当前位置:文档之家› 不定方程及不定方程组

不定方程及不定方程组

不定方程及不定方程组集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第二十七讲 不定方程、方程组

不定方程(组)是指未知数的个数多于方程的个数的方程(组),其特点是解往往有无穷多个,不能惟一确定.

对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定.

二元一次不定方程是最简单的不定方程,一些复杂的不定方程(组)常常转化为二元一次不定方程问题加以解决,与之相关的性质有:

设d c b a 、、、为整数,则不定方程c by ax =+有如下两个重要命题: (1)若(a ,b)=d ,且d 卜c ,则不定方程c by ax =+没有整数解;

(2)若00y x ,是方程c by ax =+且(a ,b)=1的一组整数解(称特解),则为整数)

t at y y bt

x x (00???-=+=是方程的全部整数解(称通解).

解不定方程(组),没有现成的模式、固定的方法可循,需要依据方程(组)的特点进行恰当的变形,并灵活运用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、穷举,乘法公式,不等式分析等.

举例

【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 .

(新加坡数学竞赛题)

思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值.

注:求整系数不定方程c by ax =+的整数解。通常有以下几个步骤:

(1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入(2)中的表达式,写出不定方程的正整数解.

分离整系数法解题的关键是把其中一个未知数用另一个未知数的代数敷式表示,结合整除的知识讨论.

【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志.问下一个同时设置这两种标志的地点的千米数是( ).

A .32千米

B .37千米

C .55千米

D .90千米

(河南省竞赛题)

思路点拨 设置限速标志、照相标志千米数分别表示为3+4x 、10十9y(x ,y 为自然数),问题转化为求不定方程3+4x=0+9y 的正整数解. 【例3】 (1)求方程15x+52y=6的所有整数解. (2)求方程x+y =x 2一xy+y 2的整数解.

(莫斯科数学奥林匹克试题)

(3)求方程

6

5

111=++z y x 的正整数解. (“希望杯”邀请赛试题)

思路点拨 对于(1)通过观察或辗转相除法,先求出特解.对于(2)易想到完全平方公式,从配方人手,对于(2)易知x 、y 、z 都大于1,不妨设l

z

y x 1

11≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计,逐步缩小其取值范围,求出其结果.

注:方程和不等式的相关性质,寻求井缩小某个字母的取值范围,通过验算获得全部解答. 【例4】 一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终粒盒内都剩1粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子 (2002年重庆市竞赛题)

思路点拨 无论怎么取,盒子里的棋子数不变,恰当设未知数,把问题转化为求不定方程的正整数解.

【例5】中国百鸡问题:一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁、鸡母、鸡雏各几何

(出自中国数学家张丘建的着作《算经》)

思路点拨 设鸡翁、鸡母、鸡雏分别为z y x 、、,则有??

?

??=++=++100335100z y x z y x

通过消元,将问题转化为求二元一次不定方程的非负整数解.

【例6】 甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个,问三个小组共有多少名同学

(2001年海峡两岸友谊赛试题)

思路点拨 设甲组学生a 人,乙组学生b 人,丙组学生c 人,由题意得28a+30b+31c=365,怎样解三元一次不定方程运用放缩法,从求出a+b+c 的取值范围入手. 注: 解不定方程组基本方法有:

(1)视某个未知数为常数,将其他未知数用这个未知数的代数式表示; (2)通过消元,将问题转化为不定方程求解;

(3)运用整体思想方法求解.

【例7】 不定方程4x+7y=2001有 组正整数解.

思路点拨 49十7y=3×667 易知???=-=667667y x 是其一组特解,∴其通解为???-=+-=t y t

x 46677667,

z t ∈,∵??

?≥-≥+-146671

7667t t ,解之得96≤t ≤166 ∴ t 可取整数值共71个.

∴ 4x+7y=2001有71组正整数解.

学力训练

1.已知z y x 、、满足x+y=5及z 2=xy+y —9,则x+2y+3z= . (2002年山东省竞赛题)

2.已知4x 一3y 一6z=0,x+2y 一7c=0(xyz ≠0),那么2

222

2275632z

y x z y x ++++的值为 .

3.用一元钱买面值4分、8分、1角的3种邮票共18张,每种邮票至少买一张,共有种不同的买法.

品名

件数A

1

A

2

A

3

A

4

A

5

总钱数

第一次购件

数l3456

1992(元

)

第二次购件

数157911

2984(元

)

则5种数学用品各买一件共需元.

(北京市竞赛题)

5.希望中学收到王老师捐赠的足球、篮球、排球共20个,其总价值为330元,这三种球的价格分别是足球每个60元,篮球每个30元,排球每个10元,那么其中排球有个.

(温州市中考题)

6.方程(x+1)2+(y-2)2=1的整数解有( ).

A.1组 B.2组 C.4组 D.无数组

7.二元方程x+y+z=1999的非负整数解的个数有( ).

A.个 B.个 C.2001000个 D.2001999个

( “希望杯”邀请赛试题)

8.以下是一个六位数乘上一个—位数的竖式,各代表一个数(不一定相同),则

a+b+c+d+e+f=( ).

