破坏和故障等。因此,齿轮传动装置的动态特性直接关系到整体性能,对其进行动态特性分析,控制齿轮系统的振动与噪声,实现大型齿轮系统的动态设计己成为重要的研究课题。 2 齿轮传动系统内部激振力分析 啮合齿轮副内部激励因素主要包括啮合冲击激励、刚度激励、误差激励。 在齿轮的啮合过程中,由于齿轮的误差和受载弹性变形使齿轮产生“啮合合成基节误差”,致使一对齿轮在进入啮合时,其啮入点偏离啮合线上的理论啮入点,引起啮入冲击;而在一对轮齿完成啮合过程退出啮合时,也会产生啮出冲击。这种由于啮合冲击产生的冲击力也是齿轮啮合的动态激励源之一。对于渐开线直齿轮或窄齿面斜齿轮传动冲击激励是动态激励的主要组成部分,然而对于宽斜齿轮副的轴线重合度比较大,且由于斜齿轮的啮合过程是一个逐渐进入和逐渐退出的过程,因此啮合冲击对系统的整体动态特性影响较小,对于中等载荷或重载载荷情况下的斜齿轮传动系统,这一由于啮合冲击引起的非线性现象几乎观察不到,本文对啮合冲击不做考虑。 1.1 刚度激励 在LMS Virtual. Lab 软件的多体动力学模块中用的是Y.cai 和ISO 方法计算齿轮的啮合刚度,可方便地获得任一啮合位置上较准确的啮合刚度值。Y.cai 的计算公式没有考虑齿数和齿宽的影响,当齿数比较大,齿宽比较大的时候误差很大,甚至不能求解,而ISO 方法没有此限制,本文既采用了此方法计算齿轮的啮合刚度。公式如下:

行星齿轮机构运动规律 原理及应用分析

行星齿轮机构运动规律原理及应用分析 类型:转载来源:济民工贸的博客作者:齐兵责任编辑:李笛发布时间:2009年06月11日 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。

在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 单排行星齿轮机构的结构组成为例 ● (1)行星齿轮机构运动规律 设太阳轮、齿圈和行星架的转速分别为n1、n2和n3,齿数分别为Z1、Z2、Z3;齿圈与太阳轮的齿数比为α。则根据能量守恒定律,由作用在该机构各元件上的力矩和结构参数可导出表示单排行星齿轮机构一般运动规律的特性方程式: n1+αn2-(1+α)n3=0和Z1+Z2=Z3 ●(2)行星齿轮机构各种运动情况分析 由上式可看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、齿圈和行星架这三个基本构件中,任选两个分别作为主动件和从动件,而使另一元件固定不动(即使该元件转速为0),或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论各种情况。 行星齿轮机构各种运动情况分析 固定件主动件从动件转速成转向 太阳轮行星架齿圈增速同向 太阳轮齿圈行星架减速同向 齿圈行星架太阳轮增速同向 齿圈太阳轮行星架减速同向 行星架齿圈太阳轮增速反向 行星架太阳轮齿圈减速反向

机械传动系统的运动分析报告

机械传动系统的运动分析-----------------------作者:

-----------------------日期:

第4单元学时数:学时教学目的与要求: 理解运动链的可动性及运动确定性的条件; 能正确计算平面机构的自由度。 教学重点与难点: 重点:平面机构自由度的计算 难点:自由度计算时应注意的特殊结构 教学手段与方式: 课堂讲授, 教学内容: 第一章机械传动系统的运动分析 第三节平面机构的自由度 一、平面机构自由度的计算 二、机构具有确定运动的条件

三、计算平面机构的自由度时应注意的特殊结构 第四节机械传动系统的运动分析实例 第一章机械传动系统的运动分析 第三节平面机构的自由度 一、平面机构自由度的计算 1.平面机构自由度 机构中各构件相对于机架所能有的独立运动的数目。 构件的自由度 两构件用运动副联接后,彼此的相对运动受到某些约束。 低副引入两个约束!(图形见课件) 高副引入一个约束!(图形见课件) 2.机构自由度计算的一般公式 F=3n-2P L-P H n —活动构件数;P L—低副数;P H—高副数 例1:计算曲柄滑块机构的自由度(动画见课件) 解:活动构件数n=3 低副数PL=4 高副数PH=0 F=3n - 2PL - PH =3×3 - 2×4 =1 例2:计算五杆铰链机构的自由度解:活动构件数n=4 S3 1 2 3 1 2 3 4 θ 1

