当前位置:文档之家› 利用捕获比较功能实现MSP430与微机串行通信的研究

利用捕获比较功能实现MSP430与微机串行通信的研究

利用捕获比较功能实现MSP430与微机串行通信的研究
利用捕获比较功能实现MSP430与微机串行通信的研究

利用捕获比较功能实现MSP430与微机串行通信的研究

发布: 2011-8-30 | 作者: —— | 来源: ducuimei | 查看: 435次| 用户关注:

利用捕获比较功能实现MSP430与微机串行通信的研究1引言:MSP430系列单片机是美国TI公司于2000年推出的新一代超的低功耗16位单片机。由于它具有功能完善、超低功耗、开发简便、成本低廉等特点,目前已经在国内得到了广大工程技术人员的关注和应用。工程师们在进行机型选择时主要考虑该机型的性能和成本,因此在小型仪表以及普通应用中MSP430的11x系列、31x系列、41x系列受到了许多工程师的青睐。这些机型有一个共同的特点就是内部没

利用捕获比较功能实现MSP430与微机串行通信的研究

1 引言:

MSP430系列单片机是美国TI公司于2000年推出的新一代超的低功耗16位单片机。由于它具有功能完善、超低功耗、开发简便、成本低廉等特点,目前已经在国内得到了广大工程技术人员的关注和应用。工程师们在进行机型选择时主要考虑该机型的性能和成本,因此在小型仪表以及普通应用中MSP430的11x系列、31x系列、41x系列受到了许多工程师的青睐。这些机型有一个共同的特点就是内部没有硬件UART模块。这就带来一个问题,这些单片机怎样实现串行通信呢?本文就针对这一问题进行研究,分析研究了MSP430中捕获比较功能的特点,以及利用捕获比较功能实现串行通信的方法。并以MSP430F413为例介绍了实现它与微机之间进行串行通信的软件代码和硬件电路。

1 捕获比较功能的介绍:

MSP430系列单片机中都集成了捕获比较的功能模块。捕获比较功能的引入主要是为了提高I/O端口处理事务的能力和速度。捕获比较并不是非常新的概念,使用过Intel 的16位单片机中如80196MC的读者就会发现,MSP430中的捕获比较功能和80196系列单片机中的EPA功能有一些相似之处。以下结合实现串行通信的需要,简要介绍有关捕获比较的有关概念。

捕获比较模块用于捕获应用事件的发生时间,或产生定时间隔。如果相应的中断允许,那么完成一个时间捕获或一次定时间隔,捕获/比较模块都将产生中断。每一个捕获比较模块都可以对应一组硬件引脚。图1是捕获比较模块的结构框图。

捕获功能可以捕捉选定输入引脚的状态的变化,它可以选择捕捉上升沿、下降沿、前后沿。如果捕捉到了相应的变化,则定时器计数值将被复制到捕获比较寄存器CCR中,并会产生相应的中断。在串行通信中,正是利用捕获功能的特点来捕捉起始位的信息。

图1:捕获比较模块结构框图

比较功能是借助比较器不断地将CCR中的设定值与定时器中的计数值相比较,当二者相等时,就产生中断,并产生设定的输出。利用比较功能,可以获得精确的时间间隔,利用该特性可以构造一个精确的波特率发生器,为串行通信提供时间基准。

2 利用捕获比较实现串行通信的方法

本节具体介绍实现异步串行通信时,捕获和比较功能是如何工作的。

2.1 接收过程

图2:在串行通信接收过程中捕获比较功能时序分析示意图

在异步串行通信中,每个数据帧一般由1位起始位、8位数据位、1位奇偶校位、1位停止位组成。图2所示为一个数据帧前3位的时序。在接收这种格式的数据帧时,首先要确定起始位,用来进行帧同步。在MSP430中是利用捕获功能来捕捉起始位的下跳沿(详见附录程序代码)。如图2,在A点捕获到起始位,系统将此刻的定时器值(T0)存放入CCR中,并产生中断。对A点所产生中断的处理非常重要。在该中断处理程序中,将捕获功能转换为比较功能,并将1.5位的时间间隔(T1.5)加到CCR中,即CCR=T0+T1.5。这样当到达1.5位时间间隔时(B点),即定时器的值等于T0+T1.5。将会由此比较功能触发一

次中断,这样就实现了1.5位时间间隔的精确定时。在该中断处理程序中,可以读取输入引脚的状态,从而接收到Bit1的信息,然后再利用比较功能产生1位时间间隔(T1)的定时。此后,当下一个T1时间到达时,比较功能又会触发一次中断(C点)。在这时的中断服务程序中可以读取Bit2的信息。如此重复8次,就可以完成一个字节数据的接收。

2.2 发送过程

相对于接收过程,发送过程比较简单。利用比较功能产生一个间隔为1位时间(T1)的时序,相当于一个波特率发生器。在每一次比较功能触发的中断服务程序中发送一位数据,如此循环执行,这样就可以完成一个数据帧的发送。异步串行通信的一个数据帧往往是10位或11位。对于这点可以利用MSP430是16位机的特点,将数据帧的所有位安排在一个待发送字中,然后移位发送,而不需要专门编程产生起始位和停止位。(详见附录中的程序代码及说明)

2.3 波特率的确定以及中断的安排

从以上的分析可以看出,串行通信的波特率主要是与1位时间间隔T1有关,T1可以通过以下公式确定:

公式1

其中Tclk是指与该捕获比较模块相对应的定时器的基准频率,如使用ACLK作为时基则Tclk=32768;使用MCLK作为时基则Tclk=1M。式中的Baud就是期待的波特率值。MSP430每个捕获比较模块中的捕获和比较对应同一个中断地址,因此两者需要共享一段中断服务程序。这样就要求在中断服务程序中能区分触发中断的类别。主要是通过CCTL

控制寄存器中的CAP位来区分[3]。另一方面接收和发送的也都需要在这段服务程序中处理,应该加以区分。(详见附录中的程序代码及说明)

3 超低功耗串行通信实例

3.1电路结构及其特点

本文中使用上述的原理和方法,在MSP430F413和MAX3221构成的电路中实现了与微机的串行通信,电路原理如图3。该电路不但完成了串行通信,还进一步实践了超低功耗的应用原理。MSP430单片机的一大特点就是超低功耗,它有多种功耗状态可以编程控制[4]。MAX3221也是具有低功耗特点的接口器件,通过EN、FORCEON、FORCEOFF引脚可以

