当前位置:文档之家› 非线性系统第四讲输入输出稳定性

非线性系统第四讲输入输出稳定性

毕设论文几种典型非线性系统的稳定性研究与仿真

****大学 毕业设计(论文) 题目:几种典型非线性系统的稳定性 研究与仿真 专业:电气工程及其自动化 学生姓名: ********* 班级学号: ************* 指导教师: *********** 指导单位:自动化学院电气信息工程系 日期:*************************

摘要 论文对MATLAB软件进行了简单的介绍,详细介绍了非线性系统的特点,并且对它的稳定性进行了简要的分析。另外,论文对非线性系统的非线性环节的特性进行了介绍。接下来,论文详细讲解了描述函数的定义和求法,而且给出了两种非线性环节的描述函数。在第四章里面,论文对继电器型非线性系统和滞环非线性系统进行了仿真分析,并且运用nyquist定理对系统的稳定性进行了判定。关键词:非线性系统;稳定性;描述函数;非线性环节;

ABSTRACT The article simple introduced MATLAB software and the characteristics of non-linear system, also the article analysis its stability in detail. In addition, the article introduced the characteristics of the nonlinear system links. the article explained in detail the definition and solution of the Description function and also the article gave the Description function of two nonlinear links. In the fourth chapter there, the article simulated the relay nonlinear system and hysteresis nonlinear systemand use nyquist theorem finding the stability of the system. Key words: nonlinear systems, stability, Description function, nonlinear system link;

强非线性随机振动系统的最优控制

项目名称:强非线性随机振动系统的最优控制 推荐单位:中国力学学会 推荐单位意见: 我单位认真审核了该项目推荐书及附件材料,确认全部材料真实有效,相关栏目均符合国家自然科学奖推荐书填写要求。 多自由度强非线性随机振动系统的最优控制是振动控制理论与随机振动力学学科迫切需要发展的学科前沿,同时也是一个极为困难的研究领域,原有的研究成果极少。该项目针对多种随机激励下多自由度强非线性随机系统的多种不同目标的最优控制进行了系统深入的研究,取得了一系列原创性成果。提出并发展了多自由度强非线性随机振动系统多种不同目标的的最优控制理论、计及实际应用中多种非理想因素的最优控制理论、以及多种随机激励下多自由度强非线性系统的随机平均法,构成了一个非线性随机振动系统最优控制的较为完整的理论体系,对振动控制理论与随机振动力学学科的发展具有里程碑意义,并为解决科学与工程中广泛存在又十分困难的强非线性随机振动系统的控制问题提供了一整套崭新而有效的理论方法。该项目的研究成果得到了美国工程院院士Y.K. Lin、印度国家工程院院士T.K. Datta、中国科学院院士胡海岩、方同教授、李杰教授等国内外动力学与控制领域著名专家学者的广为引用与高度评价,认为该项目具有首创性与系统性,首次建立了非线性随机振动最优控制的系统的理论方法,整体上达到了国际领先水平。特推荐该项目申报国家自然科学奖。 对照国家自然科学奖授奖条件,推荐该项目申报国家自然科学奖二等奖。 项目简介: 该项目属振动控制理论、随机振动力学学科。多自由度强非线性随机振动系统的最优控制是振动控制理论与随机振动力学学科迫切需要发展的前沿,是一个极为困难的研究领域,原有研究成果极少。该项目针对多种随机激励下多自由度强非线性随机振动系统的多种目标并计及多种非理想因素的最优控制进行了系统深入的研究,取得了一系列原创性成果。 主要研究内容:研究多种随机激励下多自由度强非线性振动系统的响应、稳定性及可靠性的最优控制理论,发展计及实际控制中可能出现的各种因素的强非线性随机振动系统的最优控制方法。 主要科学发现点:(1)建立了多自由度强非线性随机振动系统的最优控制理论,提出并发展了分别以响应最小、稳定性裕度最大、可靠度最大、平均寿命最长及给定平稳概率密度为目标的非线性随机最优控制设计方法;(2)针对实际控制系统的部分可观测与不确定,实际控制力的时滞、有界及不能完全执行最优控制律等难题,提出并发展了有效解决这些难题的多自由度强非线性随机振动系统的最优控制理论方法;(3)提出并发展了非高斯白噪声激励、非经典(包括滞迟、时滞及含分数阶