A.27 B.24 C.30 D.无法确定

(“五羊杯”邀请赛试题)

9.求下列方程的整数解:

(1)1lx+5y=7;(2)4x+y=3xy.

10.在车站开始检票时,有a(a>0)名旅客在候车室排队等候检票进站.检票开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的,若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,则只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等侯检票的旅客全部检票完毕,以便后来到站的旅客能随到随检,至少要同时开放几个检票口

(广州市中考题)

11.下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.

现在我们约定:“布”赢“锤子”得9分,“锤子”赢“剪子”得5分,“剪子”赢“布”得2分.

(1)小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次.聪明的同学,请你用所学的数学知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次

(2)如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法填人下表.

共有 对.

13.有理数x ,y ,z 满足?

??=+-+-=0223362

z xy y x y x ,则22y+z

的值为 . 14.1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是 岁.

15.江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么,至少需要抽水机 台.

16.有甲、乙、丙3种商品,某人若购甲3件、乙7件、丙1件共需24元,若购甲4件、乙l0件、丙l 件共需33元,则此人购甲、乙、丙各1件共需 元.

17.一个布袋中装有红、黄、蓝三种颜色的大小相同的小球,红球上标有数字1,黄球上标有数字2,蓝球上标有数字3,小明从布袋中摸出10个球,它们上面所标数字的和等于21,则小明摸出的球中红球的个数最多不超过 个.

18.(1)求满足y 4+2x 4+1=4x 2y 的所有整数对(x ,y); (2)求出所有满足5(xy+yz+zx)=4xyz 的正整数解.

(新加坡奥林匹克试题)

19.兄弟二人养了一群羊,当每只羊的价钱(以元为单位)的数值恰等于这群羊的只数时,将这群羊全部卖出,兄弟二人平分卖羊得来的钱:哥哥先取l0元,弟弟再取10元;这样依次反复进行,最后,哥哥先取10元,弟弟再取不足10元,这时哥哥将自己的一顶草帽给了弟弟,兄弟二人所得的钱数相等.问这顶草帽值多少钱

(北京市竞赛题)

20.某人家的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14405,将前三位数组成的数与后五位数组成的数相加得16970,求此人家的电话号码.

(武汉市选拔赛试题)

3个数码7.28,但前面的3个数码看不清楚了,请你帮助查清这笔账.

(上海市”金桥杯”数学知识应用竞赛试题)

22.一支科学考察队前往某条河流上的上游去考察一个生态区.他们出发后以每天17km的速度前进,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天

25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队在生态区考察了多少天 (四川省竞赛题)

参考答案

不定方程常用解题方法

整除法 【例题1】:某国家对居民收入实行下列税率方案:每人每月不超过3000美元的部 分按照1%税率征收,超过3000美元不超过6000美元的部分按照X%税率征收,超过6000 美元的部分按Y%税率征收(X,Y为整数)。假设该国居民月收入为6500美元,支付了120 美元所得税,则Y为多少? A.6 B.3 C.5 D.4 【参考答案】:A. 【解析】:整除法。列方程可得,3000×1%+3000×X%+500×Y%=120,化简可得 6X+Y=18,观察发现,18以及X的系数6都是6的倍数,根据整除可以确定Y一定是6的倍数,所以结合选项答案选择A选项。 【小结】:当列出的方程中未知数的系数以及结果是同一个数的倍数的时候,可以考 虑用整除法结合选项选择答案。 奇偶法 【例题2】:装某种产品的盒子有大、小两种,大盒每盒能装11个,小盒每盒能装8个,要把89个产品装入盒内,要求每个盒子都恰好装满,需要大、小盒子各多少个? A.3,7 B.4,6 C.5,4 D.6,3 【参考答案】:A. 【解析】:奇偶法。设需要大、小盒子分别为x、y个,则有11x+8y=89,由此式89为 奇数,8y一定为偶数,所以11x一定为奇数,所以x一定为奇数,结合选项,排除B和D,剩余两个代入排除,可以选择A选项。 【小结】:列出的方程未知数系数和结果奇偶性可确定时,可以考虑用奇偶性结合选 项破解题目。 尾数法 【例题3】:有271位游客欲乘大、小两种客车旅游,已知大客车有37个座位,小 客车有20个座位。为保证每位游客均有座位,且车上没有空座位,则需要大客车的辆数是:

A.1辆 B.3辆 C.2辆 D.4辆 【参考答案】:B. 【解析】:尾数法。大客车需要x辆,小客车需要y辆,可列37x+20y=271,20y的尾数一定是0,则37x的尾数等于271的尾数1,结合选项x只能是3,所以选择B选项。 【小结】:列出方程的未知数的系数出现5或10的倍数时,尾数可以确定,可以考虑用尾数法结合选项来选择答案。

不定方程的解法与应用

摘要 不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明. 关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题

Abstract The integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life. This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed. For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples. Key words: i ndeterminate equation; two element indefinite equation; Mathematics contest; civil service examination.