控制驱动器、接收器的工作状态,启动或禁止自动降低功耗功能,从而使其工作在不同的能耗状态,达到降低功耗的目的[2]。控制及其状态详见表1

图3 MSP430F413超低功耗串行通信电路原理图

3.2超低功耗的解决方案

选择了低功耗的器件,还要合理的控制才能达到最低的能耗[1]。对于本应用,MSP430处于从机工作状态。针对这种应用以下方案可以有效地降低能耗:初始化程序结束后,设定MSP430F413工作在功耗模式4等待P1.2引脚的中断。这时CPU将关闭,其能耗最低(0.1μA)。另一方面,初始控制MAX3221进入自动调节能耗状态。如果微机不发送信号,即Rin输入无效,驱动器和接收器都将关闭,进入很低功耗的待机状态(1μA)。

当微机发送信号时,即Rin输入有效,接收器会自动打开,并产生有效的INVALID信号。该信号将触发P1.2引脚的中断。在中断处理程序中将MSP430F413的功耗模式设定为模式3(功耗电流0.7μA),这时利用频率为32768的ACLK时钟工作就可以完成低速的串行通信任务。当接收、处理完微机的数据后需要将结果返回给微机。这时可以打开MAX3221的驱动器,关闭接收器完成此工作。当发送完毕后可以将MSP430和MAX3221再设定为准备接收信息的最低功耗状态。

利用上述方法可以在满足串行通信的同时达到非常低的功耗。

表1:MAX3221收发器工作控制及其工作状态对照表

发送子程序

MOV &TAR,&CCR0 ; 将当前定时器值存入CCR中(T0)

ADD #Tbit1,&CCR0 ; 将1位时间间隔加入CCR中(T0+T1)

RLA RTbuff ; 将带发送的字节数据左移一位,构造最低位为起

始位

BIS #0200h, RTbuff ; 将停止位数据放入待发送字的第10位

MOV #10,Counter ; 初始化数据帧计数器为10

MOV #OUTMOD0+CCIE,&CCTL0 ; 标记发送状态,打开捕获比较中断,启动发送

RET ; 返回

;------------------------------------------------------------------------------

接收准备子程序

MOV #08,Counter ; 初始化接收数据计数器为8(接

收一个字节数据)

MOV #SCS+CCIS0+OUTMOD0+CM1+CAP+CCIE,&CCTL0 ;初始化捕获比较控制字,

; 设定为下降沿捕获模式,标记接

收状态,打开中断,启动接收RET ; 返回

;------------------------------------------------------------------------------

捕获比较模块0的中断服务程序

;------------------------------------------------------------------------------

ADD #Tbit1,&CCR0 ; 将1位时间间隔加入CCR0中

BIT #CCIS0,&CCTL0 ; 判断接收、发送状态

JNZ UART_RX ; 是接收状态,转接收处理

UART_TX CMP #00h,Counter ; 是发送状态,判断帧发送是否结束

JNE TX_Next ; 没有结束,转入发送

BIC #CCIE,&CCTL0 ; 帧发送结束,关闭中断

RETI ; 中断返回

TX_Next RRA RTbuff ; 待发送位移入进位位C

JC TX_One ; 该位为1?跳转

BIS #OUTMOD2,&CCTL0 ; 该位为0,发送0

JMP TX_nxt2 ; 跳转继续处理

TX_One BIC #OUTMOD2,&CCTL0 ; 该位为1,发送1

TX_nxt2 DEC Counter ; 发送帧计数器减1

RETI ; 中断返回

;

UART_RX BIT #CAP,&CCTL0 ; 判断是否是捕获到起始位

JZ RX_Bit ; 接收的不是起始位,转入处理

RX_Start BIC #CAP,&CCTL0 ; 捕获到起始位,将状态转为比较模式

ADD #Tbit_5,&CCR0 ; 再增加半位时间间隔(T0+T1.5),以实现1.5 时间间隔

RETI ; 中断返回

RX_Bit BIT #SCCI,&CCTL0 ; 将接收到的位存入进位位C

RRC RTbuff ; 将接收到位,移入收发缓冲字

RX_Test DEC Counter ; 接收数据计数器减1

JNZ RX_Next ; 判断是否接收了所有数据位,没有跳转到后续处理

BIC #CCIE,&CCTL0 ; 接收到所有数据位,关闭捕获比较中断

RX_Next RETI

用C#一步步写串口通信分析解析

我们来看具体的实现步骤。 公司要求实现以下几个功能: 1):实现两台计算机之前的串口通信,以16进制形式和字符串两种形式传送和接收。 2):根据需要设置串口通信的必要参数。 3):定时发送数据。 4):保存串口设置。 看着好像挺复杂,其实都是纸老虎,一戳就破,前提是你敢去戳。我尽量讲的详细一些,争取说到每个知识点。 在编写程序前,需要将你要测试的COM口短接,就是收发信息都在本地计算机,短接的方式是将COM口的2、3号针接起来。COM 口各针的具体作用,度娘是这么说的:COM口。记住2、3针连接一定要连接牢固,我就是因为接触不良,导致本身就不通,白白花掉了一大半天时间调试代码。 下面给出主要的操作界面,如下:

顺便,我将所有控件对应的代码名字也附上了,相信对初学者来说,再看下面的代码会轻松很多。控件名字命名的方法是“控件名+作用”的形式,例如“打开串口”的开关按钮,其名字是btnSwitch (btn就是button的简写了)。我认为这种命名控件的方式比较好,建议大家使用,如果你有好的命名方式,希望你能告诉我! 下面我们将各个功能按照从主到次的顺序逐个实现。(我分块给出代码实现,详细代码见链接:《C#串口通信工具》)

一、获取计算机的COM口总个数,将它们列为控件cbSerial的候选项,并将第一个设为cbSerial的默认选项。 这部分是在窗体加载时完成的。请看代码: (很多信息代码的注释里讲的很清楚,我就不赘述了。) [csharp]view plaincopyprint? 1.//检查是否含有串口 2. string[] str = SerialPort.GetPortNames(); 3. if (str == null) 4. { 5. MessageBox.Show("本机没有串口!", "Error"); 6. return; 7. } 8. 9. //添加串口项目 10. foreach (string s in System.IO.Ports.SerialPort.GetPortNames()) 11. {//获取有多少个COM口 12. cbSerial.Items.Add(s); 13. } 14. 15. //串口设置默认选择项

