当前位置:文档之家› 中科院固体表面物理化学笔记_——Jeveels

中科院固体表面物理化学笔记_——Jeveels

中科院固体表面物理化学笔记_——Jeveels
中科院固体表面物理化学笔记_——Jeveels

1.Introduction

?表界面的分类:气-液;气-固;液-液;液-固;固-固

?表面浓度

?分散度

?表面形貌非均匀性

原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。

?位错密度

?表面粗糙度:

?原矢

?米勒指数(miller index)

?晶面间距d hkl

?

?

?表面自由能

?减小表面能的方法

?表面原子重排机理

1:表面弛豫作用

2:表面相转变

3:吸附对纯净底物表面结构的影响

层间距的变化;重组的表面结构的变化;吸附原子可以诱导表面重组?内外表面

内表面:多孔或多层材料,孔内或层间的表面

比表面积:单位质量材料的表面积;用BET方法测量

2.固体表面性质简介

固体表面的性质

结构特征:不同的位置有不同的性质

表面运动:气体分子表面撞击速度;

表面扩散系数(爱因斯坦方程):

外延生长原子的运动流程:a沉积/吸附在平台上-deposition;b沉积在原子岛上;c平台上扩散-diffusion;d脱附-desorption;e成核-nucleation;f交互扩散-interdifusion;g 粘附在平台上-attachment;h从平台上脱离-detachment;i:粘附在台阶上

化学性质:表面浓度依赖于气体分子撞击速度R

相界面(Gibbs界面)

表面热力学函数

其他类推:S,G,G s

比表面自由能与温度的关系

; ;

Van der Waals and Guggenheim Equation:

Where: T c为临界温度;为0Kし的表面张力

固体表面能的理论估算

金属表面张力估算

偏析作用

来自晶体或固溶体中的杂质或溶质在界面聚集的现象

表面偏析公式:

正规溶液参数

扩散

扩散:由热运动引起杂质原子、基质原子或缺陷输运的过程

原因:原子或离子分布不均匀,存在浓度梯度,产生定向扩散

扩散机理:间隙扩散,空位扩散,环形扩散

表面扩散

靠吸附原子或平台空位的运动实现。

一维随机行走理论:表面原子通过扩散进行迁移,原子运动方向移动,每次跳跃距离等长d,将原子加以标记,温度T下,净距离为x,有Einstein方程

吸附的基本过程

1:反应物扩散到活性表面;2一个或者多个反应物吸附在表面上;3表面反应;4产品从表面脱附;5产品从表面扩散出去

吸附动力学

; 其中x为动力学级数;p为分压

; E a活化能

; ; ;

S粘着几率;F入射分子流;表面覆盖率函数

吸附方式

物理吸附:Van der Waals Force;电荷密度轻度分布

化学吸附:化学键,电子密度重排,完全离子键,完全共价键

几种元素的化学吸附

氢气(H2):没有与基地原子相互作用的电子;分子-氢过渡金属复合物

氢原子(H):氢原子与基地原子独立相互作用

卤素(F2, Cl2, Br2, etc):以离解的方式给出卤素原子的吸附;与金属形成强的离子键氧气(O2):在金属表面以分子形式吸附,氧分子作为给体,金属作为受体

氧原子(O):占据最高有效配体位置;强的相互作用导致表面的扭曲或者重组

!离解氧吸附是不可逆过程;加热可以导致化合物的扩散或者形成

氮气(N2):低强度M-N键,ゆ很难破坏的NN三键

一氧化碳(CO):①活化表面:解离,分别形成氧化物へ碳氧化合物;②d区金属:弱的M-CO分子键,加热脱附;③过渡金属:对温度へ表面结构敏感

氨气(NH3):

不饱和碳氢化合物:

化学吸附气体的排列规则

1:紧密堆积:尽可能形成最小单胞

2:转动对称性ゆ基地相同

3:类似体相单胞矢量:单层(基地);多层(本体)

化学吸附层表面结构分类:

1:在顶上化学吸附:停留在表面,不扩散到体相内部

2:共吸附表面结构:吸附强度相近的两种气体同时吸附

3:重组的表面结构:表面原子重排,し体相的化学反应の前驱

4:无定形表面结构:有序结构の形成扩散过程

5:三维结构:扩散到体相内部の表面吸附

脱附过程

1:气相产物或者其他表面物质的分解;2:表面化合物の反应后者扩散;3:脱附到气相中

脱附动力学

; 其中x为动力学级数(单分子或者原子脱附x=1;联合分子脱附x=2);N 为吸附物种表面浓度;k脱附速率常数

; 活化能

;

表面滞留时间

平均时间:

;

表面态

表面局部的电子能级

表面上附着电荷表明表面上存在着し电子局限于表面的量子态。

表面态有两种:一是固有的,二是外来物类或表面缺陷引起的

固有表面态

量子力学证明一个固体,即使是纯净的へ完整的晶体,在其表面上仅仅因为体相周期性被破坏,就将导致表面局部能级的出现。分为Shockley态へTamm态

表面空间电荷效应

双电层:正负电荷分开

平行板电容器簡単さ定律:;

Q净表面正电荷密度;:介电常数;真空绝对介电常数

空间电荷双电层:Schottky模型(假定靠近表面的空间电荷し不动的,并且在整个空间电荷区ゆ距离无关)

强氧化还原物类吸附引起的空间电荷效应

积累层:强还原剂吸附在n型半导体上或者强氧化剂吸附在p型半导体上,基体内主要载流子由吸附剂注入使之在表面空间电荷层内累积

反型层:强氧化剂吸附在n型半导体上或者强还原剂吸附在p型半导体上,基体内主要载流子注入吸附剂中,在表面空间电荷层出现ゆ基体相反的导电性。

能带弯曲

3.现代表面分析技术概况及应用

表面检测

几何结构的检测:原子重排,吸附位置,键角,键长

化学成份的检测:元素及其深度

理化性能的检测:氧化态,化学、电子及机械性能

测量技术要求

1:区分表面和体相,表面灵敏的;2:灵敏度非常高;3测量无污染表面,超真空;4必须有信号载体;5:样品表面可控

信号载体的探针包括:电子,离子,光子,中性粒子,热,电场,磁场

电子ゆ固体表面的相互作用

电子平均自由程()

电子ゆ晶体中的原子核产生两次连续碰撞之间所走过的平均路程。

计算式:

对于纯元素:; a单原子层厚度,Eい费米能级为零点的电子能量

对于无机化合物:

对于有机化合物:;mg/m2

电子作为探束的表面分析方法

低能电子衍射(LEED);反射式高能电子衍射(RHEED);俄歇电子能谱(AES);电子能

量损失谱(EELS);投射电子显微镜(TEM);扫描电子显微镜(SEM)