方程组的解法详解

*基础知识 "2x - y = 5 1、方程组< y"'的解是() x + y =1 卩x-6y =1, \x = -3 y +5; !3x+5y =5, I 3x —4y =23; {3m = 5n, gm —3 n =1; 消元---- 二元一次方程组的解法 x=0 y=1 C. a :2 D. [y =1 "x = 2 — 2、下列二元一次方程组以 x = 0, y=7 为解的是( ) A. fx"7, X +2y =14. B. j x + y = -7, X - y = 7. C p x + 2y=14, .:x-3y = —21. 3、将方程5x-2y+12=0写成用含 D. [5x + y = 7, i 3x -2y =14. 的代数式表示y 的形式 「2x-7y =8, (1) 4、 用代入消元法解方程组I y ',可以由 得 [y -2x = 4.⑵ —— ,把(3)代入 ___________ 中,得一元一次方程 _____________________ ,解得 求得的值代入(3)中,求得 ___________ ,从而得到原方程组的解为 __________ 5、 用代入法解下列方程组: (3) ,再把 (1) |x=2y, I x + y =3; y = 1-x, i3x + 2y =5; |x-4y =-1, I 2x + y =16;

(3), *能力提升 二、加减消元法 *基础知识 l x - y =3(1) 2、方程组Q y 八丿 若用加减消元法解,可将方程(1)变形为 3 4 i x +y=2; 12 3 ; (8) 『X y +1 1 gw 1, [3x + 2y =0. 」-7、”m, 3m -2n 6、已知 7x y 和一 3x 2n_2 y 是同类项,求m,n 的值. 7、如果(2x *探索研究 8、已知方程组 [ax + by =2 jCx-7y =8 中 y - 2| = 0,求 10x — 5y + 1 的值. I x = 3 I x = —2 '的解为I "'而小明粗心地把C 看错了,解得I "'请 2. l y = 2. 你求出正确的 a,b,c 的值. 1、方程组戸+4厂5,中, 3x-7y =6 x 的系数的特点是 「2x + 5y = 1 ,方程组? y '中y 的系 i3x -5y = 4 数特点是 ,这两个方程组用 法解较简便。

(完整word版)初中数学几种不定方程和方程组的解题技巧和方法

初中数学几种不定方程和方程组的解题技巧和方法 凯里市大风洞正钰中学曾祥文 摘要:教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。在初中数学教学中不定方程与方程(组)占很大的比例,是中学生经常出错和不懂的部分。本文主要探讨几种不定方程和方程组的解题技巧和方法。 关键词:初中数学不定方程方程 教学作为一种有明确目的性的认知活动,其有效性是教育工作者所共同追求的。有效教学是教师在达成教学目标和满足学生发展需要方面都很成功的教学行为,它是教学的社会价值和个体价值的双重体现。数学是人们对客观世界定性把握和定量刻画、逐渐抽象、形成方法和理论,并进行广泛应用的过程。数学教学是教师对学生进行数学思维培养的一种认知过程。 方程(组)中,未知数的个数多于方程的个数时,它的解往往有无数多个,不能唯一确定,因此这类方程常称为不定方程(组),解不定方程没有固定的方法,需具体问题具体分析,经常用到整数的整除、奇数偶数的特性、因数分解、不等式估值、穷举、分离整数、配方等知识与方法,解不定方程的技巧是对方程适当变形,灵活运用相关知识。本文就几类常见的不定方程与方程做如下浅析。 1 非负数的巧用 在初中数学中,经常用的非负数有:①a2 ≥0 ;②|a|≥0;③a≥0若干个非负数的和为0,那么每个非负数均为0, 例1:已经x2 + y2-x+2y+5/4= 0 ,求x 、y的值。 评析:方程左边配方可变为非负数之和 解:由x2 + y2-x+ 2y+5/4= 0 得( x—1/2 ) 2+ ( y +1 ) 2= 0 所以( x—1/2 ) 2≥0,( y + 1 )2≥≥0 一般地,几个非负数之和为0,则每个非负数均为0。所以x=1/2, y=1 2 二元一次方程的整数解

不定方程的求解方法汇总

不定方程的求解方法汇总 行测数量运算的考查中,不定方程是计算问题的常考题型,难度不大,易求解。但是想要快速正确的求解出结果,还是需要一些技巧和方法的。专家认为,掌握了技巧和方法,经过大量练题一定可以实现有效的提升,不定方程的题目必定成为你的送分题。 一、不定方程的概念 在学习之前,首先了解一下不定方程的概念:指对于一个方程或者方程组,未知数的个数大于独立方程的个数,便将其称为不定方程或者不定方程组。 在这里解释一下独立方程。看个例子大家便可以明白了: 4x+3y=26①,8x+6y=52② 因为①×2=②,相互之间可以进行转化得到,所以①、②两个式子并不是两个独立的方程,。 二、求解不定方程的方法 1、奇偶性 奇数+奇数=偶数奇数×奇数=奇数 偶数+偶数=偶数偶数×偶数=偶数 奇数+偶数=奇数奇数×偶数=偶数 性质:奇偶奇 7x为奇数,x也为奇数。x可能的取值有1、3、5。当x=1时,y=9,满足题干要求,凳子数量大于桌子数量,其余情况不符合要求,故答案选择B。

