当前位置:文档之家› 数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计
数控车床纵向进给系统和横向进给系统的设计

1绪论

1.1数控系统的发展简史及国外发展现状

1949年美国帕森公司首先提出了机床数字控制的概念。1952年第一代数控系统——电子管数控系统的诞生。20世纪50年代末,完全由固定布线的晶休管元器件电路所组成的第二代数控系统——晶体管数控系统被研制成功,取代了昂贵的、易坏的、难以推广的电子管控制装置。随着集成电路技术的发展,1965年出现了第三代数控系统——集成电路数控系统。1970年,在美国芝加哥国际机床展览会上,首次展出了第四代数控系统——小型计算机数控系统,然后,随着微型计算机以其无法比拟的性能价格比渗透各个行业,1974年,第五代数控系统——微型计算机数控系统也出现了。应用一个或多个计算机作为数控系统的核心组件的数控系统统称为计算机数控系统(CNC)。综上所述,由于微电子技术和计算机技术的不断发展,数控机床的数控系统也随着不断更新,发展非常迅速,几乎5年左右时间就更新换代一次[1]。

数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高科技含量的机电一体化产品。欧、美、日等工业化国家已先后完成了数控机床产品进程,1990年日本机床产值数控化率达75%,美国达70.1%,德国达57%。目前世界数控机床年产量超过15万台,品种超过1500多种[2]。

1.2我国数控系统的发展现状及趋势

1.2.1 数控技术状况

目前,我国数控系统正处在由研究开发阶段向推广应用阶段过渡的关键时期,也是由封闭型向开放型过渡的时期。

我国数控系统在技术上已趋于成熟,在重大关键技术(包括核心技术),已达到国际先进水平。自“七五”以来,国家一直把数控系统的发展作为重中之重来支持,现已开发出具有中国版权的数控系统,掌握了国外一直对我国封锁的一些关键技术。例如,曾长期困扰我国、并受到西方国家封锁的多坐标联动技术对我们已不再是难题,0.1m

当量的超精密数控系统、数控仿型系统、非圆齿轮加工系统、高速进给数控系统、实时多任务操作系统都已研制成功。尤其是基于PC机的开放式智能化数控系统,可实施多轴控制,具备联网进线等功能既可作为独立产品,又是一代开放式的开发平台,为机床厂

及软件开发商二次开发创造了条件。特别重要的是,我国数控系统的可靠性已有很大提高,MPBF值可以在15000h以上。同时大部分数控机床配套产品已能国内生产,自我配套率超过60%。这些成功为中国数控系统的自行开发和生产奠定了基础[1]。

我国进行改革开放后,由于政策的开放,使得金属切削行业得以和世界上先进的机床制造国家进行技术交流,并通过引进技术,到80年代初,国产数控机床进入实用化阶段,1991年数控机床的产值数控化率为14.3%,到1997年数控机床产值数控化率为24.5%。目前,我国数控机床(包括经济型机床)品种约有500个[2]。

但是,与国外数控车床相比,在性能、质量设计、制造等各方面存在较大差异,并存在许多不足:机械件的材质、加工精度、加工工艺存在较大差距,装配工艺也存在一定差距;主轴及卡盘刚性差,主轴定位准停不好;安全性较差,软硬件保护功能不够;刀片磨损快,生产成本高,效率低;硬件设计方面不规范,不符合国标,比如使用电压等级、电线颜色使用、图纸资料的绘制装订、提交等等,有的机床厂家甚至仍然停留在十年二十年前的设计思想;程序设计方面缺乏标准,不规范,逻辑性不强,故障率高,在使用过程中需不断对程序进行修改;外围元件布置及走线不规范,标牌线号不清,图纸与实物不符,维修困难;使用的元器件本身质量差,使用寿命短,故障率高,有的机床厂家为了降成本却忘记了质量、忘记了可靠性,选用一些国产的轴承、接触器、继电器、接近开关等元件,在生产过程中小故障连绵不断;柔性化不强,多品种生产困难。而国外数控车床无论是设计水平,还是制造水平,都要高出国内数控车床。机械件材质、加工精度、加工工艺、装配工艺比较好;软硬件设计有专门的标准,设计规范合理,配套件齐全,标牌标示清楚齐全;使用的元器件质量好,故障率低;新技术的应用及时领先;概括来说,精度及可靠性高、性能稳定故障率低[3]。