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性系统最优控制理论综述

非线性系统最优控制理论综述 时间:2015-06-17 作者:马玲珑 摘要:非线性系统,其最优控制求解相当困难,寻求近似的最优控求解方法是当下解决这一问题的主要途径。目前,比较成熟的最优控制求解方法主要有七类,本文对这七种方法进行了详细的阐述,并对其优缺点进行了客观的对比。 论文关键词:非线性,最优控制 近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。 1、非线性最优控制理论研究成果分类 目前,较为流行的近似最优控制求解方法主要有以下几类[6][13]。 1)幂级数展开法:幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。 将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。 2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。 3)广义正交多项式级数展开法:其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵 将描述系统的微分方程转化为一系列的代数方程。然后,得到 ,T非奇异时由得到的控制律是一个多项式级数解。该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程。 4)有限差分和有限元方法:经典的有限差分和有限元方法可以用来近似求解非线性

非线性系统稳定性问题的判定方法和发展趋势

非线性系统的概念及稳定性问题的判定方法和发展趋势 姓名:查晓锐 学号:121306060006 线性系统理论自20世纪50年代以来不仅已在理论上逐步完善,也已成功的应用于各种国防和工业控制问题。随着现代工业对控制系统性能的要求不断提高,传统的线性反馈控制已很难满足各种实际需要。这是因为大多数实际控制系统往往是非线性的,采用近似的线性模型虽然可以使我们更全面和容易的分析系统的各种特性,但是却很难刻画出系统的非线性本质,线性系统的动态特性已不足以解释许多常见的实际非线性现象。另一方面,计算机及传感器技术的飞速发展,也为我们实现各种复杂非线性控制算法奠定了硬件基础。因此自20世纪80年代以来,非线性系统的控制问题受到了国内外控制界的普遍关注。 非线性科学是当今世界科学的前沿与热点,涉及自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。但迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。 一、 非线性的概念 非线性是相对于线性而言的,对线性的否定,线性是非线性的特例。所以要弄清非线性的概念,明确什么是非线性,首先必须明确什么是线性;其次对非线性的界定必须从数学表述和物理意义两个方面阐述,才能较完整地理解非线性的概念。 对线性的界定,一般是从相互关联的两个角度来进行的。其一:叠加原理成立“ 如果1Φ,2Φ 是两个那么21Φ+Φβα也是它的一个解,换言之,两个态的叠加仍然是一个态。”原理成立意味着所考查系统的子系统间没有非线性相互作用。其二,物理变量间的函数关系是直线,变量间的变化率是恒量,这意味着函数的斜率在其定义域内处处存在且相等,量间的比例关系在变量的整个定义域内是对称的。 在明确了线性的含义后,相应地非线性概念就易于界定。其一 :“定义非线性算符()ΦN 为对一些 a ,b 或Φ,ψ不满足)()()(ψ+Φ=ψ+ΦbL aL b a L 的算符 即叠加原理不成立。”这意味着Φ与ψ之间存在藕合,对ψ+Φb a 的操作,等于分别对Φ,ψ操作外,再加上对Φ与ψ的交叉项(耦合项)操作,或者Φ、ψ是不连续有突变或断裂、不可微有折点的。其二:作为等价的另一种表述,我们可以从另一个角度来理解非线性在用于描述一个系统的一套确定的物理变量中,一个系统的一个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的。换言之:变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方。概括地说:物理变量间的一级增量关系在变量的定义域内是不