2、尾数法 当看到未知数前面的系数为0或者5结尾时,考虑尾数法。任何正整数与5的乘积尾数只有两种可能0或5。 性质:奇偶奇 5x 为奇数,则其尾数必定为5,则4y的尾数为4,y可能为1、6、11,这三种可能。但已知乙部门人数超过10人,则y=11,求得x=3,故答案选择C。 3、整除法 当未知数前面的系数与和或差有除1之外的公因数时,考虑用整除法。 4、特值法 当题目考察不定方程组,且一般情况下,求解(x+y+z)之和时考虑特值法。不定方程组拥有无数组解,而(x+y+z)的结果是唯一的,那么我们便可以随便找一组解代入即可。同时要使计算相对简单,便可以将系数较为复杂的未知数设为特值0,简化运算。

方程组的解法举例

三元一次方程组的解法举例 1).三元一次方程组的概念: 三一次方程组中含有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程。 注:(1)“未知项”与“未知数”不同。(2)每个方程不一定都含有三个未知数。 它的一般形式是 未知项的系数不全为零,其中每一个方程都可以是三元、二元、一元一次方程,但方程组中一定要有三个未知数。 2).解三元一次方程组的基本思想方法是: 【例1】解方程组 分析:方程①只含x,z,因此,可以由②,③消去y,再得到一个只含x,z的方程,与方程①组成一个二元一次方程组. 解:②×3+③,得11x+10z=35.(4) ①与④组成方程组 解这个方程组,得 把x=5,z=-2代入②,得2×5+3y-2=9, ∴.

∴ 【例2】解方程组 分析:三个方程中,z的系数比较简单,可以考虑用加减法,设法先消z。 解:①+③,得5x+6y=17 ④ ②+③×2,得,5x+9y=23 ⑤ ④与⑤组成方程组 解这个方程组,得把x=1,y=2代入③得: 2×1+2×2-z=3,∴z=3 ∴ 另解:②+③-①,得 3y=6,∴y=2 把y=2分别代入①和③,得 解这个方程组,得: ∴ 注:①此题确定先消去z后,就要根据三个方程消两次z(其中一个方程要用两次),切忌消一次z,再消一次其他未知数,这样得不到一个二元一次方程组,达不到消元的目的。

②此题的“另解”是先同时消去两个未知数,直接求出一个未知数的值,然后把所求得的未知数的值代入方程组中的两个方程组中,得到一个二元一次方程组,再求出另两个未知数的值。这种解法是一种特殊解法,只有认真观察,才能做出。 简单的二元二次方程组的解法举例 (1)二元二次方程及二元二次方程组 观察方程,此方程的特点:①含有两个未知数;②是整式方程;③含有未知数的项的最高次数是2. 定义①:含有两个未知数,并且含有未知数的项的最高次数是2的整式方程叫做二元二次方程. 二元二次方程的一般形式是:(a、b、c不同时为零).其中叫做二次项,叫做一次项,叫做常数项. 定义②:二元二次方程组即有两个未知数且未知数的最高次数为二次的方程组 由一个二元二次方程和一个二元一次方程组成的方程及两个二元二次方程组成的方程组是我们所研究的二元二次方程组. 例如:都是二元二次方程组. (2)二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。 由一个二元一次方程和一个二元二次方程组成的二元二次方程组的解法.

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

不定方程的解法

基本介绍编辑本段 不定方程是数论的一个分支,它有着悠 久的历史与丰富的内容。所谓不定方程是指解的范围为整数、正整数、有理数或代数整数的方程或方程组,其未知数的个数通常多于方程的个数。 古希腊数学家丢番图于三世纪初就研究过若干这类方程,所以不定方程又称丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。1969 年,莫德尔较系统地总结了这方面的研究成果。 2 发展历史编辑本段

希腊的丢番图早在公元3 世纪就开始研究不定方程,因此常称不定方程为丢番图方程。Diophantus ,古代希腊人,被誉为代数学的鼻祖,流传下来关于他的生平事迹并不多。今天我们称整系数的不定方程为「Diophantus 方程」,内容主要是探讨其整数解或有理数解。他有三本著作,其中最有名的是《算术》,当中包含了189 个问题及其答案,而许多都是不定方程组(变量的个数大于方程的个数)或不定方程式(两个变数以上)。丢番图只考虑正有理数解,而不定方程通常有无穷多解的。 研究不定方程要解决三个问题:①判断何时有解。②有解时决定解的个数。③求出所有的解。中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5 世纪的《张丘建算经》中的百鸡问题标志中国对不定方程理论有了系统研究。秦九韶的大衍求一术将不定方程与同余理论联系起来。百鸡问题说:“鸡翁一,直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡翁、母、雏各几何”。设x,y,z 分别表鸡翁、母、雏的个数,则此问题即为不定方程组的非负整数解x,y,z,这是一个三元不定方程组问题。 3 常见类型编辑本段