1.2.2数控系统的发展趋势

随着微电子技术和计算机技术的发展,数控系统性能日臻完善,数控系统应用领域日益扩大。为了满足社会经济发展和科技发展的需要,数控系统正朝着高精度、高速度、高可靠性、多功能、智能化及开放性等方向发展。

1.3伺服系统的特点

数字控制,是一种自动控制技术,是用数字化信号对控制对象加以控制的一种方法。数控机床是采用了数控技术的机床,或者说是装备了数控系统的机床。数控机床是典型的数控化设备,它一般由信息载体、计算机数控系统、伺服系统和机床四部分组成。

1.信息载体

信息载体又称控制介质,用于记录数控机床上加工一个零件所必需的各种信息,以控制机床的运动,实现零件的机械加工。常用的信息载体有穿孔带等,通过相应的输入装置将信息输入到数控系统中。数控机床也可采用操作面板上的按钮和键盘将加工信息直接输入,或通过窜行口将计算机上编写的加工程序输入到数控系统。高级的数控系统可能还包含一套自动编程机或者CAD/CAM系统。

2.计算机数控系统

计算机数控系统是数控机床的核心,它的功能是接受载体送来的加工信息,经计算和处理后去控制机床的动作。它由硬件和软件组成。硬件除计算机外,其外围设备主要包括光电阅读机、CRT、键盘、面板、机床接口等。软件由管理软件和控制软件组成。数控装置控制机床的动作可概括为:机床主运动、机床的进给运动、刀具的选择和刀具的补偿、其它辅助运动等。

3.伺服系统

它是数控系统的执行部分,包括驱动机构和机床移动部件,它接受数控装置发来的各种动作命令,驱动受控设备运动。伺服电动机可以是步进电机、电液马达、直流伺服电机或交流伺服电机。

4.机床

它是用于完成各种切削加工的机械部分,是在普通机床的基础上发展起来的,但也做了很多改进和提高,它的主要特点是:由于大多数数控机床采用了高性能的主轴及伺服传动系统,因此数控机床的机械传动结构得到了简化,传动链较短;为了适应数控机床连续地自动化加工,数控机床机械结构具有较高的动态刚度、阻尼精度及耐磨性,热变形较小;更多地采用高效传动部件,如滚珠丝杠副、直线滚动导轨等;不少数控机床还采用了刀库和自动换刀装置以提高机床工作效率[1]。

数控机床集中了传统的自动机床、精密机床和万能机床三者的优点,将高效率、高精度和高柔性集中于一体。而数控机床技术水平的提高首先依赖于进给和主轴驱动特性的改善以及功能的扩大,为此数控机床对进给伺服系统的位置控制、速度控制、伺服电机、机械传动等方面都有很高的要求。

伺服系统是指以机械位置或角度作为控制对象的自动控制系统。在数控机床中,伺服系统主要指各坐标轴进给驱动的位置控制系统。伺服系统接受来自CNC装置的进给脉

冲,经变换和放大,再驱动各加工坐标轴按指令脉冲运动。这些轴有的带动工作台,有的带动刀架,通过几个坐标轴的综合联动,使刀具相对于工件产生各种复杂的机械运动,加工出所要求的复杂形状工件。

进给伺服系统是数控装置和机床机械传动部件间的联系环节,是数控机床的重要组成部分。它包含机械、电子、电机(早期产品还包含液压)等各种部件,并涉及到强电与弱电控制,是一个比较复杂的控制系统。要使它成为一个既能使各部件互相配合协调工作,又能满足相当高的技术性能指标的控制系统,的确是一个相当复杂的任务。提高伺服系统的技术性能和可靠性,对于数控机床具有重大意义,研究与开发高性能的伺服系统一直是现代数控机床的关键技术之一。

数控机床伺服系统的一般结构如下图所示:

由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。

伺服系统对伺服电机的要求:

1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min 或更低速时,仍有平稳的速度而无爬行现象。

2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。

3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。

4)电机应能随频繁启动、制动和反转。

随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高[4]。

图1.1伺服系统结构图

1.4设计的内容、目的和方法

本次设计的内容是机床总体方案设计及总体布局图绘制、纵向及横向伺服进给机构的理论计算、结构设计及绘制装配图、典型零件绘制、数控系统(硬件连接图)设计、典型零件的数控车削加工程序编制及外文资料文献翻译,并撰写毕业设计论文。