离子ゆ固体表面的相互作用的作用过程:散射,注入,溅射,再释,表面损伤,光发射,电子发射,电离与中和,表面化学反应,表面热效应

从真空端观察到的各种粒子的发射现象

1:散射的初级离子:能量分布和角分布反应表面原子的成分じ排列—离子散射谱2:中性原子、原子团、分子じ正/负离子:进行质谱、能谱分析得到表面成分分析-次级离子质谱3:电子:クィ能量分布给出有关离子轰击、中和、次级离子发射过程じ表面原子电子态信息-离子激发表面电子谱;4:X射线じ光发射:表面化学成分じ化学态信息-离子诱导光谱

从靶上观察到的变化

1:表面じ进表层的原子、原子团分子い中性粒子或离子的形式溢出:发射区(10A),溢出深度2:初级离子注入じ表层原子的反弹注入;注入区,注入深度(离子入射角),沟道效应3:晶格结构扰动,晶格扰动波及区,产生缺陷ゆ位错4:表面化学反应

离子作为探束的表面分析方法

离子散射谱(ISS);次级离子质谱(SIMS);卢瑟福背散射谱(RBS);离子激发X射线谱(IEXS);离子中和谱(INS)

特点:离子重,动量大:可出于不同的激发态;静电场じ接触电位差位能作用;可以表面发生化学反应;可得到最表层信息,很高检测灵敏度,丰富的表面信息

缺点:表面受到损伤,破坏性分析,表面态不断发生变化,定量难,作用过程复杂,识谱难,基体效应(一种成分存在影响另一成分的刺激离子产额)

光电效应:当光子能量全部交个一个电子,使其脱离原子而运动

康普顿效应:光子ゆ电子产生碰撞,将一部分能量交给电子而散射,碰撞射出的电子成为康普顿电子。

光子ゆ表面作用有:光发射/散射,光吸收,光衍射,光激发产生光电子,光诱导表面分子脱附へ反应

光子作为探束的表面分析方法

光助场发射;阈值光电子谱;能带结构じ价电子能谱;紫外光子电子谱(UPS);X射线光电子谱(XPS)

同步辐射光源的特点

1:从红外到硬X射线的连续光谱,可用单色器分光;2:光源稳定而强大:试验时间缩短,信噪比提高;3:主要し偏振光:光跃迁选律じ角分辨光电子能谱;4:高度准直性

中心粒子:中心粒子碰撞诱导辐射(SCANIIR);分子束散射(MBS)

肖特基效应:外加电场可以减低能垒,有助于电子发射

场致电子发射:在强电场(107-108V/cm)作用下,因存在量子力学的隧道效应,在固体不加热的情况下也能出现显著的电子冷发射。

热场致发射:在温度不为零的情况下产生的场致发射电子。

电场作为探束的表面分析方法:场电子显微镜(FEM);场离子显微镜(FIM);原子探针场离子显微镜(APFIM);扫描隧道显微镜(STM)

电场探束分析

特点:1:为获得强场样品做成针尖形;2点投射显微镜,具有105-107倍方法效应;3结构简单;4分辨率高:FEM25A,FIM原子级。缺点:样品制备复杂,强场存在,表面强场存在

分类

按探测粒子或发射粒子分类:电子ぷ,光谱,粒子ぷ,光电子ぷ

按用途分类:组分分析,结构分析,电子态分析,原子态分析

4.俄歇电子能谱

●俄歇过程

俄歇电子在低原子(Z<15)的无辐射内部重排发射出来,其步骤为:

1:入射电子撞击原子离子化,发射出内部电子离开芯能级;2:高能电子掉入芯能级;

3:第二步中产生的能量激发了另一个电子,一般来自于同一壳层

●俄歇电子标记

●K系列俄歇跃迁:同一空穴可以产生不同俄歇跃迁,当初始空穴在K能级时,就出现K

系列跃迁,如KLL,KLM,KMN

●俄歇群:同一主壳层标记的次壳层不同的俄歇跃迁,如KL1L1,KL1L2,KL1L3,KL2L3

●C-K(Coster-Kronig)跃迁:初始空穴和填充电子处于同一主壳层的不同次壳层,如LLM,

MMN,特点:跃迁速度非常快

●超C-K跃迁:三个能级处于同一主壳层;如:LLL,MMM

●一般:Z<15: KLL; Z: 16~41, LMM; Z>42, MNN

●能量分析器:用来测量从样品中发射出来的电子的能量分布,分辨率=

柱偏转分析器(127°-CDA);半球形分析器(CHA/SDA);平面镜分析器(PMA);铜镜分析器(CMA)

●检测器:通道式电子倍增管;打拿极式倍增管

●能量分布涉及4个电子:原始入射电子(P),激发的二次电子(s),跃迁电子(t),俄歇

电子

●背景分析

●Auger电子的特征能量计算

能量守恒原理:

经验公式:

实际计算公式:

●电离截面是指原子被入射粒子电离产生空穴的几率。

●平均逃逸深度へ平均自由程

●定性分析

●定量分析

标样法:I=kN

灵敏因子分析法:

灵敏因子:在给定的试验条件下,各种元素的特征俄歇跃迁在经历了样品内部各过程后,俄歇电子溢出表面的几率

在灵敏因子相互独立へ仪器因子相同し:不同元素的相对浓度(原子百分比):

●化学位移:俄歇电子能量的位移

●AES应用:1:表面成分分析;2:化学环境分析;3:深度剖析;4:界面分析;5:金

属薄膜生长模式分析;6:微区成像分析

5.光电子能谱

◆一些总结

电子结合能:; 依次表示电子真空动能,入

射光子能量,电子结合能,表面势垒/仪器功函数

X光激发内层电子;紫外光激发价层电子;俄歇电子检测的し内层二次电子

X射线最主要的缺陷在于它的线宽较宽,达到0.8eV,单色化的Al-K aだ0.4eV

数据分析:分析能量位置,峰强度,峰形状

◆定性分析

由谱图中的光电子芯能级峰的结合能确定。同AES,采用元素指纹鉴定分析

◆芯能级化学位移

原子因处于化学环境不同而同引起芯能级电子结合能发生改变

◆定量分析

均一体系,元素A的给定能级的强度:

灵敏度因子法:

浓度:

表面吸附:

◆光电子能谱的伴峰结构

1:弛豫效应:し光电子谱峰向低结合能一侧移动,分为两部分:①原子内项(单独原子内部电子的重新调整);②原子外项(ゆ被电离原子相关的其他原子的电子结构调整)。

2:多重分裂:当原子或自由离子的价壳层拥有未配对自旋电子,即当体系初始总角动量J不为零,则光致电离所形成的内壳层空位将与价轨道未配对自旋电子发生耦合,使体系出现不止一个终态。相应于每个终态,在XPS谱图上有一条谱线,这便是多重分裂的含义。

