当前位置:文档之家› 固体物理第三章作业答案

固体物理第三章作业答案

固体物理习题解答

《固体物理学》习题解答 ( 仅供参考) 参加编辑学生 柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章) 指导教师 黄新堂 华中师范大学物理科学与技术学院2003级

2006年6月 第一章 晶体结构 1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出 这两种结构的原胞与晶胞基矢,设晶格常数为a 。 解: 氯化钠与金刚石型结构都是复式格子。氯化钠的基元为一个Na +和一个Cl - 组成的正负离子对。金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。 由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为: 12 3()2()2()2a a a ? =+?? ?=+?? ?=+?? a j k a k i a i j 相应的晶胞基矢都为: ,,.a a a =?? =??=? a i b j c k 2. 六角密集结构可取四个原胞基矢 123,,a a a 与4a ,如图所示。试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的 晶面指数()h k l m 。 解: (1).对于13O A A '面,其在四个原胞基矢 上的截矩分别为:1,1,1 2 -,1。所以, 其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,1 2-,∞。 所以,其晶面指数为()1120。 (3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。所以,其晶面指数为()1100。 (4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。所以,其晶面指数为()0001。 3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的 比为: 简立方: 6 π ;六角密集:6;金刚石: 。 证明: 由于晶格常数为a ,所以: (1).构成简立方时,最大球半径为2 m a R = ,每个原胞中占有一个原子, 3 34326m a V a π π??∴== ??? 36 m V a π∴ = (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R ,每个晶胞中占有两个原子, 3 3 422348m V a π??∴=?= ? ??? 32m V a ∴ = (3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R ,每个晶胞占有4个原子, 3 3 444346 m V a a π??∴=?= ? ???

最新大学固体物理考试题及答案参考

固体物理练习题 1.晶体结构中,面心立方的配位数为 12 。 2.空间点阵学说认为 晶体内部微观结构可以看成是由一些相同的点子在三维空间作周期性无限分布 。 3.最常见的两种原胞是 固体物理学原胞、结晶学原胞 。 4.声子是 格波的能量量子 ,其能量为 ?ωq ,准动量为 ?q 。 5.倒格子基矢与正格子基矢满足 正交归一关系 。 6.玻恩-卡曼边界条件表明描述有限晶体振动状态的波矢只能取 分立的值 , 即只能取 Na 的整数倍。 7.晶体的点缺陷类型有 热缺陷、填隙原子、杂质原子、色心 。 8.索末菲的量子自由电子气模型的四个基本假设是 自由电子近似、独立电子近似、无碰撞假设、自由电子费米气体假设 。 9.根据爱因斯坦模型,当T→0时,晶格热容量以 指数 的形式趋于零。 10.晶体结合类型有 离子结合、共价结合、金属结合、分子结合、氢键结合 。 11.在绝对零度时,自由电子基态的平均能量为 0F 5 3E 。 12.金属电子的 B m ,23nk C V = 。 13.按照惯例,面心立方原胞的基矢为 ???? ?????+=+=+=)(2)(2) (2321j i a a k i a a k j a a ,体心立方原胞基矢为 ???? ?????-+=+-=++-=)(2)(2) (2321k j i a a k j i a a k j i a a 。 14 .对晶格常数为a 的简单立方晶体,与正格矢k a j a i a R ???22++=正交的倒格子晶面族的面

指数为 122 , 其面间距为 a 32π 。 15.根据晶胞基矢之间的夹角、长度关系可将晶体分为 7大晶系 ,对应的只有14种 布拉伐格子。 16.按几何构型分类,晶体缺陷可分为 点缺陷、线缺陷、面缺陷、体缺陷、微缺陷 。 17. 由同种原子组成的二维密排晶体,每个原子周围有 6 个最近邻原子。 18.低温下金属的总摩尔定容热容为 3m ,bT T C V +=γ 。 19. 中子非弹性散射 是确定晶格振动谱最有效的实验方法。 1.固体呈现宏观弹性的微观本质是什么? 原子间存在相互作用力。 2.简述倒格子的性质。 P29~30 3. 根据量子理论简述电子对比热的贡献,写出表达式,并说明为什么在高温时可以不考虑电子对比热的贡献而在低温时必须考虑? 4.线缺陷对晶体的性质有何影响?举例说明。 P169 5.简述基本术语基元、格点、布拉菲格子。 基元:P9组成晶体的最小基本单元,整个晶体可以看成是基元的周期性重复排列构成。 格点:P9将基元抽象成一个代表点,该代表点位于各基元中等价的位置。 布拉菲格子:格点在空间周期性重复排列所构成的阵列。 6.为什么许多金属为密积结构?