LaunchPad-MSP430入门系列4-定时器模块(定时、计数、捕获)

LaunchPad-MSP430入门系列4-定时器模块 (定时、计数、捕获) Version 1.2 文先,介绍几个英文缩写的意思以及一些注意的地方。 1.Timer0/1 定时器0/1,在User's Guide中用的是TimerA/B,所指的也是Timer0/1 。 G2553Datasheet中用的是Timer0/1 ,本文以G2553Datasheet为准。全文以Timer0 为例,Timer1类同。 2.TAxR(x = 0/1)定时器x对应的计数器,这是一个只读寄存器。硬件自动驱动计数。 3.EQUy(y = 0/1/2)计数事件发生寄存器,当TAxR = TAxCCRy时EQUy置1。 4. 定时器简介 MSPG2553共有两个定时器,Timer0、Timer1,他们都是十六位的定时、计数器,内含三个捕获、比较寄存器。两个定时器均支持多个捕获、PWM输出、间歇性计时,定时器包含多个中断源,可以是计数溢出中断、捕获中断等等。 定时器包含: ●同步十六位定时、计数器运行模式。 ●时钟源可从MCLK、SMCLK、ACLK任意选择。 ●三个比较、捕获寄存器。 ●中断向量寄存器能快速解码的所有定时器中断 本文以Timer0为例详细介绍430的定时器模块,下图是Timer0组成框图

0-1定时器0组成框图 下面简要介绍一下该硬件框图的意思,从左上角看,首先是一个时钟源选择寄存器TASSELx,通过该寄存器选择定时器的时钟源,选择了时钟源后有一个分频器Divider,相应的设置寄存器是IDx,再过来就到一个定时器的核心部分,一个16位的定时器TAR。其右侧有一个定时器的计数模块,MCx寄存器用来设置计数模式。 接下来,TAR正下方有三个横线,右侧标有CCR0、CCR1、CCR2,意思是CCR1、CCR0的框图和下方CCR2的框图是一样的。此处省略不写。在CCR中,左上角为一个捕获源选择寄存器。可以从CCI2A、CCI2B、GND或者VCC选择捕获源,选择捕获源后有一个选择捕获模式寄存器Capture Mode,然后过来有一个捕获溢出状态寄存器COV,SCS同步/异步捕获模式选择位,然后连接到捕获比较寄存器。下方为模式选择寄存器,具体设置可以查看相应的寄存器设置。 这里仅是大概介绍一下Timer0的寄存器,具体的设置使用还看参考相应的寄存器并结合例程慢慢学习理解。 定时器运行方式 下面简要重点介绍定时器计数模块的四种模式以及7种输出模式。 Timer0有一个在不断计数的只读寄存器TA0R。计数器的计数模式共有四种,

MSP430程序库之定时器TA的PWM输出

MSP430程序库之定时器TA的PWM输出 定时器是单片机常用的其本设备,用来产生精确计时或是其他功能;msp430的定时器不仅可以完成精确定时,还能产生PWM波形输出,和捕获时刻值(上升沿或是下降沿到来的时候)。这里完成一个比较通用的PWM波形产生程序。 1.硬件介绍: MSP430系列单片机的TimerA结构复杂,功能强大,适合应用于工业控制,如数字化电机控制,电表和手持式仪表的理想配置。它给开发人员提供了较多灵活的选择余地。当PWM 不需要修改占空比和时间时,TimerA 能自动输出PWM,而不需利用中断维持PWM输出。 MSP430F16x和MSP430F14x单片机内部均含有两个定时器,TA和TB;TA 有三个模块,CCR0-CCR2;TB含有CCR0-CCR67个模块;其中CCR0模块不能完整的输出PWM波形(只有三种输出模式可用);TA可以输出完整的2路PWM波形;TB可以输出6路完整的PWM波形。 定时器的PWM输出有有8种模式: 输出模式0 输出模式:输出信号OUTx由每个捕获/比较模块的控制寄存器CCTLx中的OUTx位定义,并在写入该寄存器后立即更新。最终位OUTx直通。 输出模式1 置位模式:输出信号在TAR等于CCRx时置位,并保持置位到定时器复位或选择另一种输出模式为止。 输出模式2 PWM翻转/复位模式:输出在TAR的值等于CCRx时翻转,当TAR 的值等于CCR0时复位。 输出模式3 PWM置位/复位模式:输出在TAR的值等于CCRx时置位,当TAR 的值等于CCR0时复位。 输出模式4 翻转模式:输出电平在TAR的值等于CCRx时翻转,输出周期是定时器周期的2倍。 输出模式5复位模式:输出在TAR的值等于CCRx时复位,并保持低电平直到选择另一种输出模式。 输出模式6PWM翻转/置位模式:输出电平在TAR的值等于CCRx时翻转,当TAR值等于CCR0时置位。 输出模式7PWM复位/置位模式:输出电平在TAR的值等于CCRx时复位,当TAR的值等于CCR0时置位。 下图是增计数模式下的输出波形(本程序使用的是增模式3和7):