分裂谱线所对应的能量间距反应谱线的分裂程度;从课件示例谱图中看出随着l的增大,分裂程度减小。

◆多电子激发

携上伴峰(shake-up):如果一个电子被激发到更高的束缚态,谱图中くぃ相应的伴峰;

此过程导致更高的结合能

携出伴峰(shake-off):假如激发发生在自由连续态中,形成一个芯能级へ价带均有空穴的双电离原子;导致更高的结合能

Take-off angle:小角度的发射角可以提高表面的灵敏度

6.扫描探针显微镜:STM&AFM

?原理:扫描隧道显微镜へ原子力显微镜

?扫描隧道显微镜STM

量子隧穿效应为其原理;

两种模式:恒流模式,恒高模式

功函数不同,一般选用纯物质样品

压电陶瓷控制移动:;(分别为电压,压电元件长度,厚度,压电元件常数);

电流前置放大器;反馈电路:模拟式へ数字式

振动隔离:启动系统へ悬挂弹簧

针尖获得:电化学腐蚀,针尖处理:电场/撞击锐化

?STM-IETS:scanning tunneling microscopy-inelastic electrical tunneling spectroscopy

?原子力显微镜AFM

模式:接触式:恒力模式へ恒高模式;;压电材料定位,激光测量弯曲

轻敲式:悬臂上下摆动敲击样品表面

非接触式:表面非常小力(~10-12N),针尖-表面距离10-100A;适合于软物质或者弹性表面;无污染,无损坏,针尖寿命长

?针尖:微悬臂

?横向力显微镜:探针斜侧扫描;反应样品的精细结构细节

?相位成像:适用于轻巧模式;可以确定高分子混合物的两相结构;确定在高度成像中不

能反应的表面污染

?提升模式成像:扫描两次:一次测量拓扑结构;另一次测量材料性质;消除了相的交叉

污染

?磁力显微镜:原子显微镜针尖上涂磁性材料;1し非接触模式(<100A)拓扑结构,2

し远程非接触模式(>100A)磁场

?STM优缺点:

优点:1真实空间图像;很好的侧向(<1A)へ垂直向(<0.1A)分辨率;3可以获得表面单胞尺寸へ对称性或者电子结构;4能够直接反应分子轨道;5能够确定一些光谱信息;6足够快允许一些动力学信息;7能够激发和探测电子激发化学反应

缺点:1复杂并且昂贵;2受噪音的影响;3图像在针尖和表面电子结构之间回旋卷曲;

4:针尖难以制备;5在导体上工作

?AFM优缺点

优点:1样品不受导电性限制,可用于生物物质,有机物或高分子;2:仪器びSTM简单;3商业化的针尖和微悬臂;4提供真实拓扑图像;5测定其他物理性质,如疏水性、磁性、静电性、摩擦力和弹性模量;5非接触模式对软物质或者易碎物质产生最小的损坏。

缺点:1对噪音和振动敏感;2:水的存在可能扭曲图像;3接触模式损坏表面;4:同STM,针尖形貌回旋在图像上;5chemically blind

7.电子显微镜:TEM&SEM

电镜分析

信息获得:拓扑结构,形貌,组成,晶体学信息

放大信息:;分别对应物镜,中间镜,投射镜的放大倍数

衬度:衍射衬度和散射衬度

散射衬度(明场)

;N0-Avogadro 常数;-散射截面面积;Z A-原子量;t-厚度;-密度

衍射衬度(暗场)

; ;L相机长度,R衍射斑点离中心的距离

TEM主要性能指标

分辨率(点分辨率:两点之间的距离;线分辨率:最小的晶面间距),放大倍数,加速电压,景深和焦深

TEM样品制备

样品条件:1很薄;2:能够承受高能电子和高真空

粉末样品:铜网(直径2-3mm;100nm厚)上支持膜,样品高分散

直接薄膜样品:真空蒸发法;溶液凝固法;离子轰击减薄法;超薄切片法;金属薄片制备法

复型技术:表面显微组织浮雕复型

SEM衬度分析

形貌衬度;成分衬度;电位衬度——探测粒子:二次电子

形貌衬度;成分衬度;晶体衬度——探测粒子:背散射电子

;

SEM指标

分辨率;放大倍数;景深

SEM样品制备

1样品在真空中稳定,不能有水分,表面污染,断口或截面,磁性样品;样品座直径3-5nm或30-50nm;高度5-10mm

2:块状样品:导电材料,非导电或者导电性很差的材料需要镀膜处理

3:粉末样品:镀上导电膜

4:镀膜方法:真空镀膜,离子溅射镀膜(惰性气体氩,5*10-2Torr)

8.其他技术

?低能电子衍射(LEED)

倒易晶格(必考):

r: 样品到荧光屏的长度,Edward球的半径为

零点位置不变;入射电子能量越高,波长越短,结果荧光屏晶格距离越短;同时表面晶体晶格越长,倒易点阵的晶格距离越短,最后的荧光屏晶格越短。

?反射式高能电子衍射(RHEED)

; ;

同样利用Edward球,可以看出:入射电子能量越高,波长越短,距离越小,点越密集;

样品晶体点阵距离越小,d越小,S越大。

红外吸收反射光谱(IRAS/RAIRS)Infrared Adsorption-Reflection Spectroscopy 红外光谱:吸收峰位置形状—结构信息;吸收峰强度—含量信息;?立体构型—化学键强度and热力学函数

光谱产生条件:

红外光谱总结:

透射红外光谱(TIRS):红外透过的样品,支持金属催化剂,样品高表面积

漫反射红外光谱(DRIFTS: Diffuse Reflectance IRS):TIRS中不能透射的样品,高表面积红外吸收反射光谱(RAIRS):高反射性样品,低表面积,正前方检测反射光子

多重内反射红外光谱(MIR):也是衰减全反射红外光谱(ATR: attenuated total reflection)吸收函数:

A:吸收;: 吸收系数

分辨率:2-4cm-1

从上面可以看出:质量越大,吸收频率越高,波数越大,谱图上越靠左

*分子在固体表面的覆盖度越大,分子的振动频率越大

红外不能检测600cm-1以下的峰

优点:1高分辨性;2仪器设备簡単さ;3不仅限于超高真空(UHV),可在大气じ高压

下进行使用;4理论成熟;扫描速度快(30s-10min)