固体物理答案第3章

3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为: sin() nj j j j j a t naq μωδ=++ j δ为任意相位因子。并已知在较高温度下每个格波的平均能量为B k T 。具体计算每 个原子的平方平均位移。 解:(1)根据2011 sin ()2 T j j j t naq dt T ωδ?++= 其中2j T π ω= 为振动周期, 所以222 21 sin ()2 nj j j j j j a t naq a μωδ=++= (2) 第j 个格波的平均动能 (3) 经典的简谐运动有: 每个格波的平均动能=平均势能=1 2格波平均能量=12 B k T 振幅222B j j k T a Nm ω= , 所以 2 22 12B nj j j k T a Nm μω==。 而每个原子的平方平均位移为:222221 ()2 B n nj nj j j j j j j k T a Nm μμμω====∑∑∑∑ 。 3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。当m M =时与一维单原子链一一对应。 解:(1)一维双原子链: 22q a a π π - ≤< 声学波:1 222 2 411sin ()m M mM aq mM m M ωβ-????+??=--????+???? ?? 当m M =时,有 2 224(1cos )sin 2 aq aq m m ββω-= -= 。

光学波:1 222 2 411sin ()m M mM aq mM m M ωβ+????+??=+-????+???? ?? 当m M =时,有 2 2 24(1cos )cos 2 aq aq m m ββω+= += 。 (2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq a a m βωπ π βω-+?=??- ≤< ? ?=?? 与一维单原子链的解 224sin 2 aq q m a a βπ π ω=- ≤< 是一一对应的。 3.5已知NaCl 晶体平均每对离子的相互作用能为: 其中马德隆常数 1.75,9a n ==,平衡离子间距0 2.82r =?。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与NaCl 红外吸收频率的测量只值 61μ进行比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏差0r r δ=-的二次方项。 224 00002 00 ()()1()()()2U r U r U r U r O δδδδδδδδδδ==?+?++=+?+?+?? (1) 其中 00 () 0U r δδδ=?+=? 为平衡条件。 由0r 已知可确定β: 2 10n q r n αβ-= 。 (2) 根据(1)式,离子偏离平衡位置δ所受的恢复力为: 2' 002 ()()U r U r F δδδδβδδδ=?+?+=-=-?=-?? (3)

固体物理总结能带理论完全版

精品文档

目录 一、本章难易及掌握要求 (1) 二、基本内容 (1) 1、三种近似 (1) 2、周期场中的布洛赫定理 (2) 1)定理的两种描述 (2) 2)证明过程: (2) 3)波矢k的取值及其物理意义 (3) 3、近自由电子近似 (3) A、非简并情况下 (4) B、简并情况下 (5) C、能带的性质 (6) 4、紧束缚近似 (6) 5、赝势 (9) 6、三种方法的比较 (10) 7、布里渊区与能带 (11) 8、能态密度及费米面 (11) 三、常见习题 (14) 简答题部分 (14) 计算题部分 (15)

一、本章难易及掌握要求 要求重点掌握: 1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)一维近自由电子近似的模型、求解及波函数讨论,明白三维近自由电子近似的思想; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度及明白费米面的概念。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的 应用。比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。 了解内容: 1)能带的成因及对称性; 2)费米面的构造; 3)赝势方法; 4)旺尼尔函数概念; 5)波函数的对称性。 二、基本内容 1、三种近似