RS232串口通讯详解

串口通讯—RS-232-C详解 蓝鸟发表于 2005-9-22 16:19:34 串行通信接口标准经过使用和发展,目前已经有几种。但都是在RS-232标准的基础上经过改进而形成的。所以,以RS-232C为主来讨论。RS-323C标准是美国EIA(电子工业联合会)与BELL等公司一起开发的1969年公布的通信协议。它适合于数据传输速率在0~20000b/s范围内的通信。这个标准对串行通信接口的有关问题,如信号线功能、电器特性都作了明确规定。由于通行设备厂商都生产与RS-232C制式兼容的通信设备,因此,它作为一种标准,目前已在微机通信接口中广泛采用。 在讨论RS-232C接口标准的内容之前,先说明两点: 首先,RS-232-C标准最初是远程通信连接数据终端设备DTE(Data Terminal Equipment)与数据通信设备DCE(Data Communication Equipment)而制定的。因此这个标准的制定,并未考虑计算机系统的应用要求。但目前它又广泛地被借来用于计算机(更准确的说,是计算机接口)与终端或外设之间的近端连接标准。显然,这个标准的有些规定及和计算机系统是不一致的,甚至是相矛盾的。有了对这种背景的了解,我们对RS-232C标准与计算机不兼容的地方就不难理解了。 其次,RS-232C标准中所提到的“发送”和“接收”,都是站在DTE立场上,而不是站在DCE的立场来定义的。由于在计算机系统中,往往是CPU和I/O设备之间传送信息,两者都是DTE,因此双方都能发送和接收。 一、RS-232-C RS-232C标准(协议)的全称是EIA-RS-232C标准,其中EIA(Electronic Industry Association)代表美国电子工业协会,RS(ecommeded standard)代表推荐标准,232是标识号,C代表RS232的最新一次修改(1969),在这之前,有RS232B、RS232A。。它规定连接电缆和机械、电气特性、信号功能及传送过程。常用物理标准还有有EIA�RS-232-C、EIA�RS-422-A、 EIA�RS-423A、EIA�RS-485。这里只介绍EIA�RS-232-C(简称232,RS232)。例如,目前在IBM PC机上的COM1、COM2接口,就是RS-232C接口。 1.电气特性 EIA-RS-232C对电器特性、逻辑电平和各种信号线功能都作了规定。 在TxD和RxD上:逻辑1(MARK)=-3V~-15V 逻辑0(SPACE)=+3~+15V 在RTS、CTS、DSR、DTR和DCD等控制线上: 信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V

MSP430FW427中文数据手册

MSP430xW42x混合信号微控制器 ●低电源电压范围:1.8V…3.6V ●超低功耗: -活动模式: 200 μA (1 MHz, 2.2 V) -等待模式:0.7 μA -关断模式(RAM保持):0.1 μA ●五种省电模式 ●6微秒内从等待状态唤醒 ●锁频环,FLL+ ●16位精简指令结构,125纳秒指令时间周期 ●应用于水、热和气体仪表的体积流量测量的SCAN-I/F单元 ●带有三个捕捉/比较寄存器的16位定时器Timer_A ●带有五个捕捉/比较寄存器的16位定时器Timer_A ●集成96段LCD驱动器 ●片内比较器 ●串行片上编程,无需外部编程电压,可编程的安全熔丝代码保护 ●FLASH器件具有程序装载器(BSL) ●系列成员包括: MSP430CW423: 8KB ROM存储器, 512B RAM MSP430CW425: 16KB ROM 存储器, 512B RAM MSP430CW427: 32KB ROM 存储器, 1KB RAM MSP430FW423: 8KB Flash存储器, 512B RAM MSP430FW425: 16KB Flash存储器, 512B RAM MSP430FW427: 32KB Flash存储器, 1KB RAM ●64引脚Quad Flat Pack(QFP)封装 ●完全的模块描述请参见: MSP430x4xx系列用户指南,文献号:SLAU056 说明 德州仪器公司的MSP430系列超低功耗微控制器由几个针对水、热和气体仪表等不同应用目标的片上系统(System-on-chip)具有不同外围设备的芯片系列组成。MSP430微控制器采用低功耗设计和16位精简指令结构,CPU内置16位寄存器以及常数发生器,能够实现最高的代码效率。锁频环FLL+和数控振荡器使得微处理器能在6微秒内从低功耗模式快速切换到工作模式。MSP430xW42x系列配置有两个内置16位定时器、一个比较器、一个SCAN接口模块、96段LCD驱动器和48个I/O引脚的微控制器。 MSP430的典型应用包括热量仪表、热水和冷水仪表、气体仪表和工业传感器系统。定时器支持额外的计数器应用、射频位流操作、IrDA和M-Bus通讯。

RS232串口通信详解

串口就是计算机上一种非常通用的设备通信协议。 --------------------------------- 串口的引脚定义: 9芯信号方向来自缩写描述 1调制解调器CD载波检测 2调制解调器RXD接收数据 3PC TXD发送数据 4PC DTR数据终端准备好 5GND信号地 6调制解调器DSR通讯设备准备好 7PC RTS请求发送 8调制解调器CTS允许发送 9调制解调器RI响铃指示器 两个串口连接时,接收数据针脚与发送数据针脚相连,彼此交叉,信号地对应相接即可。--------------------------------- 串口的电气特性: 1)RS-232串口通信最远距离就是50英尺 2)RS232可做到双向传输,全双工通讯,最高传输速率20kbps 3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3 ~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片:

--------------------------------- 串口通信参数: a)波特率:RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、 4800、9600、19200波特。b)数据位:标准的值就是5、7与8位,如何设置取决于您想传送的信息。比如,标准的ASCII码就是0~127(7位);扩展的ASCII码就是0~255(8位)。 c)停止位:用于表示单个包的最后一位,典型的值为1,1、5与2位。由于数就是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅就是表示传输的结束,并且提供计算机校正时钟同步的机会。d)奇偶校验位:在串口通信中一种简单的检错方式。对于偶与奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据就是011,那么对于偶校验,校验位为 0,保证逻辑高的位数就是偶数个。如果就是奇校验,校验位位1,这样就有3个逻辑高位。 --------------------------------- 串口通信的传输格式: 串行通信中,线路空闲时,线路的TTL电平总就是高,经反向 RS232的电平总就是低。一个数据的开始RS232线路为高电平,结束时Rs232为低电平。数据总就是从低位向高位一位一位的传输。示波器读数时,左边就是数据的高位。 例如,对于16进制数据55aaH,当采用8位数据位、1位停止位传输时,它在信号线上的波形如图1(TTL电平)与图 2(RS-232电平)所示。 55H=01010101B,取反后10101010B,加入一个起始位1,一个停止位0,55H的数据格式为1010101010B; aaH=10101010B,取反后01010101B,加入一个起始位1,一个停止位0,55H的数据格式为1101010100B;