低副数PL =5 F =3n - 2PL - PH =3×4 - 2×5 =2 例3:计算图示凸轮机构的自由度(动画见课件) 解:活动构件数n =2 低副数PL =2 高副数PH =1 F =3n - 2PL - PH =3×2 - 2×2 -1 ×1 =1 F = 3×2 – 2×3= 0 (桁架) F = 3×3 – 2×5 = -1(超静定桁架) 二、机构具有确定运动的条件 1.机构自由度数2 三、计算平面机构的自由度时应注意的特殊结构 1.复合铰链 两个以上的构件在同一处以转动副相联。 计算:m 个构件,有m -1转动副。 1 2 3 31 2 1 2 3 两个低副

齿轮动力学国内外研究现状

1.2.1 齿轮系统动力学研究 从齿轮动力学的研究发展来看,先后进行了基于解析方法的非线性齿轮动力学研究、基于数值方法的齿轮非线性动力学研究、基于实验方法的齿轮系统的非线性动力学研究和考虑齿面摩擦及齿轮故障的齿轮系统的非线性动力学研究。其中,解析方法包括谐波平衡法、分段技术法和增量谐波平衡法等;数值方法则不胜枚举,包括Ritz法、Parametric Continuation Technique方法等。[1]齿轮系统间隙非线性动力学的研究起始于1967年K.Nakamura的研究。[2]在1987年,H. Nevzat ?zgüven等人对齿轮系统动力学的数学建模方法进行了详细的总结。他分别从简化的动力学因子模型、轮齿柔性模型、齿轮动力学模型、扭转振动模型等几个方面分类,详细总述了齿轮动力学的发展进程。[3]1990年,A. Kaharman等人分析了一对含间隙直齿轮副的非线性动态特性,考虑了啮合刚度、齿侧间隙和静态传递误差等内部激励的影响,考察了啮合刚度与齿侧间隙对动力学的共同影响。[4] 1997年,Kaharaman和Blankenship对具有时变啮合刚度、齿侧间隙和外部激励的齿轮系统进行了实验研究,利用时域图、频域图、相位图和彭家莱曲线等揭示了齿轮系统的各种非线性现象。[5]同年,M. Amabili和A. Rivola研究了低重合度单自由度的直齿轮系统的稳态响应及其系统的稳定性。 [6]2004年,A. Al-shyyab等人用集中质量参数法建立了含齿侧间隙的直齿齿轮副的非线性动力学模型,利用谐波平衡阀求解了方程组的稳态响应,并研究了啮合刚度、啮合阻尼、静态力矩和啮合频率对齿轮系统振动的影响。[7]2008年,Lassaad Walha等人建立了两级齿轮系统的非线性动力学模型,考虑了时变刚度、齿侧间隙和轴承刚度对动力学的影响。对非线性系统分段线性化并用Newmark迭代法进行求解,研究了齿轮脱啮造成的齿轮运动的不连续性。[8]2010年,T. Osman 和Ph. Velex在齿轮轻微磨损的情况下,建立了动力学模型,通过数值模拟揭示了齿轮磨损的非对称性。[9]2011年,Marcello Faggioni等人通过分析直齿轮的非线性动力学特性及其响应,建立了以齿轮振动幅值的目标函数,利用Random–Simplex优化算法优化了齿廓形状。[10]2013年,Omar D. Mohammed等人对时变啮合刚度的齿轮系统动力学进行了研究,对于裂纹过长所带来的有限元误差问题,提出了一种新的时变啮合刚度模型。通过时域方面的故障诊断数据和FEM结果对比,证明了新模型能够更好地解长裂纹问题。[11] 国内研究齿轮系统动力学也进行了大量的研究。2001年,李润芳等人建立了具有误差激励和时变刚度激励的齿轮系统非线性微分方程,利用有限元法求得齿轮的时变啮合刚度和啮合冲击力,研究了齿轮系统在激励作用下的动态响应。 [12]2006年,杨绍普等人研究了考虑时变刚度、齿轮侧隙、啮合阻尼和静态传递误差影响下的直齿轮副的非线性动力学特性,利用增量谐波平衡法对系统方程进行了求解,研究了系统的分岔特性以及阻尼比和外激励大小对系统幅频曲线的影响。[13]2010年,刘国华等人建立了考虑齿轮轴的弹性、齿侧间隙、油膜挤压刚度和时变啮合刚度等因素的多体弹性非线性动力学模型,研究了齿廓修形和轴的扭转刚度对动力学特性的影响。[14] 2013年,王晓笋,巫世晶等人建立了含有非线性齿侧间隙、内部误差激励和含磨损故障的时变啮合刚度的三自由度齿轮传动系统平移—扭转耦合动力学方程。采用变步长Gill积分、GRAM—SCHMIDT方法,得到了系统对应的分岔图和李雅普诺夫指数谱,研究发现了系统内部丰富的非线性现象,而系统进入混沌运动的途径也是多样的。[15]