在模型中它用到已经下假设: 1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。多体问题化为了多电子问题。 2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。多电子问题化为单电子问题。 3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。 2、周期场中的布洛赫定理 1)定理的两种描述 当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质: 形式一:()()n ik R n r R e r ψψ?+=r u u r r v u u v ,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差 形式二:()()ik r r e u r ψ?=r r r r ,亦称布洛赫函数,反映了周期场的波函数可 用受)(r u k ?调制的平面波表示.其中()()n u r u r R =+r v u u v ,n R ρ取布拉 菲格子的所有格矢成立。 2)证明过程: a. 定义平移算符μT ,)()()()(3 32211321a T a T a T R T m m m m ? ??? = b . 证明μT 与?H 的对易性。ααHT H T = c.代入周期边界条件,求出μT 在μT 与?H 共同本征态下的本征值

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

固体物理学能带理论小结

能带理论 一、本章难易及掌握要求 要求重点掌握: 1)理解能带理论的基本假设和出发点; 2)布洛赫定理的描述及证明; 3)三维近自由电子近似的模型、求解及波函数讨论; 4)紧束缚近似模型及几个典型的结构的计算; 5)明白简约布里渊区的概念和能带的意义及应用; 6)会计算能态密度。 本章难点: 1)对能带理论的思想理解,以及由它衍生出来的的模型的 应用。比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。 了解内容: 1)能带的成因及对称性; 2)万尼尔函数概念; 3)波函数的对称性。 二、基本内容 1、三种近似 在模型中它用到已经下假设: 1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。故相对于电子,可认为离子不动,或者说电子的

运动可随时调整来适合离子的运动。多体问题化为了多电子问题。 2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。多电子问题化为单电子问题。 3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。单电子在周期性场中。 2、周期场中的布洛赫定理 1)定理的两种描述 当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质: 形式一:()()n ik R n r R e r ψψ?+=,亦称布洛赫定理,反映了相邻原包之间 的波函数相位差 形式二:()()ik r r e u r ψ?=,亦称布洛赫函数,反映了周期场的波函数可 用受 ) (r u k 调制的平面波表示.其中()()n u r u r R =+,n R 取布拉 维格子的所有格矢成立。 2)证明过程: a. 定义平移算符T ,)()()()(332211321a T a T a T R T m m m m = b . 证明T 与?H 的对易性。α αHT H T = c.代入周期边界条件,求出T 在T 与?H 共同本征态下的本征值 λ。即?? ???+=+=+=)()( ()() ()(332211a N r r a N r r a N r r ψψψψψψ3 2 1 321,,a k i a k i a k i e e e ???===λλλ d. 将λ代入T 的本征方程中,注意T 定义,可得布洛赫定理。

固体物理 第三章思考题--参考 不作要求

第三章 晶格振动与晶体热学性质习题课 1. 引入玻恩卡门条件的理由是什么? [解答] (1) 方便于求解原子运动方程. 由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难. (2) 与实验结果吻合得较好. 对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N 个原子构成的的原子链, 硬性假定0 ,01==N u u 的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4). 玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件. 2. 什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [解答] 为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N 个原子构成的晶体的晶格振动, 可等效成3N 个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N 个简正振动模式的线形迭加. 简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N . 3. 长光学支格波与长声学支格波本质上有何差别? [解答] 长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波. 4. 讨论晶体中声子数目与温度的关系 [解答] 频率为i ω的格波的(平均) 声子数为 11 )(/-= T k i B i e n ωω , 即每一个格波的声子数都与温度有关, 因此, 晶体中声子数目不守恒, 它是温度的变量. 按照德拜模型, 晶体中的声子数目N’为 ωνπωωωωωωωd 2311d )()('0 3 22 /0 ? ????? ????? ??-==D B i D p c T k V e D n N . 作变量代换 T k x B ω = ,

黄昆固体物理习题-第三章 晶体的热性质

第三章习题参考解答

3.1已知一维单原子链,其中第j 个格波,在第n 个格点引 起的位移μnj 为: δj 为任意位相因子。并已知在较高温度下每个格波的平均能量为kT ,具体计算每个原子的平方平均位移。 ) sin(j j j j nj naq t δωαμ++=2 1 )(sin 1 2 = ++? dt q n t T j j j T δαω根据 =2nj μ 2 2 22 1)(sin j j j j j q n t αδαωα=++解:其中T =2π/ωj 为振动周期,所以:

格波的平均动能: ∑?=n nj m E 2 2 1 μN m j j 224 1ωα=一维单原子链可以认为是经典的简谐运动,因此有: )(cos 212 22j j j j n j q n t m δαωωα++=∑平均动能=平均势能= 格波平均能量=kT 2 1 21其中:M =ρL

其中振幅 2 22j j Nm kT ωα=得: kT N m E j j 2 14122= =ωα所以有:2 2221j j nj Nm kT ωαμ ==所以,每个原子的平方平均位移: ∑∑∑===2 22 1 21j j nj n Nm kT ωαμμ其中:M =ρL

3.2 讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当M=m时与一维单原子链结果一一对应。 解:质量为M的原子位于2n-1,2n+1,2n+3……。 质量为m的原子位于2n,2n+2,2n+4 ……。

牛顿运动方程 体系有N个原胞,有2N个独立的方程方程的解: A,B有 非零解

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11)(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11/-=T k i B i e n ω . 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3 /222 0)3(2πn m E F =, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

固体物理学习题答案朱建国版

《固体物理学》习题参考 第一章 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b = a 那么, Rf Rb =3 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表 示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,正方 a=b 六方 a=b 矩形 a ≠b 带心矩形 a=b 平行四边形

a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 由于a 3=–(a 1+ a 2) 把(1)式的关系代入,即得 根据上面的证明,可以转换晶面族为 (001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133) 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为 (1)简立方:6π (2 (3 4 )六方密堆积: 6 (5 )金刚石:16。 答:令Z 表示一个立方晶胞中的硬球数,Ni 是位于晶胞内的球数,Nf 是在晶胞面上的球数,Ne 是在晶胞棱上的球数,Nc 是在晶胞角隅上的球数。于是有: 边长为a 的立方晶胞中堆积比率为 假设硬球的半径都为r ,占据的最大面积与总体积之比为θ,依据题意

(完整版)固体物理第3章晶格振动参考答案2011

第三章 晶格振动 参考答案 2011 3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21ββ>。 试证明在这样的系统中,格波仍存在着声频支和光频 支,其格波频率为? ? ??????????????+-±+=212 21221212 )2(sin 411M )(ββββββωqa 证明: 第2n 个原子所受的力 1 21122221212121222)()()(-+-++++-=-+-=n n n n n n n n u u u u u u u F ββββββ 第2n+1个原子所受的力 n n n n n n n n u u u u u u u F 22121122112221222112)()()(ββββββ+++-=-+-=++++++ 这两个原子的运动方程:

n n n n n n n n u u u u m u u u u m 221211221121 211222212)()(ββββββββ+++-=+++-=+++-+&&&& 方程的解 ? ???? ? +-+? ???? ? -==q a n t i n q a n t i n Be u Ae u 2)12(122)2(2ωω 代入到运动方程,可以得到 B A e e B m A B e e A m q a i q a i q a i q a i )()(21222122122212ββββωββββω+-??? ? ??+=-+-??? ? ??+=--- 经整理,有 0)(0)(22122212221221=-+-??? ? ?? +=??? ? ??+--+--B m A e e B e e A m q a i q a i q a i q a i ωββββββωββ 若A ,B 有非零解,系数行列式满足 ,.,2 212 22 12 22 1221=-+++-+--ω ββββββωββm e e e e m q a i q a i q a i q a i 根据上式,有 ? ? ??????????????+-±+=212 2122 1212)2(sin 411M )(ββββββωqa