MSP430定时器A捕捉脉实例

MSP430定时器A捕捉脉实例[调试通过,很好用] 微控论坛原创主贴作者:fangth Microcontrol CODE /***************************************************************** //功能:利用定时器A的捕捉能测量脉冲信号的脉宽 // // // MSP430F449 // ----------------- // /|\| XIN|- // | | | 32kHz // --|RST XOUT|- // | | // | P1.5/ACLK|---+ // | | | // | P2.0/TA2|<--+ // | | // | | //说明:ACLK要进行8分频(4K),并将其作为外部的要捕获的脉冲; //MCLK=SMCLK=8M; *****************************************************************/ #include int pwm_start,pwm_end,pwm_wide=0; void main(void) { WDTCTL = WDTPW + WDTHOLD; // Stop WDT P1DIR = 0x20; // P1.5 输出 P1SEL = 0x20; // P1.5输出ACLK P2SEL|=BIT0; //P2.0 CCI2A SCFI0 |= FN_4; SCFQCTL = 121; // (121+1) ×32768 *2= 7.99Mhz FLL_CTL0=DCOPLUS+OSCCAP1; //MCLK=SMCLK=8M FLL_CTL1 |= FLL_DIV_8; //ACLK要进行8分频,ACLK=4K TACCTL2 =CAP+CM_3+CCIS_0+SCS+CCIE; //捕获模式,上升和下降都捕获,选择CCI2A,同步,捕获中断开 //Capture input select: 0 - CCI2A

MSP430中文数据手册

MSP430混合信号微控制器数据手册产品特性 ●低电压范围:2.5V~5.5V ●超低功耗 ——活动模式:330μA at 1MHz, 3V ——待机模式:0.8μA ——掉电模式(RAM数据保持):0.1μA ●从待机模式唤醒响应时间不超过6μs ●16位精简指令系统,指令周期200ns ●基本时钟模块配置 ——多种内部电阻 ——单个外部电阻 ——32kHz晶振 ——高频晶体 ——谐振器 ——外部时钟源 ●带有三个捕获/比较寄存器的16位定时器(Timer_A) ●串行在线可编程 ●采用保险熔丝的程序代码保护措施 ●该系列产品包括 ——MSP430C111:2K字节ROM,128字节RAM ——MSP430C112:4K字节ROM,256字节RAM ——MSP430P112:4K字节OTP,256字节RAM ●EPROM原型 ——PMS430E112:4KB EPROM, 256B RAM ●20引脚塑料小外形宽体(SOWB)封装,20引脚陶瓷双列直插式(CDIP) 封装(仅EPROM) ●如需完整的模块说明,请查阅MSP430x1xx系列用户指南(文献编号: SLAU049 产品说明 TI公司的MSP43O系列超低功耗微控制器由一些基本功能模块按照不同的应用目

标组合而成。在便携式测量应用中,这种优化的体系结构结合五种低功耗模式可以达到延长电池寿命的目的。MSP430系列的CPU采用16位精简指令系统,集成有16位寄存器和常数发生器,发挥了最高的代码效率。它采用数字控制振荡器(DCO),使得从低功耗模式到唤醒模式的转换时间小于6μs. MSP430x11x系列是一种超低功耗的混合信号微控制器,它拥有一个内置的16位计数器和14个I/0引脚。 典型应用:捕获传感器的模拟信号转换为数据,加以处理后输出或者发送到主机。作为独立RF传感器的前端是其另一个应用领域。 DW封装(顶视图) 可用选型 功能模块图

WIN_API串口通信详细讲解带范例程序说明

WIN32 API串口通讯实例教程 第一节实现串口通讯的函数及串口编程简介 API函数不仅提供了打开和读写通讯端口的操作方法,还提供了名目繁多的函数以支持对串行通讯的各种操作。常用函数及作用下: 函数名作用 CreateFile 打开串口 GetCommState 检测串口设置 SetCommState 设置串口 BuilderCommDCB 用字符串中的值来填充设备控制块 GetCommTimeouts 检测通信超时设置 SetCommTimeouts 设置通信超时参数 SetCommMask 设定被监控事件 WaitCommEvent 等待被监控事件发生 WaitForMultipleObjects 等待多个被监测对象的结果 WriteFile 发送数据 ReadFile 接收数据 GetOverlappedResult 返回最后重叠(异步)操作结果 PurgeComm 清空串口缓冲区,退出所有相关操作 ClearCommError 更新串口状态结构体,并清除所有串口硬件错误 CloseHandle 关闭串行口 用Windows API 编写串口程序本身是有巨大优点的,因为控制能力会更强,效率也会更高。 API编写串口,过程一般是这样的: 1、创建串口句柄,用CreateFile; 2、对串口的参数进行设置,其中比较重要的是波特率(BaudRate),数据宽度(BytesBits),奇偶校验(Parity),停止位(StopBits),当然,重要的还有端口号(Port); 3、然后对串口进行相应的读写操作,这时候用到ReadFile和WriteFile函数; 4、读写结束后,要关闭串口句柄,用CloseFile。 下面依次讲述各个步骤的过程。

一种基于MSP430单片机的交流频率检测系统

本文提出了一种交流信号过零检测的电路,即捕获交流信号的零点,并借助MSP430单片机内部的16位定时器A(Timer A)的脉冲捕获功能便能得到该交流信号的周期进而能得到它的频率。系统的硬件部分主要由MSP430单片机以及整流桥、光电耦合器、三级管等器件构成;而软件部分主要是基于MSP430单片机的C语言程序,包括系统的初始化、定时器的设置等。该系统的实验结果和电路仿真吻合较好,具有一定的应用价值。 1 引言 由于频率信号具有抗干扰性强、易于传输、测量准确度较高等优点,因此许多非频率量的传感信号都转换为频率量来进行测量和处理。因此频率测量方法愈来愈引起关注和研究。 频率测量是测量和控制系统领域的最基本测量之一。当今用的最多的测量信号频率的仪器是频率计,由于频率计在测量过程中需要一个时基信号作为测量信号频率的时基。时基信号一般是由本机振荡电路发生的,尽管现在多用石英晶体振荡器,但是仍然不能保证时基信号的精度,因此频率计的测量精度也就成了问题。传统的频率测量方法有两种[1]:一种是测频法,在一定时间间隔T内测出待测信号重复变化次数N, 频率即为;另一种方法是测周法,在被测信号的一个周期内测出标准高频信号f的个数N,则被测频率。 本文介绍了一种测宽法[2],借助光电耦合原理,将交流信号转变成周期脉冲信号,通过捕获脉冲信号的下降沿,由定时器计数,通过二次计数的差值便能得到脉冲信号的周期,进而可以计算出所测交流信号的频率。 2 硬件电路设计 硬件电路完成的任务是: (1)模拟电路部分的设计,其功能是进行信号的转化。交流信号通过整流桥、光电耦合器等模拟器件便能得到周期脉冲信号。 (2)数字电路部分的设计,其功能是进行信号的检测。MSP430单片机内部的16位定时器A具有脉冲捕获功能,能将脉冲信号的占空比检测出来。 图1为它的基本结构图。 图1 系统的基本结构