基于ANSYS的齿轮运动学和静力学仿真分析

? 54 ?内燃机与配件基于ANSYS的齿轮运动学和静力学仿真分析 黄如周淤;张伟雄于 (①珠海格力精密模具有限公司,珠海519070;②清远职业技术学院,清远511510) 摘要:为了解决在注塑模的螺纹抽芯机构中齿轮的选用问题,详细阐述了利用A N SYS有限元分析软件对齿轮传动作运动学和 静力学仿真分析,使得能够合理选用液压马达及优化齿轮的结构设计,从而提高齿轮的使用寿命。 关键词院齿轮;ANSYS;仿真;螺纹抽芯机构;注塑模 0引言 在注塑模的抽芯机构中常用齿轮传动结构进行抽芯, 然而齿轮由于几何形状、载荷工况及材料力学性能的原因 常常会发生失效。一般来说,齿轮的失效通常都集中在轮 齿部分,主要的失效形式有:轮齿折断、齿面磨损、齿面点 蚀、齿面胶合、齿面塑性变形等五种。圆柱齿轮主要有两种 失效形式,即接触疲劳失效和弯曲疲劳失效。弯曲疲劳主 要发生在齿根部,这是因为齿轮在载荷作用下,其根部所 产生的弯曲应力最大,且在齿根过渡圆角处有应力集中[|]。同时,齿轮在转动过程中使轮齿重复受载,在交变应力反 复作用下,齿根处将产生疲劳裂纹,裂纹扩张导致轮齿弯 曲疲劳折断[2]。 本文将以带有螺纹的塑料产品作为注塑模中抽芯结 构的分析依据,并运用ANSYS有限元分析软件通过对齿 轮静力学和运动学仿真分析[3],可得到抽芯齿轮机构中主 动轮上的转矩大小,为液压马达的选择作出数据支撑。通 过静力学仿真分析,计算出齿面的接触应力和齿根的弯曲 应力,从而可通过材料和结构的优化减小齿面接触应力和 齿根弯曲应力。 1分析过程 1.1包紧力计算 根据注塑模具中关于抽芯机构的原理,要将产品的螺 纹部分从模具型芯中旋转脱出,则必须先考虑产品的包紧 力,因此要先对其包紧力进行计算。此处采用经验公式来 计算该产品的抱紧力[4],同时考虑到该产品的复杂程度,将 模型进行简化分成五个部分,分别如图1所示。材料属 性如表1所示。 1.1.1第一段径向包紧力 第一段可以视为圆筒环,其尺寸为:H=8.5mm;t= 3.5mm;R1=32.65mm;R2=36.15mm。厚径比为 3.5/36.15< 0.05,为薄壁圆筒。可以采用经验公式算出塑件对型芯产 生的径向包紧力: P=2n H t E€t(1)式中:H为塑件高度; 基金项目:本课题获广东清远职业技术学院2016年度精品在线 开放课程项目资助(JK16003 )。 作者简介:黄如周(1984-),男,广东汕头人,塑胶模具工程师,本 科,主要研究方向为塑胶模具、3D打印;张伟雄 (1986-),男,广东梅州人,井师,在读硕士,主要研究 方向为机械工程、模具CAD/CAM。 图1产品塑件零件图 表1产品塑件材料属性 名称参数 弹性模量E(M Pa) 泊松比滋 弹性应变着 1340 0.392 0.0124 t为塑件的壁厚; E为塑件在脱模温度下的弹性模量; st为塑件的周向应变,即塑件的瞬时收缩率; R,为塑件的内半径; R2为塑件的外半径。 第一段径向包紧力计算得:P1=3104.4N 1.1.2第二段径向包紧力 第二段为带有螺纹的圆筒环,其尺寸为:H=18mm;R,=31.5mm;R2=36mm;螺纹倾角为45。,简化模型为高度 为H,cos45。圆筒环。 p_I t t R^HE e 采用经验公式:R2-r\+^(2) 式中:滋为泊松比。 第二段径向包紧力计算得:P2=10263.2N 1.1.3第三段径向包紧力 第三段也视为圆筒环,其尺寸为:H=8.5mm;R,= 29.44mm;R2=36mm;t=7mm;为厚壁圆筒,可以采用经验公 式(2),算出塑件对型芯产生的径向包紧力:P3=4899.1N 1.1.4第四段径向包紧力 第四段为带有筋条的圆筒环,先不考虑筋条作用,其 尺寸为:H=31mm;R1=26.4mm;R2=30.5mm;t=3.75mm。而筋 条能增加接触面积,提高包紧力,但是筋条能减少成型变 形,故综合考虑,在厚壁圆筒包紧力的基础上乘以1.1,采 用经验公式算出塑件对型芯产生的径向包紧力:4= 10847.4N 1.1.5第五段径向包紧力 第五段也就是底部收缩对型芯产生的径向包紧力,其 经验公式为: P=2仔RtEe/(1-滋) (3)