固体物理--能带理论

固体物理中关于能带理论的认识 摘要:本文运用能带理论就晶体中的电子行为作一些讨论,以期对能带理论的 概念更细致的把握。 关键词:能带理论电子共有化绝热近似平均场近似周期场假定 引言 能带理论(Energy band theory)是研究晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论,对于晶体中的价电子而言,等效势场包括原子核的势场、其他价电子的平均势场和考虑电子波函数反对称而带来的交换作用,是一种晶体周期性的势场。能带理论认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动。 1 能带理论的假定 能带理论是目前的固体电子理论中最重要的理论。量子自由电子理论可作为一种零级近似而归入能带理论。能带理论是一个近似理论,下面对该理论所作的假定作为一探讨。 实际晶体是由大量电子和原子核组成的多粒子体系。如果不采用一些简化近似,从理论上研究固体的能级和波函数是极为困难的。 1.1 绝热近似 考虑到电子与核的质量相差悬殊。可以把核与电子的运动分开考虑,相当于忽略了电子——声子相互作用。电子运动时,可以认为核是不动的。电子是在固体不动的原子核产生的势场中运动。 1.2 平均场近似 因为所有电子的运动是关联的。可用一种平均场来代替价电子之间的相互作用,即假定每个电子所处的势场都相同。使每个电子的电子间相互作用能仅与该电子的位置有关,而与其它电子的位置无关,在上述近似下,每个电子都处在同样的势场中运动,既所有电子都满足同样的薛定谔方程,只要解得方程,就可得晶体电子体系的电子状态和能量。使多电子问题简化为一个单电子问题,所以上述近似也称单电子近似。 1.3 周期场假定 薛定谔方程中势能项是原子实对电子的势能,具有与晶格相同的周期性。代表一种平均势能,应是恒量。因此,在单电子近似和晶格周期场假定下,就把多电子体系问题简化为在晶格周期势场的单电子定态问题,上述在单电子近似基础上的固体电子理论称能带论。 2 电子的共有化运动 我们知道,由于原子核对电子的静电引力, 使得电子只能围绕原子核在一定

(完整版)固体物理胡安第三章课后答案

3.1 在单原子组成的一维点阵中,若假设每个原子所受的作用力左右不同,其力常数如图所示相间变化,且21 ββ>。 试证明在这样的系统中,格波仍存在着声频支和光频支,其格波频率为 ?? ??????????????+-±+=212 21221212 )2(sin 411M )(ββββββωqa 证明: 第2n 个原子所受的力 1 21122221212121222)()()(-+-++++-=-+-=n n n n n n n n u u u u u u u F ββββββ 第2n+1个原子所受的力 n n n n n n n n u u u u u u u F 22121122112221222112)()()(ββββββ+++-=-+-=++++++ 这两个原子的运动方程: 2122221121 21122112222()()n n n n n n n n mu u u u mu u u u ββββββββ+-+++=-+++=-+++&&&& 方程的解 ????? ? +-+? ???? ? -==q a n t i n q a n t i n Be u Ae u 2)12(122)2(2ωω 代入到运动方程,可以得到

B A e e B m A B e e A m q a i q a i q a i q a i )()(21222122122212ββββωββββω+-??? ? ??+=-+-??? ? ??+=--- 经整理,有 0)(0)(22122212221221=-+-??? ? ?? +=??? ? ??+--+--B m A e e B e e A m q a i q a i q a i q a i ωββββββωββ 若A ,B 有非零解,系数行列式满足 222 12 122 2 21212,0,a a i q i q a a i q i q m e e e e m ββωββββββω--+-+=++- 根据上式,有 ? ? ??????????????+-±+=212 21221212 )2(sin 411M )(ββββββωqa 3.3 (a) 设单原子链长度L=Na 波矢取值2q h Na π =? 每个波矢的宽度2q Na π=,状态密度 2Na π dq 间隔内的状态数2Na dq π ,对应±q ,ω取相同值 因此()22Na dq dq ρωπ =? 一维单原子链色散关系,2aq ω?? = ??? 令 00sin 2aq ωωω?? = = ???