分析非线性系统的方法

非线性系统稳定性问题的判定方法和发展趋势 任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。所以,当系统承受干扰之后,能否稳妥地保持预订的运动轨迹或者工作状态,即系统的稳定性是首要考虑的。一个系统的稳定性,包括平衡态的稳定性问题和任一运动的稳定性问题。而对于给定运动的稳定性可以变换成关于平衡点的稳定性问题。 对平衡点的稳定性进行分析可将平衡点的稳定性定义为李雅普诺夫稳定、一致稳定、渐进稳定、一致渐近稳定、按指数渐进稳定和全局渐进稳定,除了全局渐进稳定,其他都是局部的概念。 非线性系统的数学模型不满足叠加原理或其中包含非线性环节。包括非本质非线性(能够用小偏差线性化方法进行线性化处理的非线性)和本质非线性(用小偏差线性化方法不能解决的非线性)。它与线性系统有以下主要区别: 1.线性控制系统只能有一个平衡点或无穷多的平衡点。但非线性系统可以有一个、二个、多个、以至无穷多个平衡点。非线性系统与线性定常系统明显不同,其稳定性是针对各个平衡点而言的。通常不能说系统的稳定性如何,而应说那个平衡点是稳定的或不稳定的。2.在线性系统中,系统的稳定性只与系统的结构和参数有关,而与外作用及初始条件无关。非线性系统的稳定性除了与系统的结构和参数有关外,还与外作用及初始条件有关。 由于非线性控制系统与线性控制系统有很大的差异,因此,不能直接用线性理论去分析它,否则会导致错误的结论。对非线性控制系统的分析,还没有一种象线性控制系统那么普遍的分析、设计方法。 现代广泛应用于非线性系统上的分析方法有基于频率域分析的描述函数法和波波夫超稳定性,还有基于时间域分析的相平面法和李雅普诺夫稳定性理论等。这些方法分别在一定的假设条件下,能提供关于系统稳定性或过渡过程的信息。而计算机技术的迅速发展为分析和设计复杂的非线性系统提供了有利的条件。另外,在工程上还经常遇到一类弱非线性系统,即特性和运动模式与线性系统相差很小的系统。对于这类系统通常以线性系统模型作为一阶近似,得出结果后再根据系统的弱非线性加以修正,以便得到较精确的结果。摄动方法是处理这类系统的常用工具。而对于本质非线性系统,则需要用分段线性化法等非线性理论和方法来处理。目前分析非线性控制系统的常用方法如下: 1、线性化方法 采用线性化模型来近似分析非线性系统。 这种近似一般只限于在工作点附近的小信号情况下才是正确的。这种线性化近似,只是对具有弱非线性(或称非本质非线性)的系统。 常用线性化方法,有正切近似法和最小二乘法。 此外,对一些物理系统的非线性特性比较显著,甚至在工作点附件的小范围内也是非线性的,并且不能用一条简单的直线来代表整个非线性系统特性的系统,可采用分段线性化方法。2、相平面法 相平面法是一种基于时域的分析方法,一种用图解法求解一、二阶非线性常微分方程的方法。 该方法通过图解法将一阶和二阶系统的运动过程转化为位置和速度平面上的相轨迹,从而比较直观、准确地反映系统的稳定性、平衡状态和稳态精度以及初始条件及参数对系统运动的影响。相轨迹的绘制方法步骤简单、计算量小,特别适用于分析常见非线性特性和一阶、二阶线性环节组合而成的非线性系统 对于分段线性的非线性系统来说,相平面分析法的步骤为: (1)用n条分界线(开关线,转换线)将相平面分成n个线性区域;(2)分别写出各个线性区域的微分方程;(3)求出各线性区的奇点位置并画出相平面图;