MSP430F5418中文翻译

混合信号单片机 特征 低电源电压范围:1.8 V至3.6 V 超低功耗 主动模式 所有系统时钟模式 230微安/ MHz的频率为8 MHz,3.0伏,闪存程序执行 110微安/ MHz的频率为8 MHz,3.0伏,内存程序执行 待机模式 实时时钟,看门狗 电源监控操作,全内存保留,快速工作 1.7 μA at 2.2 V, 2.1 μA at 3.0 V (Typical) 低功耗振荡器 通用计数器,看门狗,和电源监控操作,全内存保留,快速上电1.2 μA at 3.0 V (Typical) 关闭模式 电源监控操作,全内存保留,快速上电 1.2 μA at 3.0 V (Typical) 关断模式 0.1μA at 3.0 V (Typical) 唤醒时间小于5μs的待机模式 16位RISC构架 内存扩展 高达25 MHz的系统时钟 灵活的电源管理系统 完全集成的LDO稳压随着可编程核心供电电压 电源电压监控,监测和掉电 统一时钟系统 FLL的稳定控制回路频 Low-Power/Low-Frequency内部时钟源(VLO) 低频修剪过的内部参考源 32-kHz 石英钟 高频率高达32 MHz的石英钟 16位定时器TA0,有五个Timer_A捕捉/比较寄存器 16位定时器TA1的,有三个Timer_A捕捉/比较寄存器 16位定时器TB0,七Timer_B捕捉/比较寄存器的阴影 多达四个通用串行通信接口 USCI_A0,USCI_A1,USCI_A2,和USCI_A3相互支持 增强型UART支持自动波特率检测 IrDA编码器和解码器 同步SPI USCI_B0,USCI_B1,USCI_B2,和USCI_B3相互支持 I2CTM 同步SPI

MSP430单片机定时器实验报告

实验四定时器实验 实验目的: MPS430F5529片内集成的定时器A的使用,学习计数器的补捕获比较模块的使用。实验内容: 定时器采用辅助时钟ACLK作为计数脉冲,fACLK=32768Hz,实现以下功能: 1.定时器TA0延时1s,点亮或熄灭LED6,即灯亮1s灭1s,如此循环,采用中断服务程序实现。 2.定时器TA0延时1s,点亮或熄灭LED4,采用捕获比较器CCR0的比较模式,设定输出方式,输出方波,不用中断服务程序 3.采用捕获比较器CCR1的比较模式LED5,设定输出方式,输出PWM波形,使LED 亮2s,灭1s。 4.用定时器实现30s倒计时,在液晶模块上显示,每过一秒显示数字变化一次。 5.使用TA1的捕获比较器CCR0捕获按键的间隔时间,在液晶模块上显示。 程序代码: 程序1: #include void main() {WDTCTL = WDTPW + WDTHOLD; //关看门狗 P1DIR |= BIT3; //设置P1.0口方向为输出。 TA0CCTL0 = CCIE; //设置捕获/比较控制寄存器中CCIE位为1, //CCR0捕获/比较功能中断为允许。 TA0CCR0 = 32767; //捕获/比较控制寄存器CCR0初值为32767 TA0CTL = TASSEL_1 + MC_1+TACLR; //设置定时器A控制寄存器TACTL, //使时钟源选择为SMCLK辅助时钟。 //进入低功耗模式LPM0和开总中断 _BIS_SR(LPM0_bits +GIE); } //定时器A 中断服务程序区 #pragma vector=TIMER0_A0_VECTOR __interrupt void Timer_A (void) {

C#串口通信:MSComm控件使用详解

C#串口通信:MSComm控件使用详解 目次 MSComm 控件两种处理通讯的方式 CommPort 属性 RThreshold 属性 CTSHolding 属性 SThreshold 属性 CDHolding 属性 DSRHolding 属性 Settings 属性 InputLen 属性 EOFEnable 属性 Handshake 常数 OnComm 常数 InputMode 常数 错误消息 MSComm 控件通过串行端口传输和接收数据,为应用程序提供串行通讯功能。MSComm控件在串口编程时非常方便,程序员不必去花时间去了解较为复杂的API函数,而且在VC、VB、Delphi 等语言中均可使用。Microsoft Communications Control(以下简称MSComm)是Microsoft公司提供的简化Windows下串行通信编程的ActiveX控件,它为应用程序提供了通过串行接口收发数据的简便方法。具体的来说,它提供了两种处理通信问题的方法:一是事件驱动(Event-driven)方法,一是查询法。 1.MSComm控件两种处理通讯的方式 MSComm控件提供下列两种处理通讯的方式:事件驱动方式和查询方式。 1.1 事件驱动方式 事件驱动通讯是处理串行端口交互作用的一种非常有效的方法。在许多情况下,在事件发生时需要得到通知,例如,在串口接收缓冲区中有字符,或者Carrier Detect (CD) 或Request To Send (RTS) 线上一个字符到达或一个变化发生时。在这些情况下,可以利用MSComm 控件的OnComm 事件捕获并处理这些通讯事件。OnComm 事件还可以检查和处理通讯错误。所有通讯事件和通讯错误的列表,参阅CommEvent 属性。在编程过程中,就可以在OnComm事件处理函数中加入自己的处理代码。这种方法的优点是程序响应及时,可靠性高。每个MSComm 控件对应着一个串行端口。如果应用程序需要访问多个串行端口,必须使用多个MSComm 控件。 1.2 查询方式 查询方式实质上还是事件驱动,但在有些情况下,这种方式显得更为便捷。在程序的每个关键功能之后,可以通过检查CommEvent 属性的值来查询事件和错误。如果应用程序较小,并且是自保持的,这种方法可能是更可取的。例如,如果写一个简单的电话拨号程序,则没有必要对每接收一个字符都产生事件,因为唯一等待接收的字符是调制解调器的“确定”响应。 2.MSComm 控件的常用属性 MSComm 控件有很多重要的属性,但首先必须熟悉几个属性。 CommPort 设置并返回通讯端口号。 Settings 以字符串的形式设置并返回波特率、奇偶校验、数据位、停止位。 PortOpen 设置并返回通讯端口的状态。也可以打开和关闭端口。 Input 从接收缓冲区返回和删除字符。 Output 向传输缓冲区写一个字符串。 下面分别描述:

MSP430--定时器B

MSP430--定时器B (2012-07-20 10:56:37) 转载▼ 分类:单片机专区 标签: 转载 原文地址:MSP430--定时器B作者:wangtangwang2012 MSP43016位定时器B模块是单片机的重要资源。MSP430F13/14/15x系列都有定时器模块B,但是不同单片机系列所带的比较/捕获模块功能有所不同。 1.定时器B模块: TimerB与TimerA大部分相同,不同点在于定时器B的捕获/比较单元增加了锁存器。 二者区别: (1)TimerB计数长度为8位,10位,12位,16位可编程,由TBCTL寄存器的CNTLx两位来配置,而定时器A的计数长度是固定的16位; (2)TimerB没有实现定时器A中的SCCI功能位的功能; (3)TimerB在比较模式下的捕获/比较寄存器功能与TimerA不同,增加了捕获比较锁存器; (4)有些芯片型号当中TimerB输出实现了高阻抗输出; (5)比较模式的原理有所不同:TimerA当中CCRx寄存器当中保存与TAR相比较的数据,而在TimerB 当中CCRx中保存要比较的数据,但并不直接与定时器TBR相比较,而是将CCRx当中的数据锁存到相应的锁存器之后,由锁存器与TBR相比较。从捕获/比较寄存器相比较锁存器传输数据的过程的时间也是可编程的,可以是写入比较捕获寄存器之后立即传输,也可有一个定时器来触发传输。(6)TimerB支持多种同步的定时功能,多重比较捕获功能和多重波形输出功能(PWM波)。而且,通过对比较数据的两级缓冲,可实现多个PWM波同步周期更新。

2.TimerB的逻辑结构图: 定时器B的逻辑结构基本与定时器A相同。

RS232串口通信详解

串口是计算机上一种非常通用的设备通信协议。 --------------------------------- 串口的引脚定义: 两个串口连接时,接收数据针脚与发送数据针脚相连,彼此交叉,信号地对应相接即可。--------------------------------- 串口的电气特性: 1)RS-232串口通信最远距离是50英尺 2)RS232可做到双向传输,全双工通讯,最高传输速率20kbps 3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3 ~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片:

--------------------------------- 串口通信参数: a)波特率:RS-232-C标准规定的数据传输速率为每秒50、75、100、150、300、600、1200、2400、 4800、9600、19200波特。b)数据位:标准的值是5、7和8位,如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位);扩展的ASCII码是0~255(8位)。 c)停止位:用于表示单个包的最后一位,典型的值为1,1.5和2位。由于数是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。d)奇偶校验位:在串口通信中一种简单的检错方式。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为 0,保证逻辑高的位数是偶数个。如果是奇校验,校验位位1,这样就有3个逻辑高位。 --------------------------------- 串口通信的传输格式:串行通信中,线路空闲时,线路的TTL电平总是高,经反向RS232的电平总是低。一个数据的开始RS232线路为高电平,结束时Rs232为低电平。数据总是从低位向高位一 位一位的传输。示波器读数时,左边是数据的高位。 例如,对于16进制数据55aaH,当采用8位数据位、1位停止位传输时,它在信号线上的波形如图1(TTL电平)和图 2(RS-232电平)所示。 55H=01010101B,取反后10101010B,加入一个起始位1,一个停止位0,55H的数据格式为1010101010B; aaH=10101010B,取反后01010101B,加入一个起始位1,一个停止位0,55H的数据格式为1101010100B;

MSP430F149单片机定时器B捕获例程

/** *************************************************************** MSP430F149单片机定时器B捕获例程 日期:2013.9.10 姓名:MRT notice:捕获比较中断入口向量相同 ************************************************************** * * * **/ #include #define uint unsigned int #define uchar unsigned char uint ccr0=0; uint ccr1=0; uint ccr2=0; uint ccr3=0; uint ccr4=0; uint ccr5=0; uint ccr6=0; /*****************************main函数***********************/ void main(void) { WDTCTL = WDTPW + WDTHOLD; // Stop WDT P5DIR|= BIT6; // P5.6输出 P5SEL|= BIT6; // P5.6输出ACLK P4SEL|= BIT0; P4DIR&= ~BIT0; P4SEL|= BIT1; P4DIR&= ~BIT1; P4SEL|= BIT2; P4DIR&= ~BIT2; P4SEL|= BIT3; P4DIR&= ~BIT3; P4SEL|= BIT4; P4DIR&= ~BIT4; P4SEL|= BIT5; P4DIR&= ~BIT5; P4SEL|= BIT6; P4DIR&= ~BIT6; /*----------定时器B CCIS_0/CCIS_1(CCIxA/CCIxB)两个外部输入中断公用一个IO-----------------*/ TBCCTL0 =CAP+CM_1+CCIS_0+SCS+CCIE; //捕获模式,上升捕获,选择CCI0A,同步,捕获中断开

MFC串口通信编程详解解析

MFC串口通信编程介绍 主要介绍了用CreateFile(函数和WriteFile(函数读写串口的实例,以及设置串口属性的实例. 在工业控制中,工控机(一般都基于Windows平台经常需要与智能仪表通过串口 进行通信.串口通信方便易行,应用广泛. 一般情况下,工控机和各智能仪表通过RS485总线进行通信.RS485的通信方式是半双工的,只能由作为主节点的工控PC机依次轮询网络上的各智能控制单元子节点.每次通信都是由PC机通过串口向智能控制单元发布命令,智能控制单元在接收到正确的命令后作出应答. 在Win32下,可以使用两种编程方式实现串口通信,其一是使用ActiveX控件,这种方法程序简单,但欠灵活.其二是调用Windows的API函数,这种方法可以清楚地掌握串口通信的机制,并且自由灵活.下面只介绍API串口通信部分. 串口的操作可以有两种操作方式:同步操作方式和重叠操作方式(又称为异步操作方式.同步操作时,API函数会阻塞直到操作完成以后才能返回(在多线程方式中, 虽然不会阻塞主线程,但是仍然会阻塞监听线程;而重叠操作方式,API函数会立即返回,操作在后台进行,避免线程的阻塞. 无论哪种操作方式,一般都通过四个步骤来完成: (1打开串口 (2配置串口 (3读写串口 (4关闭串口