设计的目的是培养综合运用基础知识和专业知识,解决工程实际问题的能力,提高综合素质和创新能力,受到本专业工程技术和科学研究工作的基本训练,使工程绘图、数据处理、外文文献阅读、程序编制、使用手册等基本技能得到训练和提高,培养正确的设计思想、严肃认真的科学态度,加强团队合作精神。

在设计中,先通过参观及查阅等了解有关系统的工作原理,作用及结构特点。选择合适的算法,根据计算结果查阅手册,得出相关的结构或零件。在图纸的绘制中,充分利用软件的先进性,完成三张A0图纸。最后,完成硬件连接设计,编制典型零件的车削程序,撰写说明书。

2 总体方案设计

2.1 方案设计及总体布局

机床结构可以布置成卧式、立式、倒立式及斜置式等,根据设计任务——加工轴类和直径不太大的盘、套类零件,采用卧式斜床身形式。主轴水平安装,横向成45°布置。根据纵横向长度定外观总长度,布局图如附录1所示。

数控机床的伺服系统是连接数控系统和机床主体的重要部分,在设计中,在伺服方式上选择最广泛应用的半闭环方式。采用螺旋传动,计算滚珠丝杠副尺寸规格,接着进行丝杠的校核并进行精度等验算,根据计算的扭矩选择伺服电机。 2.2 主切削力的计算

切削力的大小可用各种测力仪测得,也可用实验得出的近似公式计算:

P Z

P Z

X Y Z PZ P C t

s

k

= (2.1)

vPZ PZ PZ hPZ

PZ k k k k k k ?γ=料 (2.2)

PZ

PZ

X Y Z PZ vPZ PZ PZ hPZ PZ P C t

s

k k k k k ?γ=料(公斤力) (2.3)

式中 P Z C ——系数。决定于工件材料和加工方法,在一定的切削条件(v 、s 、t 固定)下,P Z C 为一常数。P Z C 大表示工件材料的加工性差;P Z C 小表示工件材料的加工性好。

k ——总的修正系数。决定于工件材料、切削用量和刀具几何形状等。

vPZ PZ PZ hPZ

PZ k k k k k ?γ料——分别为工件材料、切削速度、主偏角、前角、刀具磨损限

度对P 的修正系数。

PZ

X 、PZ Y ——指数。一般情况下PZ X >PZ Y 。这说明吃刀深度对切削力的影响要比

走刀量对切削力的影响大。

下表所列为的系数、指数和修正系数。这些系数在下列条件下制定:刀片材料为硬

质合金,工件材料为碳素结构钢,

275/b σ=公斤力毫米,50/v =米分,45?=

,10γ=+ ,0λ=

,后刀面磨损限度0.9 1.2h = 毫米,切削时不用冷却液,车削外圆。

它们的系数、指数和修正系数之值也各有不同,可从有关手册中查得。

表 2.1

切削功率是切削时在切削区内消耗的功率。当切削速度为已知时,切削功率可用下式计算:

10260

6120

Z Z P v P v N kw

=

=?切削 (2.4)

在校验机床选用的电动机功率时应使

N N k η≤切削过

电机 (2.5)

式中 N 电机——机床电动机名义功率(千瓦); η——机床效率(一般齿轮机床η=0.7 0.8); k 过——电动机超载时容许的系数(一般k 过=1.25)

[5][7]

如表2.1,取其中各参数的最大值进行估算: 取 P Z C =167, PZ X =1.0, 0.75PZ Y =,

PZ

k 料=1.09, PZ k ?=1.08, P Z k γ=1.3, hPZ k =1.05, vP Z k =0.9

取 切深t=5mm ,进给量s=0.3mm/r 则由公式(2.3):

0.75

16750.3 1.090.9 1.08 1.3 1.05

489.547974800Z P N N

=???????==≈公斤力

::1:0.25:0.4::4800:1200:1920

X Y X Y F F F F =∴=Z Z 而 F F (2.6)