综述非线性系统最优控制理论.docx

综述非线性系统最优控制理论 近年来,最优控制理论[1,2]的研究,无论在深度和广度上,都有了很大的发展,已成为系统与控制领域最热门的研究课题之一,取得了许多研究成果。同时,也在与其他控制理论相互渗透,出现了许多新的最优控制方式,形成了更为实用的学科分支。例如鲁棒最优控制[3]、随机最优控制[4]、分布参数系统的最优控制[5]、大系统的次优控制[6]、离散系统的最优控制及最优滑模变结构控制[7,8]等。而对于非线性系统,其最优控制求解相当困难,需要求解非线性HJB方程或非线性两点边值问题,除简单情况外[9],这两个问题都无法得到解析解。因此,许多学者都致力于寻求近似的求解方法[10~13],通过近似解得到近似的最优控,即次优控制。 1、非线性最优控制理论研究成果分类 目前,较为流行的近似最优控制求解方法主要有以下几类[6][13]。 1)幂级数展开法:幂级数展开方法通过一个幂级数来构造控制律,得到序列形式的近似最优解,或者将系统中的非线性项以幂级数形式分解,或者通过引进一个临时变量并围绕它展开。 将上式代入HJB方程求得级数近似解,也可利用Adomian分解将非线性项进行分解,由此寻求非线性HJB方程级数的近似解。 2)Galerkin逐次逼近方法:由动态规划得到的一般性偏微分HJB方程,引入一个迭代过程来求解一般非线性HJB方程的一个近似解序列。 3)广义正交多项式级数展开法:其主要思想是将最优控制问题中的状态变量,控制输入,性能指标和各个参数分别用广义正交多项式展开,利用广义正交多项式的积分、乘积运算阵 将描述系统的微分方程转化为一系列的代数方程。然后,得到,T非奇异时由得到的控制律是一个多项式级数解。该方法将最优控制问题转化为代数极值问题,从而避免了求解时变非线性Riccati方程。 4)有限差分和有限元方法:经典的有限差分和有限元方法可以用来近似求解非线性HJB方程。近年来,这类方法用来近似求取非线性HJB方程的粘性解。 5)状态相关Riccati方程方法:这种方法适用的模型是仿射非线性系统,

实验五 线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定性, 并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下: dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens 是系统的特征多项式,接着输入如下MATLAB 程序代码: den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000

自动控制原理-第8章 非线性控制系统教案

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

系统稳定性意义以及稳定性的几种定义

系统稳定性意义以及稳定性的几种定义 一、引言: 研究系统的稳定性之前,我们首先要对系统的概念有初步的认识。 在数字信号处理的理论中,人们把能加工、变换数字信号的实体称作系统。由于处理数字信号的系统是在指定的时刻或时序对信号进行加工运算,所以这种系统被看作是离散时间的,也可以用基于时间的语言、表格、公式、波形等四种方法来描述。从抽象的意义来说,系统和信号都可以看作是序列。但是,系统是加工信号的机构,这点与信号是不同的。人们研究系统还要设计系统,利用系统加工信号、服务人类,系统还需要其它方法进一步描述。描述系统的方法还有符号、单位脉冲响应、差分方程和图形。 电路系统的稳定性是电路系统的一个重要问题,稳定是控制系统提出的基本要求,也保证电路工作的基本条件;不稳定系统不具备调节能力,也不能正常工作,稳定性是系统自身性之一,系统是否稳定与激励信号的情况无关。对于线性系统来说可以用几点分布来判断,也可以用劳斯稳定性判据分析。对于非线性系统的分析则比较复杂,劳斯稳定性判据和奈奎斯特稳定性判据受到一定的局限性。 二、稳定性定义: 1、是指系统受到扰动作用偏离平衡状态后,当扰动消失,系统经过自身调节能否以一定的准确度恢复到原平衡状态的性能。若当扰动消失后,系统能逐渐恢复到原来的平衡状态,则称系统是稳定的,否则称系统为不稳定。 稳定性又分为绝对稳定性和相对稳定性。 绝对稳定性。如果控制系统没有受到任何扰动,同时也没有输入信号的作用,系统的输出量保持在某一状态上,则控制系统处于平衡状态。 (1)如果线性系统在初始条件的作用下,其输出量最终返回它的平衡状态,那么这种系统是稳定的。 (2)如果线性系统的输出量呈现持续不断的等幅振荡过程,则称其为临界稳定。(临界稳定状态按李雅普洛夫的定义属于稳定的状态,但由于系统参数变化等原因,实际上等幅振荡不能维持,系统总会由于某些因素导致不稳定。因此从工程应用的角度来看,临界稳定属于不稳定系统,或称工程意义上的不稳定。) (3)如果系统在初始条件作用下,其输出量无限制地偏离其平衡状态,这称系统是不稳定的。 实际上,物理系统的输出量只能增大到一定范围,此后或者受到机械制动装置的限制,或者系统遭到破坏,也可以当输出量超过一定数值后,系统变成非线性的,从而使线性微分方程不再适用。因此,绝对稳定性是系统能够正常工作的前提。