缺点:1灵敏度低于HREELS;2红外不能检测600cm-1以下的峰;3表面法线方向有偶极矩分量的振动模式是活性的(表面选择定则);4背景差谱

?表面增加拉曼光谱(SERS: surface enhanced raman spectroscopy)

拉曼效应—非弹性散射

两种理论:经典理论和量子理论

经典理论:入射光的电磁场与分子的相互作用;下面三项依次为瑞利,反斯托克斯,斯

P

量子理论:

(应该不会考,不用管它了)

拉曼光谱类型:1:共振拉曼光谱(RRS);2傅里叶变换拉曼光谱(FTRS);紫外拉曼光谱(UVRS);4表面增强拉曼光谱(SERS)

增强的两个机理:1电磁场效应(~104):金属表面局域电场增强;2化学效应(10-100):金属表面与吸附分子形成电荷转移复合物

?离子散射谱(ISS)

散射示意图

推测表面原子的质量:

沟道效应

当带电粒子以小角度射入单晶中的一行行原子时,若粒子轨迹被限于原子的行和面之间,可使粒子射程比随机方向射入时显著增加,具有异常的穿透作用。

当注入离子沿着基材的晶向注入时,则注入离子可能与晶格原子发生较少的碰撞而进入离表面较深的位置

阴影效应

由于样品表面吸附凹凸不平使检测强度变化

二次离子质谱(SIMS)

离子溅射:表面清洁;深度剖析;成分分析

原理示意图

类型:动态次级离子质谱;静态次级离子质谱

比较

溅射阈能:使样品表面出现溅射时初级离子的临界能量

离子溅射产额:一个初级离子从表面溅射出来的离子的数量;其中N s二次离子

中南大学表面物理化学化学试题-答案

中南大学研究生考试试卷 2009— 2010学年二学期期末考试试题时间110分钟 表面物理化学化学课程32学时2.0学分考试形式:开卷 专业班级:姓名学号 卷面总分100分,占总评成绩 70 %,卷面得分 一、选择题(每小题2分,共20分) 1.液体表面最基本的特性是( A ) A.倾向于收缩 B.倾向于铺展 C.形成单分子吸附层 2.若将液体与毛细管壁间的接触角近似看作0°,则液体在毛细管中的液面可以看作( C ) A.凹型 B.凸型 C.球面 3.下列方程均为计算液a/液b界面张力γab的经验公式,其中Fowkes公式为( C ) A.γab =γa -γb B.γab =γa + γb -2(γaγb)1/2 C.γab =γa + γb -2(γa dγb d)1/2 4.吊片法测定液体表面张力时,要求尽可能采用表面粗糙的吊片材料,其目的是( A ) A.改善液体对吊片的润湿使θ接近于0° B. 改善液体对吊片的润湿使θ接近于90° C.改善液体对吊片的润湿使θ接近于180° 5.溶液中溶剂记为1、溶质记为2,则吸附量Γ2(1)的含义为( C ) A.单位面积表面相与含有相等总分子数的溶液相比较,溶质的过剩量 B.单位面积表面相与含有等量溶质的溶液相比较,溶剂的过剩量 C.单位面积表面相与含有等量溶剂的溶液相比较,溶质的过剩量 6.C12H25SO4Na(1)、C14H29SO4Na(2)、C16H33SO4Na(3)三种物质在水表面吸附达到饱和状态时,三种物质分子在表面所占面积a m存在下列关系( B ) A. a m,1> a m,2> a m,3 B. a m,1≈a m,2≈a m,3 C. a m,1< a m,2< a m,3 7.苯在水面上先迅速展开后又自动收缩成为小液滴漂浮在水面上,用于描述苯液滴形状的表化专业术语是( C ) A.二维液膜 B.多分子层 C.透镜 8.下列说法中不正确的是( C ) A.任何液面都存在表面张力 B.平面液体没有附加压力 C.弯曲液面的表面张力方向合力指向曲率中心 D.弯曲液面的附加压力指向曲率中心 9.运用过滤手段进行溶胶净化的目的是( B ) A.除掉反应过程中过量的副产物 B.除掉过量的电解质 C.除掉溶胶体系中的粗离子 10.对于胶体体系下列说法正确的是( B ) A.电解质引发胶体体系聚沉的主要原因是使扩散层变厚 B.低浓度的聚合物可以使胶体体系发生聚沉,而高浓度的聚合物却可以使胶体体系稳定 C.胶体体系属于热力学多相体系,由于界面自由能显著,所以无论采取何种措施都不可 能获得相对稳定的胶体溶液 二、填空题(每小题2分,共20分) 1.液-固润湿过程有_沾湿_ ,_ 浸湿_ , _铺展_ . 2.固体自溶液中吸附时,极性吸附剂易于从非极性溶液中吸附__极性_____物质,而非极 性吸附剂易于从极性溶液中吸附__非极性____物质。

大学物理化学主要公式

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律

大学 物理化学 笔记总结

第一章 物理化学的定义,相变化(物质在熔点沸点间的转化) 物理化学的基本组成:1化学热力学(方向限度)2化学动力学(速率与机理)3结构化学 物理化学的研究方法、热力学方法、动力学方法、量子力学方法 系统、环境的定义。系统的分类:开放系统,封闭系统,隔离系统 系统的性质:强度性(不可加),广延性(可加)。系统的状态 状态函数及其性质:1单值函数2仅取决于始末态3全微分性质。 热力学能、热和功的定义 热分:潜热,显热。功分:膨胀功、非膨胀功。 热力学第一定律的两类表述:1第一类永动机不可制成。2封闭体系:能量可从一种形式转变为另一种形式,但转变过程中能量保持不变。、 恒容热、恒压热,焓的定义。PV U H def +≡ 恒容热:①封闭系统② W f =0 ③W e =0 恒压热:①封闭系统②W f =0 ③d p =0 理想气体的热力学能和焓是温度的函数。 C, C V , C V ,m , C P , C P,m 的定义。 △u =n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) C V ,m =a+bT+cT 2+…/ a+bT -1+cT -2 +… 单原子分子C V ,m = 23R C P ,m =25R 双原子分子C V ,m =25R C P ,m =2 7R γ单= 35 γ双=5 7 C P,m - C V ,m =R R=8.3145J ·mol -1·k -1 可逆过程定义及特点:①阻力与动力相差很小量②完成一个循环无任何功和热交换③膨胀过程系统对环境做最大功,压缩过程环境对系统做最小功 可逆过程完成一个循环 △u=0 ∑=0W ∑=0Q W 、 Q 、△u 、△H 的计算 ①等容过程:W =0 Q =△u △u=n C V ,m (T 2-T 1) △H=n C P,m (T 2-T 1) ②等压过程:W =-Pe(V 2-V 1) Q=△H △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) ③等温过程:W=-nRTln 1 2V V Q=-W △u=△H=0 ④绝热可逆过程:W=n C V ,m (T 2-T 1) /?? ? ???? ?-??? ? ??--1112111γγv v v p Q=0 △u=n C V ,m (T 2-T 1) △H=n C P ,m (T 2-T 1) 21p p =(12v v )γ 21T T =(12v v )1-γ 21T T =(2 1p p ) γ γ1 - 相变化过程中△H 及△u 的计算△u=△H-P △V=△H-nRT 见书1-10 化学计量系数ν 化学反应进度??= B νB n ?(必与指定的化学反应方程对应) 化学反应热效应定义, 盖斯定律:一个化学反应,不管是一步完成或是经数步完成,反应的总标准摩尔焓变是相同的,即盖斯定律。 标准摩尔反应焓变:)(H m T r θ ?= ∑B B θν m H (B ,,β T ) 化学反应θ m H r ?的计算:1 )(H m T r θ ?= ∑?B B θν m f H (B ,,β T ) θ m f H ?:在温度为T ,