固体物理第三章晶格振动与晶体的热力学函数

第三章 晶格振动与晶体的热力学函数 一、 填空体 1. 若在三维空间中,晶体由N 个原胞组成,每个原胞有一个原子,则共有_ 3 N_个独立的 振动,_ N__个波矢, 3N_支格波。 2. 体积为V 的ZnS 晶体,如果晶胞的体积为Ω,则晶格振动的模式书为24N/Ω 。 3. 三维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 3。 4. 某三维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 9N 支,其中 3N 支声学波,包括 2N 支横声学波, 1N 支纵声学波;另有 6N 支光学波。 5. 二维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 2。 6. 一维绝缘体晶体的低温比热Cv 与温度T 的关系为Cv~T 。 7. 三维绝缘体晶体的低温平均内能与温度T 的关系为U~T 4。 8.二维绝缘体晶体的低温平均内能与温度T 的关系为U~T 3。 9. 一维绝缘体晶体的低温平均内能温度T 的关系为U~T 2。 10.绝缘体中与温度有关的内能来源于 晶格振动能 。 11.导体中与温度有关的内能来源于 晶格振动能 和 价电子热运动动能 。 12. 某二维晶体由N 个原胞组成,每个原胞内有2个原子。考虑晶体的晶格振动,其色散关系共有 4N 支,其中 2N 支声学波,包括 N 支横声学波, N 支纵声学波;另有 2N 支光学波。 13. 某一维晶体由N 个原胞组成,每个原胞内有3个原子。考虑晶体的晶格振动,其色散关系共有 3N 支,其中 N 支声学波,包括 N 支横声学波, 0 支纵声学波;另有 2N 支光学波。 14.晶格振动的元激发为 声子 ,其能量为 ω ,准动量为 q 。 15德拜模型的基本假设为:格波作为弹性波、 介质是各向同性介质。 16.对三维体积为V 的晶体,波矢空间中的波矢密度为: 3 ) 2(V π ;对二维面积为S 的晶体,波矢空间中的波矢密度为:2 )2(S π ;对一维长度为L 的晶体,波矢空间中的波矢密度为: π 2L 。 二、基本概念 1. 声子 晶格振动的能量量子。 2.波恩-卡门条件 即周期性边界条件,设想在实际晶体外,仍然有无限多个相同的晶体相连接,各晶体中相对应的原子的运动情况都一样。 3.波矢密度 波矢空间单位体积内的波矢数目,三维时为3 c )2(V π,Vc 为晶体体积。 4. 模式密度 单位频率间隔内模式数目。 5.晶格振动。 答:由于晶体内原子间存在着相互作用,原子的振动就不是孤立的,而要以波的形式在晶体中传播,形成所谓格波,因此晶体可视为一个互相耦合的振动系统,这个系统的运动就叫晶格振动。

固体物理答案第3章(20200511192744)

1 3 . 1已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj 为: nj a j sin( j t naq j j ) (2)第j 个格波的平均动能 (3) 经典的简谐运动有: 1 -格波平均能量= 2 4ma2 2N 3.2讨论N 个原胞的一维双原子链(相邻原子间距为 时与一维单原子链 --- 对应。^m a 2 j 2cos 2 ( j t 2 n j naq j j ) lma 2 2N 4 振幅a 2 吧,所以 Nm j 2 nj 1 2aj k B T_ 2。 j Nm 而每个原子的平方平均位移为: (nj )2 j 2 nj 1 2 2aj j Nm j j 为任意相位因子。 并已知在较高温度下每个格波的平均能量为 k p T 。具体计算每个原子 的平方平均位移。 1 根据丄 T 解:(1) T ? 2 / . o sin ( j t naq j j )dt 其中T —为振动周期, j 所以2j a^sin 2( j t naq j 每个格波的平均动能=平均势能= a ),其2 N 个格波的解。当m M 解:(1) 一维双原子链: 2a q 2a 声学波: 2 m M mM 4mM .2 2sin aq (m M)2 当m M 时, 2 j m cosaq) m Jin 2 凹。 2 光学波: 2 7 1 mM 4mM (m M)2 2 sin aq