一打开串口 Win32系统把文件的概念进行了扩展.无论是文件、通信设备、命名管道、邮件槽、磁盘、还是控制台,都是用API函数CreateFile来打开或创建的.该函数的原型为: HANDLE CreateFile( LPCTSTR lpFileName, DWORD dwDesiredAccess, DWORD dwShareMode, LPSECURITY_ATTRIBUTES lpSecurityAttributes, DWORD dwCreationDistribution, DWORD dwFlagsAndAttributes, HANDLE hTemplateFile; ?lpFileName:将要打开的串口逻辑名,如“COM1”; ?dwDesiredAccess:指定串口访问的类型,可以是读取、写入或二者并列; ?dwShareMode:指定共享属性,由于串口不能共享,该参数必须置为0; ?lpSecurityAttributes:引用安全性属性结构,缺省值为NULL; ?dwCreationDistribution:创建标志,对串口操作该参数必须置为 OPEN_EXISTING; ?dwFlagsAndAttributes:属性描述,用于指定该串口是否进行异步操作,该值为FILE_FLAG_OVERLAPPED,表示使用异步的I/O;该值为0,表示同步I/O操 作;

MSP430定时器输出PWM方波

定时器A输出方波 1、定时器的PWM输出8种模式 输出模式0输出模式:输出信号OUTx由每个捕获/比较模块的控制寄存器CCTLx中的OUTx位定义,并在写入该寄存器后立即更新。最终位OUTx直通。 输出模式1置位模式:输出信号在TAR等于CCRx时置位,并保持置位到定时器复位或选择另一种输出模式为止。 输出模式2PWM翻转/复位模式:输出在TAR的值等于CCRx时翻转,当TAR的值等于CCR0时复位。 输出模式3PWM置位/复位模式:输出在TAR的值等于CCRx时置位,当TAR的值等于CCR0时复位。 输出模式4翻转模式:输出电平在TAR的值等于CCRx时翻转,输出周期是定时器周期的2倍。 输出模式5复位模式:输出在TAR的值等于CCRx时复位,并保持低电平直到选择另一种输出模式。 输出模式6 PWM翻转/置位模式:输出电平在TAR的值等于CCRx时翻转,当TAR值等于CCR0时置位。 输出模式7 PWM复位/置位模式:输出电平在TAR的值等于CCRx时复位,当TAR的值等于CCR0时置位。 下图是增计数模式下的输出波形:

2、程序:(TA定时器输出1K的方波) void TAPWM(void) { //引脚设置(暂时使用P1.2输出一路PWM) P1SEL |= BIT2; //TA1从P1.2输出 P1DIR |= BIT2; //TA1从P1.2输出 //P2SEL |= BIT0; //TA2从P1.2输出 //P2DIR |= BIT0; //TA2从P1.2输出 TACTL |= MC_1 + TASSEL_1; //时钟源选择ACLK,增计数模式TA设置 TACCTL1 = OUTMOD_7; //模式7 高电平PWM输出PWM设置 //TACCTL2 = OUTMOD_7; //模式7 高电平PWM输出 TACCR0 = 33-1; //PWM总周期=32个ACLK周期约等于1000Hz 设置PWM 的周期 TACCR1 = 16; //TA1 占空比= 16/32=50% 设置占空比 //TACCR2 = 16; //TA2 占空比= 16/32=50% } 软件改变TACCR0即可改变PWM的周期,改变TACCR1或者TACCR2即可改变占空比

MSP430 中文版用户指南

用于MSP430?的IAR嵌入式工作平台版本3+用户指南 Literature Number:ZHCU026X June2004–Revised November2011

内容Preface (5) 1现在就开始! (7) 1.1软件安装 (8) 1.2LED闪烁 (8) 1.3光盘和网络上重要的MSP430文档 (9) 2开发流程 (10) 2.1概述 (11) 2.2使用KickStart (11) 2.2.1项目设置 (12) 2.2.2用于MSP430L092/MSP430C092的附件项目设置 (13) 2.2.3从零开始创建一个项目 (15) 2.2.4用于LPMx.5调试的附加项目设置 (16) 2.2.5MSP430器件的密码保护 (17) 2.2.6使用一个现有的IAR V1.x/V2.x/V3.x项目 (18) 2.2.7堆栈管理和.xcl文件 (18) 2.2.8如何生成德州仪器(TI).TXT(和其它格式)文件 (18) 2.2.9示例程序概述 (18) 2.3使用C-SPY (18) 2.3.1断点类型 (19) 2.3.2使用断点 (20) 2.3.3使用单步执行 (21) 2.3.4使用观察窗口 (21) A常见问题和解答 (23) A.1硬件 (24) A.2程序开发(汇编语言、C语言编译器、连接器) (24) A.3调试中(C-SPY) (26) B FET专用菜单 (30) B.1菜单 (31) B.1.1Emulator→Device Information (31) B.1.2Emulator→Release JTAG on Go (31) B.1.3Emulator→Resynchronize JTAG (31) B.1.4Emulator→Init New Device (31) B.1.5Emulator→Secure-Blow JTAG Fuse (31) B.1.6Emulator→Breakpoint Usage (31) B.1.7Emulator→Advanced→Clock Control (31) B.1.8Emulator→Advanced→Emulation Mode (31) B.1.9Emulator→Advanced→Memory Dump (32) B.1.10Emulator→Advanced→Breakpoint Combiner (32) B.1.11Emulator→State Storage Control (32) B.1.12Emulator→State Storage Window (32) B.1.13Emulator→Sequencer Control (32) B.1.14Emulator→"Power on"Reset (32) B.1.15Emulator→GIE on/off (32) B.1.16Emulator→Leave Target Running (32)

相关主题
文本预览
相关文档 最新文档