中科院固体表面物理化学期末考试总结

表界面的分类:气-液;气-固;液-液;液-固;固-固 ?表面浓度 ?分散度 ?表面形貌非均匀性 原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。 ?位错密度 ?表面粗糙度: ?原矢 ?米勒指数(miller index)

?晶面间距d hkl ? 表面原子最近邻数100110111 Fcc879 Bcc464 Sc543? ?表面自由能 ?减小表面能的方法 ?表面原子重排机理 1:表面弛豫作用 2:表面相转变 3:吸附对纯净底物表面结构的影响 层间距的变化;重组的表面结构的变化;吸附原子可以诱导表面重组?内外表面 内表面:多孔或多层材料,孔内或层间的表面 比表面积:单位质量材料的表面积;用BET方法测量

1.固体表面性质简介 固体表面的性质 结构特征:不同的位置有不同的性质 表面运动:气体分子表面撞击速度R=P/2蟺mkT1/2; 表面扩散系数(爱因斯坦方程):D=x2/2t 外延生长原子的运动流程:a沉积/吸附在平台上-deposition;b沉积在原子岛上;c平台上扩散-diffusion;d脱附-desorption;e成核-nucleation;f交互扩散-interdifusion;g 粘附在平台上-attachment;h从平台上脱离-detachment;i:粘附在台阶上 化学性质:表面浓度依赖于气体分子撞击速度R 相界面(Gibbs界面) 表面热力学函数 其他类推:S,G,G s 比表面自由能及温度的关系 ; ; Van der Waals and Guggenheim Equation: Where: T c为临界温度;为0Kし的表面张力 ; 固体表面能的理论估算 金属表面张力估算 ; 偏析作用 来自晶体或固溶体中的杂质或溶质在界面聚集的现象

初中物理化学知识点总结.doc

化学知识点的归纳总结。 一、初中化学常见物质的颜色 (一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。 二、初中化学之三 1、我国古代三大化学工艺:造纸,制火药,烧瓷器。 2、氧化反应的三种类型:爆炸,燃烧,缓慢氧化。 3、构成物质的三种微粒:分子,原子,离子。 4、不带电的三种微粒:分子,原子,中子。 5、物质组成与构成的三种说法: (1)、二氧化碳是由碳元素和氧元素组成的; (2)、二氧化碳是由二氧化碳分子构成的; (3)、一个二氧化碳分子是由一个碳原子和一个氧原子构成的。 6、构成原子的三种微粒:质子,中子,电子。 7、造成水污染的三种原因: (1)工业“三废”任意排放, (2)生活污水任意排放 (3)农药化肥任意施放 8、收集方法的三种方法:排水法(不容于水的气体),向上排空气法(密度 比空气大的气体),向下排空气法(密度比空气小的气体)。

物理化学表面现象练习题(含标准答案及详细讲解)

物理化学表面现象练习题 一、判断题: 1.只有在比表面很大时才能明显地看到表面现象,所以系统表面增大是表面张力产生的原因。 2.对大多数系统来讲,当温度升高时,表面张力下降。 3.比表面吉布斯函数是指恒温、恒压下,当组成不变时可逆地增大单位表面积时,系统所增加的吉布斯函数,表面张力则是指表面单位长度上存在的使表面张紧的力。 所以比表面吉布斯函数与表面张力是两个毫无联系的概念。 4.恒温、恒压下,凡能使系统表面吉布斯函数降低的过程都是自发过程。 5.过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很低的表面吉布斯自由能。6.液体在毛细管内上升或下降决定于该液体的表面张力的大小。 7.单分子层吸附只能是化学吸附,多分子层吸附只能是物理吸附。 8.产生物理吸附的力是范德华力,作用较弱,因而吸附速度慢,不易达到平衡。 9.在吉布斯吸附等温式中,Γ为溶质的吸附量,它随溶质(表面活性物质)的加入量的增加而增加,并且当溶质达饱和时,Γ达到极大值。。 10.由于溶质在溶液的表面产生吸附,所以溶质在溶液表面的浓度大于它在溶液内部的浓度。 11.表面活性物质是指那些加入到溶液中,可以降低溶液表面张力的物质。 二、单选题: 1.下列叙述不正确的是: (A) 比表面自由能的物理意义是,在定温定压下,可逆地增加单位表面积引起系 统吉布斯自由能的增量; (B) 表面张力的物理意义是,在相表面的切面上,垂直作用于表面上任意单位长 度切线的表面紧缩力; (C) 比表面自由能与表面张力量纲相同,单位不同; (D) 比表面自由能单位为J·m-2,表面张力单位为N·m-1时,两者数值不同。 2.在液面上,某一小面积S周围表面对S有表面张力,下列叙述不正确的是: (A) 表面张力与液面垂直; (B) 表面张力与S的周边垂直; (C) 表面张力沿周边与表面相切; (D) 表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部。 3.同一体系,比表面自由能和表面张力都用σ表示,它们: (A) 物理意义相同,数值相同;(B) 量纲和单位完全相同; (C) 物理意义相同,单位不同;(D) 物理意义不同,单位不同。 4.一个玻璃毛细管分别插入25℃和75℃的水中,则毛细管中的水在两不同温度水中上升的高度: (A) 相同;(B) 无法确定; (C) 25℃水中高于75℃水中;(D) 75℃水中高于25℃水中。 5.纯水的表面张力是指恒温恒压下水与哪类相接触时的界面张力: (A) 饱和水蒸气;(B) 饱和了水蒸气的空气; (C) 空气;(D) 含有水蒸气的空气。 6.水的相图中s、l、g分别表示固、液、气三态,

(整理)中科院大学固体表面物理化学笔记——Jeveels.