特殊方程组的解法

特殊方程组得解法 特殊方程组 不定方程组 含参方程组 模块一:假期知 识您还记得么 1. 二元一次方程 组:由几个一次方程组成,含有两个未知数得方程组叫做二元一次方 程组、 2. 二元一次方程组得解:一般地,二元一次方程组得两个方程得__________叫做二元一次方程组得解,它 必须同时满足方程组中得每一个方程,一般表示为x a y b =??=? 得形式、 3. 二元一次方程组得解得检验:要检验一对未知数得就是否为一个二元一次方程组得解,必须将这对未 知数得值_____________方程组中得每一个方程进行检验、 4. 解二元一次方程组得方法:_____________,______________、 1. 用代入消元法解方程组: 222312n m m n ?-=???+=? 3252 2(32)117x y x x y x +=+??+=+? 2. 用加减消元法解方程组: 2535x y x y +=?? +=? 433 344 x y x y 基础知识思维导图 复习导航 典题回顾

3、已知方程组 2.2 3.5113.5 5.633x y x y -=??+=?得解为x m y n =??=?,则方程组()()()()2.22 3.5111 3.52 5.6133x y x y ?+--=??++-=??得解就是_________ 4、解方程组274ax y cx dy +=??-=?时,一学生把a 瞧错后得到51x y =??=?,而正确得解就是3 1 x y =??=-?a c d 、、得值为 ( ). A.不能确定 B.3a =,1c =,1d = C.c ,d 不能确定,3a = D.3a =,2c =,2d =- 模块二:特殊方程(组) 199319941995200720082009x y x y + =??+=? (1) 141516 171819 x y x y (2)200520062007 200820092010 x y x y +=?? +=? 您发现了什么规律,猜测关于x,y 得方程组()(m 1)y m 2 nx (n 1)y n 2 mx m n ++=+?≠? ++=+?得解就是什么,并用 方程组得解加以证明。 【例1】 解方程组: 199519975989199719955987 x y x y 【练习1】 ⑴361463102 463361102 x y x y 【例2】 已知123451234512 3451234 51 2 3 4 5 26 212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ,求4532x x 得值、 (1)236236326x y z x y z x y z ++=?? ++=??++=? (2) 323232y z x a z x y b x y z c 典题精练 知识导航 解一些特殊得方程组(如未知数系数较大、方程个数较多等)需要观察方程组下系数特点,着眼于整体上解决问题,常用到: 整体叠加、整体叠乘、整体代入、先消常数、设元引参、对称处理、换元转化、巧取倒数等方法技巧。

解线性方程组的直接解法

解线性方程组的直接解法 一、实验目的及要求 关于线性方程组的数值解法一般分为两大类:直接法与迭代法。直接法是在没有舍入误差的情况下,通过有限步运算来求方程组解的方法。通过本次试验的学习,应该掌握各种直接法,如:高斯列主元消去法,LU分解法和平方根法等算法的基本思想和原理,了解它们各自的优缺点及适用范围。 二、相关理论知识 求解线性方程组的直接方法有以下几种: 1、利用左除运算符直接求解 线性方程组为b x\ =即可。 A Ax=,则输入b 2、列主元的高斯消元法 程序流程图: 输入系数矩阵A,向量b,输出线性方程组的解x。 根据矩阵的秩判断是否有解,若无解停止;否则,顺序进行; 对于1 p :1- =n 选择第p列中最大元,并且交换行; 消元计算; 回代求解。(此部分可以参看课本第150页相关算法) 3、利用矩阵的分解求解线性方程组 (1)LU分解 调用matlab中的函数lu即可,调用格式如下: [L,U]=lu(A) 注意:L往往不是一个下三角,但是可以经过行的变换化为单位下三角。 (2)平方根法

调用matlab 中的函数chol 即可,调用格式如下: R=chol (A ) 输出的是一个上三角矩阵R ,使得R R A T =。 三、研究、解答以下问题 问题1、先将矩阵A 进行楚列斯基分解,然后解方程组b Ax =(即利用平方根法求解线性方程组,直接调用函数): ??????? ??--------=19631699723723312312A ,?????? ? ??-=71636b 解答: 程序: A=[12 -3 2 1;-3 23 -7 -3;2 -7 99 -6;1 -3 -6 19]; R=chol(A) b=[6 3 -16 7]'; y=inv(R')*b %y=R'\b x=inv(R)*y %x=R\y 结果: R =3.4641 -0.8660 0.5774 0.2887 0 4.7170 -1.3780 -0.5830 0 0 9.8371 -0.7085 0 0 0 4.2514 y =1.7321 0.9540 -1.5945 1.3940 x =0.5463 0.2023 -0.1385 0.3279 问题 2、先将矩阵A 进行LU 分解,然后解方程组b Ax =(直接调用函数): ?????????? ??----=8162517623158765211331056897031354376231A ,????????? ? ??-=715513252b