线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

非线性时变系统的稳定性和鲁棒性

外文资料翻译 非线性时变系统的:稳定性和鲁棒性 概要:我们这里所叙述的是采样数据模型预测控制的框架,使用连续时间模型, 但采样的实际状况以及为计算控制的状态,进行了在离散instants的时间。在此框架内可以解决一个非常大的一类系统,非线性,时变的,非完整。 如同在许多其他采样数据模型预测控制计划,barbalat的引理一个重要的角色,在证明的名义稳定的结果。这是争辩这泛barbalat的引理,形容这里,可以有也类似的的作用,在证明的鲁棒稳定性的结果,也允许以解决一个很一般类非线性,时 变的,非完整系统,受到的干扰。那个的可能性的框架内,以容纳间断的意见是必要 的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。 1 引言 许多模型预测控制(MPC)计划描述,在文献上使用连续时间的模型和样本状态 的在离散的instants 时间。见例如[3,7,9,13] ,也是[6] 。有许多好处,在考虑 连续时间模型。不过,任何可执行的模型预测控制计划只能措施,状态和解决的优化问题在离散instants的时间。 在所有的提述,引用上述情况, barbalat的引理,或修改它,是用来作为一个 重要步骤,以证明稳定的MPC的计划。( barbalat的引理是众所周知的和有力的工具,以推断的渐近稳定性的非线性系统,尤其是时间变系统,利用Lyapunov样的办法; 见例如[17]为讨论和应用)。显示模型预测控制的一项战略是稳定(在名义如此),这表明,如果某些设计参数(目标函数,码头设置等),方便的选定,然后价值函数是单调递减。然后,运用barbalat的引理,吸引力该轨迹的名义模型可以建立(i.e. x(t) →0 as t →∞).这种稳定的状态可以推断,一个很笼统的类非线性系统:包括时变 系统的,非完整系统,系统允许间断意见,等此外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足够的密切开始向原产地)

基于abaqus的工字钢柱的稳定性非线性分析

目录 【摘要】 (2) 【关键词】 (2) 一.计算方法和模型简介及分析过程 (3) 1.1计算方法 (3) 1.2模型简介 (3) 1.3分析过程 (5) 1.3.1特征值屈曲分析 (5) 1.3.2非线性屈曲分析 (10) 二.计算结果分析 (13) 2.1荷载-位移曲线 (13) 2.2稳定系数比较 (14) 【参考文献】 (16)

【摘要】本文是基于Abaqus采用梁单元,对热轧工字钢在轴心受压情况下发生弯曲失稳的非线性屈曲分析。通过考虑材料非线性、几何非线性并引入初弯曲这一几何初始缺陷,得出构件发生弯曲失稳的极限荷载。通过保持柱子的截面不变,只改变长度,进而实现得到不同长细比的弯曲失稳的临界荷载,并得到相应的荷载位移曲线以及稳定系数,最后与规范给出的稳定系数做比较验证分析的正确性。 【关键词】特征值屈曲分析弯曲失稳非线性屈曲分析稳定系数