1.Introduction ?表界面的分类:气-液;气-固;液-液;液-固;固-固 ?表面浓度 ?分散度 ?表面形貌非均匀性 原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。 ?位错密度 ?表面粗糙度: ?原矢

?米勒指数(miller index) ?晶面间距d hkl ? ? ?表面自由能 ?减小表面能的方法 ?表面原子重排机理 1:表面弛豫作用

2:表面相转变 3:吸附对纯净底物表面结构的影响 层间距的变化;重组的表面结构的变化;吸附原子可以诱导表面重组 内外表面 内表面:多孔或多层材料,孔内或层间的表面 比表面积:单位质量材料的表面积;用BET方法测量 2.固体表面性质简介 固体表面的性质 结构特征:不同的位置有不同的性质 表面运动:气体分子表面撞击速度蟺; 表面扩散系数(爱因斯坦方程): 外延生长原子的运动流程:a沉积/吸附在平台上-deposition;b沉积在原子岛上;c平台上扩散-diffusion;d脱附-desorption;e成核-nucleation;f交互扩散-interdifusion;g 粘附在平台上-attachment;h从平台上脱离-detachment;i:粘附在台阶上 化学性质:表面浓度依赖于气体分子撞击速度R 相界面(Gibbs界面) 表面热力学函数 其他类推:S,G,G s 比表面自由能与温度的关系 ; ; Van der Waals and Guggenheim Equation:

物理化学公式大全

物理化学公式集 热力学第一定律 功:δW=δW e+δW f (1)膨胀功δW e=p外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f=xdy 非膨胀功为广义力乘以广义位移。如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。热Q:体系吸热为正,放热为负。 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体的内能和焓只是温度的单值函数。 热容C=δQ/dT (1)等压热容:C p=δQ p/dT=(?H/?T)p (2)等容热容:C v=δQ v/dT=(?U/?T)v 常温下单原子分子:C v,m=C v,m t=3R/2 常温下双原子分子:C v,m=C v,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p—C v=[p+(?U/?V)T](?V/?T)p (2)理想气体C p—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=C p/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T1—T2) 热机效率:η=冷冻系数:β=-Q1/W

可逆制冷机冷冻系数:β= 焦汤系数:μJ-T==- 实际气体的ΔH和ΔU: ΔU=+ΔH=+ 化学反应的等压热效应与等容热效应的关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=Δr U m+RT 化学反应热效应与温度的关系: 热力学第二定律 Clausius不等式: 熵函数的定义:dS=δQ R/T Boltzman熵定理:S=klnΩHelmbolz自由能定义:F=U—TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程: dU=TdS-pdV dH=TdS+Vdp dF=-SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V的关系: C V=T C p=T Gibbs自由能与温度的关系:Gibbs-Helmholtz公式=- 单组分体系的两相平衡: (1)Clapeyron方程式:=式中x代表vap,fus,sub。(2)Clausius-Clapeyron方程式(两相平衡中一相为气相):=

物理化学知识点总结(热力学第一定律)

物理化学知识点总结 (热力学第一定律) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

热力学第一定律 一、基本概念 1.系统与环境 敞开系统:与环境既有能量交换又有物质交换的系统。 封闭系统:与环境只有能量交换而无物质交换的系统。(经典热力学主要研究的系统) 孤立系统:不能以任何方式与环境发生相互作用的系统。 2.状态函数:用于宏观描述热力学系统的宏观参量,例如物质的量n、温度 T、压强p、体积V等。根据状态函数的特点,我们 把状态函数分成:广度性质和强度性质两大类。 广度性质:广度性质的值与系统中所含物质的量成 正比,如体积、质量、熵、热容等,这种性质的函数具 有加和性,是数学函数中的一次函数,即物质的量扩大 a倍,则相应的广度函数便扩大a倍。 强度性质:强度性质的值只与系统自身的特点有关,与物质的量无关,如温度,压力,密度,摩尔体积等。 注:状态函数仅取决于系统所处的平衡状态,而与此状态的历史过程无关,一旦系统的状态确定,其所有的状态函数便都有唯一确定的值。

二、热力学第一定律 热力学第一定律的数学表达式: 对于一个微小的变化状态为: dU= 公式说明:dU表示微小过程的内能变化,而δQ和δW则分别为微小过程的热和功。它们之所以采用不同的符号,是为了区别dU是全微分,而δQ和δW不是微分。或者说dU与过程无关而δQ和δW却与过程有关。这里的W既包括体积功也包括非体积功。 以上两个式子便是热力学第一定律的数学表达式。它们只能适用在非敞开系统,因为敞开系统与环境可以交换物质,物质的进出和外出必然会伴随着能量的增减,我们说热和功是能量的两种传递形式,显然这种说法对于敞开系统没有意义。 三、体积功的计算 1.如果系统与环境之间有界面,系统的体积变化时,便克服外力做功。将一 定量的气体装入一个带有理想活塞的容器中,活塞上部施加外压。当气体膨胀微小体积为dV时,活塞便向上移动微小距离dl,此微小过程中气

表面物理化学习题集和答案解析教学文案

表面物理化学习题集和答案解析

一、选择题 1. 下列说法中不正确的是:( C ) (A) 生成的新鲜液面都有表面张力 (B) 平面液体没有附加压力 (C) 弯曲液面的表面张力的方向指向曲率中心 (D) 弯曲液面的附加压力指向曲率中心 2. 水在临界温度时的表面Gibbs自由能:( C ) (A)(A)大于零 (B) 小于零 (C) 等于零 (D) 无法确定 3. 一个 U 型管的两臂直径不同,一端为 1×10-3 m,另一端为 3×10-3 m,水 的表 面张力为 0.072 N·m-1。如用这个 U 型管装上水来测量压力,将引入的误差 为: ( B ) (A) 72 Pa (B) 192 Pa (C) 96 Pa (D) 288 Pa 4. 低压下,气体 A 在表面均匀的催化剂上进行催化转化反应, 其机理为: A(g) + K A K ─→ B(g) + K 第一步是快平衡, 第二步是速控步, 则该反应表观为几级? ( B ) (A) 零级 (B) 一级 (C) 二级 (D) 无级数 5 .表面过程中ΔG(表面)= -W'的充要条件除了等温等压外,还有:( D ) A,不做其它功; B,热力学可逆; C,组成不变; D,是B和C。