切削功率:取切削速度为105m/min ,由公式(2.4)(2.5)得: 489.51058.46120

N k ω

?=

=切削

8.40.75 1.25

8.96N N k k ηω

?≥切削

电机过

取 11N k ω=切削

3 横向进给系统

3.1 已知技术参数

横向最大行程(X 轴)180 mm ; 工作进给速度为1 8000mm/min ; 横向快速进给速度:8 m/min ; 刀架估计质量:150kg ;

滑板的估计尺寸(长?宽?高):400mm ?200mm ?80mm ; 材料选为HT200。

3.2 滚珠丝杠的计算及选择 3.2.1 滚珠丝杠导程的确定

在本设计中,电机和丝杠直接相连,传动比为1i =,设电机的最高工作转速为

max 1500/m in

n r =,则丝杠导程为:

max max

h v P n ≥

(3.1)

3

810

5.331500

h P ?≥

=,取

h P =

3.2.2 确定丝杠的等效转速 /m in

h

v n r P =

(3.2)

由公式(3.2),最大进给速度时丝杠的转速:3

m ax m ax 8101333.33/m in

6

h

v n r P ?=

==

最小进给速度时丝杠的转速:m in m in 10.167/m in

6

h

v n r P =

=

=

丝杠等效转速:(取 122t t =)

max 1min 2

12

/m in

m n t n t n r t t +=

+ (3.3)

1t ,2

t ——转速m ax n ,m in n 作用下的时间(s)。

m ax 1m in 2

12

888.94/m in m n t n t n r t t +=

=+

3.2.3 估计工作台质量及工作台承重 刀架质量:11509.81470G N =?=

滑板:392400200807.85109.8110520G N -=??????= 总质量:1214705202000G G G N =+=+= 3.2.4 确定丝杠的等效负载

工作负载是指机床工作时,实际作用在滚珠丝杠上的轴向压力,它的数值可用进给牵引力的试验公式计算。选定导轨为滑动导轨,取摩擦系数为0.03,K 为颠覆力矩影响系数,一般取1.1 1.5,现取为1.1,则丝杠所受的力为(如图3.1所示):

m ax )2

21.112000.0320004800)192020002

2

X Z Y F K F f F F =++-+

=?+??++-

=2013N

(3.4)

m in 0F N

=

其等效负载可按下式估算 (取 21t t =,212n n = ):

t 1,t 2——轴向载荷max F ,m in F 作用下的时间(s)。 n 1,n 2——轴向载荷max F ,m in F 作用下的转速(r/min)。

1

333

max

11min

221122

1396m F

n t F

n t F N n t n t ??+==

?+?

?

(3.5) 3.2.5 确定丝杠所受的最大动载荷 图3.1 受力分析

1/3

60610

F

f T n

m w h m C N a f f f f

t h a k

τ??=

? ???

(3.6)

f w ——负荷性质系数;(查表:当一般运转时,f w 为1.2 1.5,取f w =1.5。) f t ——温度系数;(查表:)

f h ——硬度系数;(查表:滚道实际硬度≥HRC58时,f h =1。) f a ——精度系数;(查表:当精度等级为3时,f a =1.0。) f k ——可靠性系数;(查表:可靠性为90%时,f k =1.00。) F m ——等效负荷(N); n m ——等效转速(r/min);

T n ——工作寿命(h)。(查表得:数控机床:T h =15000。) 由公式(3.6) 6606015000888.9480010h m T n =??=?

n =cr 1

3

6

601684710h m a m w T n C F f N τ??== ???

3.2.6 选择滚珠丝杠型号

由文献[7,8]可知,查表选定丝杠为外循环插管式垫片预紧导珠管埋入型,型号: CDM3206-3。丝杠公称直径为φ32mm ,基本导程6h P m m =,其额定动载荷16917a C N =,额定静载荷45968oa C N =,圈数?列数=1.5?2,丝杠螺母副的接触刚度为

1130/c K N m

μ=,丝杠底径27. 9mm ,螺母长度为112mm ,取丝杠的精度为3级。在本

设计中采用双螺母垫片预紧。两边轴承分别为φ20mm 和φ25mm 。

本设计中丝杠采用两端固定的支承方式。选用成对丝杠专用轴承组合。 滚珠丝杠支承用专用轴承: 轴承特点:

1. 刚性大。由于采用特殊设计的尼龙成形保持架,增加了钢球数,且接触角为60°轴向刚性大。

2. 不需要预调整。对每种组合形式,生产厂家已作好了能得到最佳预紧力的间隙,故用户在装配时不需要再调整,只要按厂家作出的装置序列符号(>)排列后,装紧即可。

3. 起动力矩小。与圆锥滚子轴承、圆柱滚子轴承相比,起动力矩小。

为了易于吸收滚珠螺母与轴承之间的不同轴度,推荐采用正面组合形式。(DF,DFD,DFF 等) 3.3 校核

滚珠丝杠副的拉压系统刚度影响系统的定位精度和轴向拉压振动固有频率,其扭转刚度影响扭转固有频率。承受轴向负荷的滚珠丝杠副的拉压系统刚度K e 由丝杠本身的拉压刚度K S ,丝杠副内滚道的接触刚度K c ,轴承的接触刚度K B ,螺母座的刚度K H ,按不

同支承组合方式的计算而定。扭转刚度按丝杠的参数计算。 3.3.1 临界压缩负荷

丝杠的支承方式对丝杠的刚度影响很大,采用两端固定的支承方式并对丝杠进行预拉伸,可以最大限度地发挥丝杠的潜能。所以设计中采用两端固定的支承方式[9]。

临界压缩负荷按下式计算:

2

11m ax 2

0cr f E I F K F N

L

π=

≥ (3.7)

式中 E ——材料的弹性模量E 钢=2.1×1011(N/m 2);

L 0——最大受压长度(m); K 1——安全系数,取K 1=1/3; F max ——最大轴向工作负荷(N);

f 1——丝杠支承方式系数;(支承方式为双推——双推时,见下图,f 1=4,

f 2=4.730)

I ——丝杠最小截面惯性矩(m 4):

4

4

20( 1.2)

64

64

w I d d d π

π

=

=

?- (3.8)

式中 d 0——丝杠公称直径(mm); d w ——滚珠直径(mm)。

4

12

8

4

3.14(32 1.2 3.969)10

2.710

64

I m

--=

?-??=?

丝杠螺纹部分长度180********u L m m =++=,取 350u L mm = 支承跨距 1400L m m =, 丝杠全长 500L m m = 由公式(3.7)

2

11

8

max 2

6

4 3.14 2.110 2.710

1422554.3201342010

3

N F N --?????∴=

?

=>=?cr F

可见c r F 远大于max F ,临界压缩负荷满足要求。 3.3.2 临界转速

2

222max 29910

cr

c

f d n

n L

≈> (3.9)

式中 A ——丝杠最小横截面:

2

6

4

2

231.510

7.810

4

4

A d m

π

π

--=

=

??=?

c L ——临界转速计算长度:

112500350

18040351.50.42

2

c L m

-=

+++

=≈

取 10.4c L L m ==,

2k ——安全系数,一般取 20.8k =;

ρ——材料的密度:3

3

7.8510/kg m ρ=?;

2f ——丝杠支承方式系数,查表得2 4.730

f =,

2

m ax 2

0.03159910 4.73043650/m in 1500/m in

0.4

cr

n

r n r ≈??=>=

满足要求。

3.3.3 丝杠拉压振动与扭转振动的固有频率

丝杠系统的轴向拉压系统刚度K e 的计算公式: 两端固定:

1

11111(/)

4e

B

c

H

S

N m K K K K K μ-=

+++ (3.10)

式中 K e ——滚珠丝杠副的拉压系统刚度(N/μm);

K H ——螺母座的刚度(N/μm);

K c ——丝杠副内滚道的接触刚度(N/μm); K S ——丝杠本身的拉压刚度(N/μm); K B ——轴承的接触刚度(N/μm)。

1) 丝杠副内滚道的接触刚度可查滚珠丝杠副型号样本。 2) 轴承的接触刚度可查轴承型号样本。 3) 螺母座的刚度可近似估算为1000。 4) 丝杠本身的拉压刚度:

对丝杠支承组合方式为两端固定的方式:

6

10/s AE l K N m a l a μ-??=

? ?-??