一.计算方法和模型简介及分析过程 1.1计算方法 利用abaqus进行屈曲分析,一般分为两步:首先是特征值屈曲分析,此分析为线性屈曲分析,是在小变形的情况进行的,是用于预测一个理想弹性结构的理论屈曲荷载,并在inp文件里做一定的修改,此修改是在下一步后屈曲分析所需要的初始缺陷的节点输出为.fil文件,作为下一步后屈曲分析所需要的初始缺陷的数据。其次,就是非线性屈曲分析,此步一般定义为非线性,原因在于是在大变形情况进行的,一般采用位移控制加修正的弧长法(riks法),可以定义材料非线性,几何非线性,以及加上初始缺陷。此步分析,为了得到极限值,需要得出荷载位移曲线的下降段,除了采用位移控制以及弧长法设定外,需在所得到的inp文件中,嵌入第一步分析中的.fil节点数据。 1.2模型简介 本文利用abaqus有限元分析软件时,采用了梁单元,所选取的是热轧工字型截面,截面参数见图一(单位m): 图一热轧工字钢截面参数 又,其中的材料本构关系采用双线性塑性材料模型,所选材料为Q345钢材,故弹性模量为:2.1e11Pa,屈服强度取:3.45e8Pa,泊松比取0.3。 本文一共做了15个模型的分析,其中每一个模型的截面参数保持不变,通过改变杆件的计算长度进而实现不同的长细比分析,各模型的截面惯性矩及长细比等详见表1.2模型计算参数详表。

结构的稳定分析

结构的稳定分析 () 华中科技大学土木工程与力学学院, 湖北武汉430074 失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。正因为此,在实际工程中不允许结构发生失稳破坏。 导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。 下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。 1稳定性分析的层次 在对某个结构进行稳定性分析,实际上应该包括两个层次。(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。 2整体稳定性分析的内容 通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。 (1)Buckling分析 Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。

但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling 可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。 另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。通过Buckling分析得到的屈曲模态,我们可以看出结构可能发生的失稳破坏是整体屈曲还是局部屈曲。如果是局部屈曲,那么为什么会发生局部屈曲?局部屈曲的荷载因子是否可以接受?是否是由于局部杆件截面设计不合理所导致?这些问题希望能引起大家的注意。 (2)非线性稳定分析 前文已经讲过,Buckling分析是一种理论解。但是由于加工误差、安装误差、温度应力、焊接应力等因素的存在,现实中的结构多少都会存在一些初始缺陷,其稳定承载力与理论解肯定存在一定的差别。另外,由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。 目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。 由于弧长法属于一种非线性求解方法,而且在非线性稳定分析中通常需要考虑几何非线性、材料非线性及弹塑性,所以通常需要求助于通用有限元软件。比如ANSYS、ABAQUS、NASTRAN、ADINA等。而设计软件,比如PKPM、SAP2000、MIDAS等通常不具备这种功能,或者具备功能而比较难得到满意的结果。 在这些通用有限元软件中,可以较好的计算结构的屈曲前、屈曲后性能。通常通过“荷载-位移”曲线来判断计算结果的合理性及结构的极限稳定承载力。通过有限元软件不但可以较好的对结构进行非线性稳定分析,同时还可以考虑初始几何缺陷、材料非线性、材料弹塑性等问题。基本上可以实现对结构的真实模拟分析。 3整体稳定性分析的关键问题

自动控制试题九非线性

第九章 非线性控制系统 一、填空选择题(每题2分) 1.非线性系统的稳定性与下列( D )因素有关。 A . 系统结构和参数 B .初始条件 C .输入信号大小 D .A 、B 、C 、 2.非线性系统自持振荡是与-------有关。 A .系统结构和参数 B .初始条件 C .输入信号大小 D .A 、B 、C 、 3.非线性系统自持振荡中的振幅和频率是由-- 系统本身的特性-----决定的, 4.相平面法适用于---一、二----阶非线性系统,描述函数法适用于—任意-----阶非线性系统。 5.系统中有二个非线性元件串联,其描述函数分别为N 1、N 2,则合成的描述函数必是( D ) A .N 1/N 2 B .N 1*N 2 C .N 1+N 2 D .需重新分析计算 6.系统的-1/N 和G (jw )如图,在A 和B 处产生了自持振荡,分析其稳定性,A 点是---不稳定--的,B 点是---稳定---的 7.非线性系统的相轨迹在相平面的上半部,其走向是从—左--向—右--方向运动,而在相平面的下半部则从—右-向-左---运动。 8.相轨迹的对称性是指其曲线可能对称于----,-----,或-坐标原点----;正交性是指与-x----轴正交。 9.已知非线性系统的微分方程是:023. .. =++x x x ,则奇点位置是-------。 10.已知非线性系统的微分方程是:023. .. =++x x x ,则奇点性质是-------。 11.极限环把相平面分为内外二部分,相轨迹---不能-(填能或不能)从环内穿越极限环进入环外,---不能-----(填能或不能)从环外穿越极限环进入环内。 12.已知非线性系统的微分方程是:023. ..=++x x x , 则奇点性质是( A )。 A 、稳定节点 B 、稳定焦点 C 、鞍点 D 、中心点 1. D 2. A 3. 系统本身的特性 4. 一、二,任意 5. D 6. 不稳定,稳定 7. 左,右,右,左 8. X ,. x , 坐标原点,x 9. 坐标原点 10.稳定节点 11.不能 12.A