弹簧阻尼系统动力学模型adams仿真设计

震源车系统动力学模型分析报告 一、项目要求 1)独立完成1个应用Adams 软件进行机械系统静力、运动、动力学分析问题,并完成一份分析报告。分析报告中要对所计算的问题和建模过程做简要分析,以图表形式分析计算结果。 2)上交分析报告和Adams 的命令文件,命令文件要求清楚、简洁。 1K 1 C 2K 2C 3 C 3 K 3 M 1 M 2M 二、建立模型 1)启动admas ,新建模型,设置工作环境。 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size)中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 图 2-1 设置工作网格对话框

2)在ADAMS/View零件库中选择矩形图标,参数选择为“on Ground”,长度(Length)选择40cm高度Height为1.0cm,宽度Depth为30.0cm,建立系统的平台,如图2-2所示。以同样的方法,选择参数“New Part”建立part-2、part-3、part-4,得到图形如2-3所示, 图 2-2 图 2-3创建模型平台 3)施加弹簧拉力阻尼器,选择图标,根据需要输入弹簧的刚度系数K和粘滞阻尼系数C,选择弹簧作用的两个构件即可,施加后的结果如图2-4 图 2-4 创建弹簧阻尼器 4)添加约束,选择棱柱副图标,根据需要选择要添加约束的构件,添加约束后的模型如2-5所示。

直齿行星齿轮传动动力学分析设计说明

XXXX 学士学位论文 直齿行星齿轮传动动力学分析 作者:AAA 指导教师:BB 班级:CCC班 2020年10月31日

摘要: 行星齿轮被广泛应用于船舶、飞机、汽车、重型机械等许多领域,它的振动和噪音一直以来都是普遍关注的问题。为了减小其振动和噪音,动力学分析是必不可少的。 本文分析了行星齿轮动力学当中的一些关键性问题,提高了对于行星齿轮传动动态特性的理解。本文在系杆随动参考坐标系下建立NGW型直齿行星齿轮传动的动力学模型。把行星齿轮机构划分成几个相互关联的子系统,通过分析各构件间的相对位移关系利用牛顿第二定律推导出系统的运动微分方程。 应用仿真分析软件ADAMS对行星齿轮传动系统模型进行仿真模拟及运动学分析,并应用solidworks软件对行星齿轮传动系统进行三维实体参数化建模。实现了用虚拟样机来代替实际样机进行验证设计,提高了设计质量和效率。 关键词:行星齿轮,动力学分析,ADAMS,仿真

Abstract: Planetary gear noise and vibration are primary concerns in their applications in the transmissions of marine vessels, aircrafts, automobiles, and heavy machinery. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. This work Developed An analytical dynamic model of NGW spur planetary gear unit. In order to derive the displacement relationships between gears and carrier, divided the planetary gear mechanism into several sub systems. The governing differential equations were obtained by Newton's second law. ADAMS simulation analysis software for planetary gear drive system is applied to simulate and perform dynamic analysis. And solidworks software for planetary gear drive system to build three-dimensional solid parametric modeling is applied. With a virtual prototype instead of the actual prototype for the design verification, the design quality and efficiency is improved. Key word:planetary gear transmissions, dynamic analysis, ADAMS, simulation

相关主题
文本预览
相关文档 最新文档