方程组解法综合

方程组解法综合 教学目标 1.学会用带入消元和加减消元法解方程组 2.熟练掌握解方程组的方法并用到以后做题 知识精讲 知识点说明: 一、方程的历史 同学们,你们知道古代的方程到底是什么样子的吗?公元263 年,数学家刘徽所著《九章算术》一书里有一个例子:“今有上禾三秉,中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉,中禾二秉,下禾三秉,实二十六斗。问上、中、下禾实一秉各几何?”刘徽列出的“方程”如图所示。 方程的英语是equation,就是“等式”的意思。清朝初年,中国的数学家把equation 译成“相等式”,到清朝咸丰九年才译成“方程”。从这时候起,“方程”这个词就表示“含有未知数的等式”,而刘徽所说的“方程”就叫做“方程组”了。 二、学习方程的目的 使用方程有助于解决数学难题,作为代数学最基本内容,方程的学习和使用不但能为未来初中阶段数学学习打好基础,同时能够将抽象数学直观表达出来,能够帮助学生更好的理解抽象的数学知识。 三、解二元一次方程组的一般方法 解二元一次方程的关键的步骤:是消元,即将二元一次方程或多元一次方程化为一元一次方程。 消元方法:代入消元法和加减消元法 代入消元法: ⒈取一个方程,将它写成用一个未知数表示另一个未知数,记作方程①; ⒉将①代入另一个方程,得一元一次方程; ⒊解这个一元一次方程,求出一个未知数的值; ⒋将这个未知数的值代入①,求出另一个未知数的值,从而得到方程组的解. 加减消元法: ⒈变形、调整两条方程,使某个未知数的系数绝对值相等(类似于通分); ⒉将两条方程相加或相减消元; ⒊解一元一次方程; ⒋代入法求另一未知数. 加减消元实际上就是将带系数的方程整体代入.

二元一次不定方程的解法总结与例题

探究二元一次不定方程 (Inquires into the dual indefinite equation) 冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。我们讨论二元一次方程的整数解。 The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution. 【关键字】:二元一次不定方程初等数论整数解 (Dual indefinite equation Primary theory of numbers Integer solution) 二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式; ②具有两个未知数;③未知项的次数是1。 如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。 定理1.形如(不同时为零)的方程称为二元一次不定方程。 [1] 二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。 通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。 定理2.方程有解的充要是;[2] 若,且为的一个解,则方程的一切解都可以表示成: (t为任意整数)

解线性方程组直接解法

第2章 解线性方程组的直接解法 §0 引言 11112211211222221122n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=??+++=??? ?+++=?L L L L 1112121 22212112,(,,,),()n n T T n n n n nn a a a a a a A x x x x b b b a a a ??????===??? ??? ? ?L L L L L L L Ax b = 若A 非奇异,即det()0A ≠,方程组Ax b =有唯一解。由 Cramer 法则,其解 det(),1,2,,det() i i A x i n A = =L 其中i A 为用b 代替A 中第i 列所得的矩阵。当n 大时, 1n +个行列式计算量相当大,实际计算不现实。 121212(,)12det()(1)n n n i i i i i i n i i i A a a a τ=-∑L L L §1 Gauss 消去法 (I )Gauss 消去法的例子 (1)1231123 212336 ()123315()18315() x x x E x x x E x x x E ++=??-+=??-+-=-? 2131()12(),()(18)()E E E E -?--? (2) 12312342356 ()15957()211793()x x x E x x E x x E ++=?? --=-??+=?

方程组13()()E E -与方程组145(),(),()E E E 同解 541 ()21( )()15 E E --得 (3)1231234366()15957()3() x x x E x x E x E ++=?? --=-??=? 由(3)得3 213,2,1x x x === 123(,,)(1,2,3)T T x x x = (3)的系数矩阵为11 10159001????--?????? ,上三角 矩阵。 (II )Gauss 消去法,矩阵三角分解 Ax b = 1112 11,12122 22,112 ,1 n n n n n n nn n n a a a a a a a a A b a a a a +++????????=?????????? L M L M L L M M L M 令(1) ,1,2,,;1,2,,,1ij ij a a i n j n n ===+L L (1)(1)A b A b ??=?? ???? 第1次消去 (1) 110a ≠, 令 (1)1 1(1)11 , 2,3,,i i a l i n a ==L 作运算:11()()i i i l E E E -+→ i E 表示第i 个方程(第i 行) 2,3,,i n =L (2)(1)(1) 111110 2,3,,i i i a a l a i n =-==L

线性方程组的直接解法及matlab的实现

本科毕业论文 ( 2010 届) 题目线性方程组的直接解法及matlab的实现 学院数学与信息工程学院 专业数学与应用数学 班级2006级数学1 班 学号0604010127 学生姓名胡婷婷 指导教师王洁 完成日期2010年5月

摘要 随着科技技术的发展及人类对自然界的不断探索模拟.在自然科学和工程问题中的很多问题的解决常常归结为线性代数问题! 本文的主要内容是对线性方程组求解方法的探讨,主要介绍了四种求解线性方程组的方法,第一种是教科书上常见的消元法,我们称之为基本法.第二种方法是标准上三角形求解法,即将增广矩阵经过初等变换后化成标准上三角形,然后求解.它改进了一般教科书上的常见方法,与常见方法比较有如下优点:1)规范了自由未知量的选取;2)只用矩阵运算;3)减少了计算量.第三种方法是对特定的方程组(系数矩阵A为n阶对称正定矩阵,且A的顺序主子式均不为零.)的求解方法进行描述,并且为这种线性方程的求解提供了固定的公式化的方法.第四种方法是对现在实际问题中常常会遇到的系数矩阵为三对角矩阵的方程组的求解方法.同时给出这几种方法的数值解法(matlab程序),由于运用电脑软件求解,所以必须考虑计算方法的时间、空间上的效率以及算法的数值稳定性问题,所以针对不同类型的线性方程组有不同的解法.但是,基本的方法可以归结为两大类,即直接法和迭代法. 关键词 高斯消去法;三角分解法;乔莱斯基分解法;追赶法