线性系统稳定性分析

线性系统稳定性分析 1.系统的稳定性: (1) 外部稳定:又称输出稳定,就是系统在干扰取消后,在一定时间内其输出会恢复到 原来的稳定输出。输出稳定有时描述为系统的BIBO 稳定,即有限的系统输入只能产生有限的系统输出。 (2) 内部稳定:主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响情况。 当干扰信号取消后,若系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。 经典控制论中,研究对象都是高阶微分方程或传递函数描述的单输入单输出(SISO )系统,反映的仅仅是输入与输出的关系,不涉及系统的内部状态,因此经典控制论只讨论系统的输出稳定问题。对于系统内部状态稳定问题,经典控制论中的方法就不好发挥作用了,需要用到Lyapunov 稳定性理论。 2.平衡状态:设控制系统齐次状态方程为:0.0(,)()|t t X f X t X t X ===,其中,()X t 为系统的n 维状态向量,f 是有关状态向量X 以及时间t 的n 维矢量函数,f 不一定是线性定常的。如果对所有的t ,状态e X 总满足:(,)0e f X t =,则称e X 为系统的平衡状态。对于一般控制系统,可能没有,也可能有一个或多个平衡状态。系统的状态稳定性是针对系统的平衡状态的,当系统有多个平衡状态时,需要对每个平衡状态分别进行讨论。 3. Lyapunov 稳定性分析 (1)Lyapunov 稳定性定义 设一般控制系统的解为:00()(;,)X t t X t =Φ,它是与初始时间0t 及初始状态0X 有关的,体现系统状态从00(,)t X 出发的一条状态轨迹。设e X 为系统的一个平衡点,如果给定一个以e X 为球心,0(,)t δε为半径的n 维球域()S δ,使得从()S δ球域出发的任意一条系统状态轨迹00(;,)t X t Φ在0t t ≥的所有时间内都不会跑出()S ε球域,则称系统的平衡状态e X 是Lyapunov 稳定的。 一般来说,δ的大小不但与ε有关,而且与系统的初始时间0t 有关,当δ仅与ε有关时,称e X 是一致稳定的平衡状态。 进一步地,如果e X 不仅是Lyapunov 稳定的平衡状态,而且当时间t 无限增加时,从()S δ出发的任一条状态轨迹00(;,)t X t Φ都最终收敛于球心平衡点e X ,那么称e X 是渐进稳定的。 更近一步地,如果从()S ∞即整个系统状态空间的任意一点出发的任意一条状态轨迹00(;,)t X t Φ,当t →∞时都收敛于平衡点e X ,那么称e X 是大范围渐进稳定的。显然此时的e X 是系统唯一的平衡点。 反之,对于给定的()S ε,不论0δ>取得多么小,若从()S δ出发的状态轨迹 00(;,)t X t Φ至少有一条跑出()S ε球域,那么平衡点e X 是不稳定的。

最新实验五线性系统的稳定性和稳态误差分析

实验五线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5)()(0.5)(0.7)(3) s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下:

dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens是系统的特征多项式,接着输入如下MATLAB程序代码:den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058

相关主题
文本预览
相关文档 最新文档