6. 物质表面张力的值与:( C ) A,温度无关; B,压力无关; C,表面大小无关; D,另一相物质无关。 7. 以P平、P凸、P凹分别表示平面、凸面、凹面液体上的饱和蒸汽压,三者关系为:( B ) A,P平>P凹>P凸; B,P凸>P平>P凹; C,P凸>P凹>P平; D,三者相同。 8. 常见亚稳态现象都与表面性质有关,下面说法正确的是:( D ) A,过饱和蒸气是由于小液滴的蒸气压小于大液滴的蒸气压所致; B,过热液体形成原因是新相种子——小气泡的附加压力太小; C,饱和溶液陈化、晶粒长大,因为小晶粒溶解度比大晶粒大; D,人工降雨时在大气中撒入化学物质主要的目的是促进凝结中心形成 9. 对亲水性固体表面,其相应接触角θ是:( B ) A,θ>90°; B,θ<90°; C,θ=180°; D,θ可为任意角 1O. Langmuir吸附理论中说法符合基本假定得是:( A ) A,固体表面均匀、各处吸附能力相同;B,吸附分子可以是单层或多层分子层;C,被吸附分子间有作用、相互影响;D,吸附和解吸附之间很难建立动态平衡。 11. Langmuir吸附形式之一:θ=bp/(1+bp),它不适用于:( C )

物理化学主要公式

物理化学主要公式 第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为 在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任意的 气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B‘,C‘,D‘….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律 1. 热力学第一定律的数学表示式

物理化学笔记公式c超强

热力学第一定律 功:δW =δW e +δW f (1) 膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2) 非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。 如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q +W =Q —W e =Q —p 外dV (δW f =0) 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1) 等压热容:C p =δQ p /dT = (?H/?T )p (2) 等容热容:C v =δQ v /dT = (?U/?T )v 理想气体ΔU,ΔH 的计算: 对理想气体的简单状态变化过程:定温过程:Δ U =0; Δ H =0 变温过程: 对理想气体, 状态变化时 dH=dU+d(PV) 若理想气体的摩尔热容没有给出,常温下有: 理想气体绝热可逆过程方程式: 标准态: 气体的标准态:在任一温度T 、标准压力 P 下的纯理想气体状态; 液体(或固体)的标准态:在任一温度T 、标准压力下的纯液体或纯固体状态。 标准态不规定温度,每个温度都有一个标准态。 摩尔反应焓:单位反应进度(ξ=1mol)的反应焓变Δr H m 。 标准摩尔生成焓:一定温度下由热力学稳定单质生成化学计量数 νB=1的物质B 的标准摩尔反应焓,称为物质B 在该温度下的标准摩尔生成焓。用 表示 (没有规定温度,一般298.15 K 时的数据有表可查) 标准摩尔燃烧焓:一定温度下, 1mol 物质 B 与氧气进行完全燃烧反应,生成规定的燃烧产物时的标准摩尔反应焓,称为B 在该温度下的标准摩尔燃烧焓。用 表示.单位:J mol-1 为可逆过程中体积功的基本计算公式,只能适用于可逆过程。计算可逆过程的体积功时,须先求出体系的 p~V 关系式,然后代入积分。 ? -=21d V V V p W 2 112ln ln p p nRT V V nRT W -=-=适用于理想气体定温可逆过程。 V V dU C dT nC dT V,m ==p p p dH C dT nC dT ,m ==体系的热力学能、焓的变化可由该二式求得 2,2 ,'p p C a bT cT C a bT c T -=++=++m m 热容与温度的关系: a,b,c.c ′是经验常数,可在物化手册上查到, 使用这些公式时要注意适用的温度范围。 适用于:理想气体的任何变温过程(无化学反应、无相变化、只是单纯的PVT 变化)。 ??==?1212d d m ,T T T T V V T nC T C U ?? ==?121 2 d d m ,T T T T p p T nC T C H T C U T T V d 2 1 ? =?? =?21d T T p T C H p,m V,m nC dT =nC dT +nRdT 0W '=,2112V m R C T V T V ????= ? ? ????m V m p C R C R V V p p T T ,,211212???? ??=???? ??=???? ??,m ,m p V C C R -=()f m ΔH B

傅献彩_物理化学主要公式及使用条件总结

第一章 气体的pVT 关系 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。 上述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中pB 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 适用于任意气体。 V RT n p /B B = 适用于理想气体 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m n R T nb V V an p =-+))(/(22

物理化学公式汇总

第一章 气体的pVT 关系 主要公式及使用条件 1、 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 此式适用于理想气体,近似地适用于低压的真实气 体。 式中p ,V ,T 及n 单位分别为Pa,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8、314510 J · mol -1 · K -1,称为摩尔气体常数。 2、 气体混合物 (1) (1) 组成 摩尔分数 y B (或x B ) = ∑A A B / n n 体积分数 /y B m,B B *=V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,*V 表示在一定T ,p 下纯气体A 的摩尔体积。∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总与。 (2) (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式适用于任 意的气体混合物。 (3) V V p p n n y ///B B B B *=== 式中p B 为气体B,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3、 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 5、 范德华方程 RT b V V a p =-+))(/(m 2m

物理化学知识点(全)

第二章 热力学第一定律 内容摘要 ?热力学第一定律表述 ?热力学第一定律在简单变化中的应用 ?热力学第一定律在相变化中的应用 ?热力学第一定律在化学变化中的应用 一、热力学第一定律表述 U Q W ?=+ d U Q W δδ=+ 适用条件:封闭系统的任何热力学过程 说明:1、amb W p dV W '=-+? 2、U 是状态函数,是广度量 W 、Q 是途径函数 二、热力学第一定律在简单变化中的应用----常用公式及基础公式 2、基础公式 热容 C p .m =a+bT+cT 2 (附录八) ● 液固系统----Cp.m=Cv.m ● 理想气体----Cp.m-Cv.m=R ● 单原子: Cp.m=5R/2 ● 双原子: Cp.m=7R/2 ● Cp.m / Cv.m=γ 理想气体 ? 状态方程 pV=nRT