Abstract Systems of linear equations are associated with many problems in engineering and scinence ,as well as with applications of mathematics to the social sciences and the quantitative study of business and economic problems. The main content of this article is the method for solving linear equations, we introduce four methods for solving linear equations in this paper. The first is the elimination method which is commonly found in textbooks, and we call the Basic Law. The second method is Standard on the triangle Solution, that first change Augmented matrix into standards in primary triangle, and then solving. It improves the general textbook on common methods, compared with the common method has the following advantages:1) Specification of the free choice of unknowns; 2)Only matrix operations;3) Reduce the computation. The third method describes a way to solve a Specific equations(N coefficient matrix A is symmetric positive definite matrix, and A are not zero-order principal minor), And for this linear equation provides a fixed formulaic approach. The fourth method is to present practical problems often encountered in the coefficient matrix is tridiagonal matrix method for solving the equations. These methods are given numerical solution of (matlab program), As the use of computer software to solve, it is necessary to consider ways of computing time and space efficiency and numerical stability of algorithms, Therefore, different types of linear equations have a different solution. However, the basic method can be classified into two categories, namely direct methods and iterative methods. Key words Gaussian elimination; Triangular decomposition; Cholesky decomposition method; Thomas algorithm

小学数学不定方程与不定方程组的解法

不定方程与不定方程组 知识框架 一、知识点说明 历史概述 不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来. 考点说明 在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。 二、不定方程基本定义 (1)定义:不定方程(组)是指未知数的个数多于方程个数的方程(组)。 (2)不定方程的解:使不定方程等号两端相等的未知数的值叫不定方程的解,不定方程的解不唯一。(3)研究不定方程要解决三个问题:①判断何时有解;②有解时确定解的个数;③求出所有的解 三、不定方程的试值技巧 (1)奇偶性 (2)整除的特点(能被2、3、5等数字整除的特性) (3)余数性质的应用(和、差、积的性质及同余的性质) 重难点 (1)b利用整除及奇偶性解不定方程 (2)不定方程的试值技巧 (3)学会解不定方程的经典例题

例题精讲 一、利用整除性质解不定方程【例 1】求方程2x-3y=8的整数解 【考点】不定方程 【解析】方法一:由原方程,易得2x=8+3y,x=4+3 2 y,因此,对y的任意一个值,都有一个x与之对 应,并且,此时x与y的值必定满足原方程,故这样的x与y是原方程的一组解,即原方程的解 可表为: 3 4 2 x k y k ? =+ ? ? ?= ? ,其中k为任意数.说明由y取值的任意性,可知上述不定方程有无穷多 组解. 方法二:根据奇偶性知道2x是偶数,8为偶数,所以若想2x-3y=8成立,y必为偶数,当y=0,x=4;当y=2,x=7;当y=4,x=10……,本题有无穷多个解。 【答案】无穷多个解 【巩固】求方程2x+6y=9的整数解 【考点】不定方程 【解析】因为2x+6y=2(x+3y),所以,不论x和y取何整数,都有2|2x+6y,但29,因此,不论x和y取什么整数,2x+6y都不可能等于9,即原方程无整数解. 说明:此题告诉我们并非所有的二元一次方程都有整数解。 【答案】无整数解 【例 2】求方程4x+10y=34的正整数解 【考点】不定方程 【解析】因为4与10的最大公约数为2,而2|34,两边约去2后,得2x+5y=17,5y的个位是0或5两种情况,2x是偶数,要想和为17,5y的个位只能是5,y为奇数即可;2x的个位为2,所以x的取值为1、6、11、16…… x=1时,17-2x=15,y=3, x=6时,17-2x=5,y=1, x=11时,17-2x=17 -22,无解

方程组解法及应用

一.解答题(共40小题) 1.已知关于x,y的二元一次方程组. (1)解该方程组; (2)若上述方程组的解是关于x,y的二元一次方程ax+by=2的一组解,求代数式6b﹣4a的值. 2.已知关于x,y的方程组的解满足x+y=2k. (1)求k的值; (2)试判断该方程组的解是否也是方程组的解. 3.已知和都是方程ax+y=b的解,求a与b的值. 4.已知和是关于x,y的二元一次方程y=kx+b的解,求k,b的值.5.(开放题)是否存在整数m,使关于x的方程2x+9=2﹣(m﹣2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗? 6.甲、乙两人共同解方程组,由于甲看错了方程中的a,得到方程组的解为,乙看错了方程中的b,得到方程组的解,试计算a2010+的值. 7.已知甲、乙二人解关于x、y的方程组,甲正确地解出,而乙把c抄错了,结果解得,求a、b、c的值. 8.已知方程组与的解相同,试求a+b的值. 9.在解方程组时,由于粗心,甲看错了方程组中的a,得到的解为,乙看错了方程组中的b,得到的解为. (1)求正确的a,b的值;