「0 3. 5已知NaCI 晶体平均每对离子的相互作用能为: u(r) 其中马德隆常数 a 1.75,n 9 ,平衡离子间距r 0 2.82?。 (1) 试求离子在平衡位置附近的振动频率。 (2) 计算与该频率相当的电磁波的波长,并与 比较。 解:(1)处理小振动问题,一般可采用简谐近似,在平衡位置附近,可将互作用能展开至偏 r r °的二次方项。 U(r 。 )U(r 。) U(r 。 1 2U(r 。 2 2 2 0( 4) 其中 U(r 。 2 q n r 。 n 根据 0为平衡条件。 由r 0已知可确定 (1)式,离子偏离平衡位置 所受的恢复力为: U(r 。 2U(r o 2 故恢复力常数为 2 U(r) 2 r n 3 r ° (1) (2) (3) ⑷ 当m M 时,有 cosaq) ?cos 2oq m 2 (2) —维双原子链在 m M 时的解 2 ^sin 20q m 2 2 4 2 aq 2a 2a cos - m 2 与一维单原子链的解 是 --- 对应的。 2 4 sin 2 凹 m 2 NaCl 红外吸收频率的测量只值 61进行

固体物理第三章

班级 成绩 学号 Chapter 3 晶格振动与晶体的热学性质 姓名 (lattice vibration and its heat characteristics) 一、简要回答下列问题(answer the following questions): 1、在晶格常数为a 的一维单原子晶格中,波长λ=8a 和波长λ=8a/5的格波所对应的原子 振动状态有无不同? 试画图加以说明。 [答]对于一维单原子链,由q=2π/λ知,λ=8a 时,q =π/4a ,λ=8a /5时,q =5π /4a ,二者的aq 相差π,不是2π的整数倍,因此,两个格波所对应的原子振动状态不同。 如上图,当两个格波的位相差为2π的整数倍时,则它们所对应的原子的振动状态相同。 2、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事? [答]在简谐振动下,由N 个原子构成的晶体的晶格振动,可等效成3N 个独立的谐振子的 振动,每一个谐振子的振动模式称为简正振动模式。格波振动通常是这3N 个简正振动模式的线性叠加。 简正振动数目、格波数目或格波振动模式数目是是一回事,其数目等于晶体中所有原子的自由度之和,即等于3N 。 3、晶体中声子数目是否守恒?在极低温下,晶体中的声子数与温度T 之间有什么样的关 系? [答]频率为ωi 的格波的平均声子数为 : 1 1)(/-= T k i B e n ωω 即每一个格波的声子数都与温度有关,因此晶体中的声子数目不守恒,它随温度的改变而改变。 以德拜模型为例。晶体中的声子数目为

ωωωωd g n N D )()('0 ? = 其中 令 T k x B ω = 则 123'2/0 3 3233 -= ? x T B e dx x C T k V N D θπ 在极低温度下,θD /T →∞,于是 3 3 133233 20 3 3233 )2(23123'T n C T Vk e dx x C T k V N n B x B ∑ ? ∞=∞ =-= ππ 即在温度极低时,晶体中的声子数目与T 3 成正比。 4、爱因斯坦模型在低温下与实验存在偏差的根源是什么?而在极低温度下,德拜模型为 什么与实验相符? [答]爱因斯坦模型的格波的频率大约为1013 Hz ,属于光学支频率。而光学格波在低温时对 热容的贡献非常小,低温下对热容贡献大的主要是长声学波。所以爱因斯坦模型在低温下与实验存在偏差的根源是没有考虑声学波对热容的贡献。 在极低温度下,不仅光学波得不到激发,而且声子能量较大的短声学格波因为未能被激发,得到的激发只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容的贡献。因此,温度越低,德拜模型与实验结果符合得越好。 5、格波与弹性波有何不同? [答]格波与弹性波相比都具有波的形式,但两者又有不同之处: (1) 对于一维单原子链格波解为: ) (naq t i n Ae u -=ω 弹性波的解为: ) (qx t i n Ae u -=ω 在弹性波的解中, x 表示空间任意一点,而在格波解中只能取na 格点的位置. (2) 弹性波的色散关系是线性的,ω=cq, c 是弹性波的波速; 而格波的色散关系:|2 1 sin |2 aq m β ω= 所表示的是周期函数:)()2(q a q ωπ ω=+ , 且ω 有极大值m m βω2= 。 但当q 很小时,一维单原子链的色散关系与连续弹性介质波的色散关系趋于一致: cq q m a =≈β ω 而且c 就是把原子链看成弹性链时,弹性波的波速. ωωπωωd C V d g 2 3 223 )(=

相关主题
文本预览
相关文档 最新文档