? 过程方程 恒温:1122p V p V = ? 恒压: 1122//V T V T = ? 恒容: 1122/ / p T p T = ? 绝热可逆: 1122 p V p V γγ= 111122 T p T p γγγγ--= 1111 22 TV T V γγ--= 三、热力学第一定律在相变化中的应用----可逆相变化与不可逆相变化过程 1、 可逆相变化 Q p =n Δ 相变 H m W = -p ΔV 无气体存在: W = 0 有气体相,只需考虑气体,且视为理想气体 ΔU = n Δ 相变 H m - p ΔV 2、相变焓基础数据及相互关系 Δ 冷凝H m (T) = -Δ蒸发H m (T) Δ凝固H m (T) = -Δ熔化H m (T) Δ 凝华 H m (T) = -Δ 升华 H m (T) (有关手册提供的通常为可逆相变焓) 3、不可逆相变化 Δ 相变 H m (T 2) = Δ 相变 H m (T 1) +∫Σ(νB C p.m )dT 解题要点: 1.判断过程是否可逆; 2.过程设计,必须包含能获得摩尔相变焓的可逆相变化步骤; 3.除可逆相变化,其余步骤均为简单变化计算. 4.逐步计算后加和。 四、热力学第一定律在化学变化中的应用 1、基础数据 标准摩尔生成焓 Δf H θm,B (T) (附录九) 标准摩尔燃烧焓 Δc H θ m.B (T)(附录十) 2、基本公式 ?反应进度 ξ=△ξ= △n B /νB = (n B -n B.0) /νB ?由标准摩尔生成焓计算标准摩尔反应焓 Δr H θm.B (T)= ΣνB Δf H θ m.B (T) ?由标准摩尔燃烧焓计算标准摩尔反应焓 Δr H θ m.B (T)=-Σ νB Δc H θ m.B (T) (摩尔焓---- ξ=1时的相应焓值) ?恒容反应热与恒压反应热的关系 Q p =Δr H Q v =Δr U Δr H =Δr U + RT ΣνB (g) ?Kirchhoff 公式 微分式 d Δr H θ m (T) / dT=Δr C p.m 积分式 Δr H θm (T 2) = Δr H θ m (T 1)+∫Σ(νB C p.m )dT 本章课后作业: 教材p.91-96(3、4、10、11、16、17、38、20、23、24、28、30、33、34)

固体表面物理化学第一章复习总结

第一章固体材料与表面结构 表面物理化学性质的特殊性 1、组成(成分偏析、表面吸附) 2、原子排列结构(重排)、原子振动状态等 3、悬挂键,化学性质活泼 4、周期势场中断,表面电子状态差异 表面浓度(surface concentration) Area of unit cell =(0.3 x 10-9)2m2 1 atom per unit cell 表面原子浓度= 1/ (0.3 x 10-9)2= 1.1 x 1019atoms m-2= 1.1 x 1015atoms cm-2 体相原子浓度=3.7*1022cm-3 分散度 随原子数增加,D下降。颗粒尺寸增加,D下降。 立方八面体,催化剂理论模型中常用的颗粒形状,是热力学平衡条件下表面能最低的形状。 表面粗糙度

表面形貌非均匀性 1、平台 2、螺型位错 3、刃型位错 4、8、10、外来吸附原子 5、单原子台阶 6、9、11、褶皱 7、扭折 原因:由于固体表面原子的组成、排列、振动状态和体相原子的不同,由于悬挂键导致的化学性质活泼,以及周期性的势场中断导致的表面电子状态差异,固体表面形成很多导致表面形貌非均匀性的元素。 位错密度 位错分割平台 表面原子排列有序性 表现在具有一定原子间距,二维周期性 1、具有底物结构 2、表面原子重排 原矢

米勒指数(miller index) 晶面间距d(hkl) 晶体类型:体心立方,面心立方,简单立方 在立方晶系中,晶向和晶面垂直 Wood记号和矩阵表示(必考) 100,110,111

选取基矢时,若中心包含原子,则写成c(q×r) 矩阵表示: 固体表面性质简介 1、相界面(Gibbs界面) 2、表面热力学函数 其他类推:S,G,G s 3、固体表面能的理论估算 表面自由能 表面的分子处于一种比体相更大的自由能状态,这是由于在表面缺乏最近邻的相互作用。 减小表面能的方法

物理化学主要公式

物理化学主要公式 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

物理化学主要公式 第一章 气体的pVT 关系 1.理想气体状态方程式 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R = J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2.气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩尔体积。 ∑* A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上述各式 适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3.道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 4.阿马加分体积定律 此式只适用于理想气体。 5.范德华方程

表面物理化学习题和答案

表面物理化学习题和答案

一、选择题 1. 下列说法中不正确的是:( C ) (A) 生成的新鲜液面都有表面张力 (B) 平面液体没有附加压力 (C) 弯曲液面的表面张力的方向指向曲 率中心 (D) 弯曲液面的附加压力指向曲率中心 2. 水在临界温度时的表面Gibbs自由能:( C ) (A)(A) 大于零 (B) 小于零 (C) 等于零 (D) 无法确定 3. 一个 U 型管的两臂直径不同,一端为 1× 10-3 m,另一端为 3×10-3 m,水的表 面张力为 0.072 N·m-1。如用这个 U 型管装上 水来测量压力,将引入的误差为: ( B ) (A) 72 Pa (B) 192 Pa (C) 96 Pa (D) 288 Pa 4. 低压下,气体 A 在表面均匀的催化剂上进

8. 常见亚稳态现象都与表面性质有关,下面说法正确的是:( D ) A,过饱和蒸气是由于小液滴的蒸气压小于大液滴的蒸气压所致; B,过热液体形成原因是新相种子——小气泡的附加压力太小; C,饱和溶液陈化、晶粒长大,因为小晶粒溶解度比大晶粒大; D,人工降雨时在大气中撒入化学物质主要的目的是促进凝结中心形成 9. 对亲水性固体表面,其相应接触角θ是:( B ) A,θ>90°; B,θ<90°; C,θ=180°; D,θ可为任意角 1O. Langmuir吸附理论中说法符合基本假定得是:( A ) A,固体表面均匀、各处吸附能力相同;B,吸附分子可以是单层或多层分子层;C,被吸附分子间有作用、相互影响;D,吸附和解吸附之间很难建立动态平衡。

11. Langmuir吸附形式之一:θ=bp/(1+bp), 它不适用于:( C ) A,化学吸附;B,单分子层吸附;C,多种分子 同时被强吸附;D,固体对稀溶液中溶质的吸附。 12. 表面活性物质的实质性作用是:( B ) A,乳化作用;B,降低表面张力;C,加溶作用;D,降低物质的溶解性 13. 一定体积的水,当聚成一个大水球或分散 成许多水滴时,同温度下,两种状态相 比,:以下性质保持不变的 ( B ) (A) 表面能 (B) 表面张力 (C) 比表面 (D) 液面下的附加压力 14. 某物质R 1kg,当为一立方时,总面积 0.24m2,表面能0.3J,当粉碎为边长为10-9m的 立方体时,其表面能为(kJ):( A ) A,6x104; B,3.84x104; C,5.88x104; D,7.35x104 15 . 有两根半径相同的玻璃毛细管插入水中, 水面上升高度为h,其中一根在0.5h处使其弯曲 向下,试问水在此毛细管端出的行为是( A )

相关主题
文本预览
相关文档 最新文档