(2)求原方程组的解. 10.已知二元一次方程组的解是,求4a﹣3b的值. 11.若关于x、y的二元一次方程组的解满足x﹣y=4,求m的值.12.已知方程组,甲看错了方程①中的a,得到方程组的解是;乙看错了方程②中的b,得到方程组的解.若按正确的a,b计算,求原方程组的解. 13.已知方程组的解能使等式4x﹣6y=2成立,求m的值.14.已知关于x,y的二元一次方程组的解满足x与y之和为2,求a的值. 15.已知关于x,y的方程组和的解相同,求(2a﹣b)2的值. 16.解方程组. 17.解二元一次方程组:. 18.解方程组. 19.解方程组. 20.解方程组:. 21.解方程组:. 22.解方程组. 23.解方程组:. 24.解方程组. 25.解方程组:.

线性方程组的直接解法

第4章 线性方程组的直接解法 本章主要内容 线性方程组的直接解法——消元法(高斯消元法、主元消元法). 矩阵的三角分解法( Doolittle 分解、Crout 分解、 LDU 分解) 紧凑格式 改进平方根法. 本章重点、难点 一、消元法(高斯消元法、列主元消元法) 本章求解的是n 阶线性方程组Ax=b 的(即方程的个数和未知量的个数相等的线性方程组) ?????????=+???++????????????? ??=+???++=+???++n n nn n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 3222212111212111 1. 高斯消元法 ①高斯消元法的基本思想:通过对线性方程组Ax=b 的进行同解消元变换(也可以用矩阵的初等行变换法进行线性方程组的消元变换),将线性方程组化为上三角形方程组,然后用回代法求出此线性方程组的解。 ②高斯消元法计算公式: ????? ? ? ????????--=-=--==? ????? ????? ???? +=-=-=====-+=------------∑)1,..., 2,1()1,..., 2,1(,...,1,,,,...,2,1) ,...,2,1,(,) 1(1)1()1()1() 1() 1()1() 1()1()() 1()1()1()1()(,)0()0(n n i a x a b x n n i a b x n k j i b a a b b a a a a a n k n j i b b a a i ii n i j j i ij i i i n nn n n n k k k kk k ik k i k i k kj k kk k ik k ij k ij i i ij ij 对回代公式: 消元公式:

不定方程及不定方程组

第二十七讲 不定方程、方程组 不定方程(组)就是指未知数的个数多于方程的个数的方程 (组),其特点就是解往往有无穷多个,不能惟 一确定. 对于不定方程(组),我们往往限定只求整数解,甚至只求正整数解,加上条件限制后,解就可确定? 二元一次不定方程就是最简单的不定方程 ,一些复杂的不定方程(组)常常转化为二元一次不定方程问题 加以解决,与之相关的性质有: 设a 、b 、c 、d 为整数,则不定方程ax by c 有如下两个重要命题: (1)若(a ,b )=d ,且d 卜c ,则不定方程ax by c 没有整数解; x x 0 bt , ⑵若X 。,y o 就是方程ax by c 且(a ,b )=1的一组整数解(称特解),则 (t 为整数)就是方程 的 y y o at 全部整数解(称通解). 解不定方程(组),没有现成的模式、固定的方法可循 ,需要依据方程(组)的特点进行恰当的变形,并灵活运 用以下知识与方法;奇数偶数,整数的整除性、分离整系数、因数分解。配方利用非负数性质、 穷举,乘法公式, 不等式分析等. 举例 【例1】 正整数m 、n 满足8m+9n=mn+6,则m 的最大值为 _______________ . (新加坡数学竞赛题) 思路点拔 把m 用含n 的代数式表示,并分离其整数部分(简称分离整系数法).再结合整除的知识,求出m 的最大值. 注:求整系数不定方程 ax by c 的整数解。通常有以下几个步骤 : (1)判断有无整数解;(2)求一个特解;(3)写出通解;(4)由整数t 同时要满足的条件(不等式组),代入⑵中的表 达式,写出不定方程的正整数解. 分离整系数法解题的关键就是把其中一个未知数用另一个未知数的代数敷式表示 ,结合整除的知识讨 论. 【例2】 如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始,每隔 9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志 .问下一个同时设置这两种标志的地点 的千米数就是( ). 1115 (3)求方程 的正整数解. x y z 6 (“希望杯”邀请赛试题) p 1 思路点拨 设置限速标志、照相标志千米数分别表示为 定方程3+4x=0+9y 的正整数解. 【例3】(1)求方程15x+52y=6的所有整数解. (2)求方程x+y = x 2 一 xy+y 2 的整数 (河南省竞赛题) 3+4x 、10十9y (x,y 为自然数),问题转化为求不 A.32千米 B.37千米 C.55千米 D.90千米

相关主题
文本预览
相关文档 最新文档