(3.11)

式中 A ——丝杠最小横截面,2

2

2()4

A d m m π

=

E ——材料的弹性模量,E=2.1?1011(N/m 2); l ——两支承间距(m);

a ——螺母至轴向固定处的距离(m)。

已知:轴承的接触刚度1080/B K N m μ=,丝杠螺母的接触刚度716.7/C K N m μ=,丝杠的最小拉压刚度m in 545.2/s K N m μ=(见后面计算)。螺母座刚度1000/H K N m μ=。

1111141080

716.7

1000

4545.2

e

K =

+

+

+

??

324/e K N m

μ?=

丝杠系统轴向拉压振动的固有频率:

B ω=

(3.12)

式中 m ——丝杠末端的运动部件与工件的质量和(N/μm);

K e ——丝杠系统的轴向拉压系统刚度(N/μm)。

1260/12038/m in 1500/m in

B rad s r r ω=

=

==>

显然,丝杠的扭转振动的固有频率远大于1500r/min ,能满足要求。 3.3.4 丝杠扭转刚度

丝杠的扭转刚度按下式计算:

4

7.84m T d K L

= (3.13)

式中 m d ——丝杠平均直径:

L ——丝杠长度

4

31.757.84

15934/500

T K Nm r ==

扭转振动的固有频率

:

T ω=

(3.14)

式中 J W ——运动部件质量换算到丝杠轴上的转动惯量(kg ·m 2

);

J Z ——丝杠上传动件的转动惯量(kg ·m 2); J S ——丝杠的转动惯量(kg ·m 2)。 由文献[7,8]得: 平移物体的转动惯量为

242

20000.01() 5.2109.812J kg m ωπ

-=

=?

丝杠转动惯量:

2

2

2

111(

)88

4

s s s s s J m d d d L πρ=

=

??

34

4

2

1 3.147.85100.50.032

32

410kg m

-=

?????=?

4

2

1.610

z J kg m

-=?

4427.1/42297/min T rad s r ω=

==

显然,丝杠的扭转振动的固有频率远大于1500r/min ,可以满足要求。 3.3.5 传动精度计算

滚珠丝杠的拉压刚度 2

4s d E K L

π=

(3.15)

导轨运动到两极位置时,有最大和最小拉压刚度,其中,L 值分别为300mm 和100mm 。

最大与最小机械传动刚度:

25

max 0.0315 2.110

1635.7/40.1

s AE K N m L πμ???=

=

=?

25

min 0.0305 2.110

102.5/40.3

s AE K N m L

πμ???=

=

=?

最大和最小机械传动刚度:

max min 1

1

240.65/1/1/1/1/545.21/716.71/1080

o s C B

K N m K K K μ=

=

=++++

max max 1

1

341/1/1/1/1/1635.71/716.71/1080

o s C B

K N m

K K K μ=

==++++

由于机械传动装置引起的定位误差为

00min

0max 11(

)k F m

K K δμ=-

(3.16)

11

1456.6(

) 1.78240.65

341

k m

δμ=?-

=

对于3级滚珠丝杠,其任意300mm 导程公差为 12m μ±,机床定位精度

0.024/300m m m m

,所以,241/5 4.8k m δμ

定位误差小于(1/3 1/5)机床定位精度的要求。再加上闭环反馈系统的补偿,定位精度能进一步提高[10]。 3.3.6 伺服电机计算

根据文献[11],扭矩的计算为: 1. 理论动态预紧转矩

查表知3级滚珠丝杠 0.9η=, 而 max /32013/3671()P F F N m ===

2

3

0(/2)[(1)/]10

P P h T F P πηη-=?-? (3.17)

2

3

(6716/2)[(10.9)/0.9]100.135()

N m π-=??-?=

2. 最大动态摩擦力矩

对于3级滚珠丝杠,40%P ?=±,

m ax

0(140%)0.19()

P

P T T N m =+= (3.18)

3. 驱动最大负载所耗转矩

3

m ax 10

/2a h T F P πη

-=? (3.19)

3

2013610/(20.9)

2.14()

N m π-=???=

4. 支承轴承所需启动扭矩

查轴承表:

对于20φ的轴承,其10.15b T N m = ,

对于25φ的轴承,其20.2b T N m = , 则 120.150.20.35B b b T T T N m =+=+= 。

5. 驱动滚珠丝杠副所需扭矩 m ax

g P a B T T T T =++ 0.19 2.140.35 2.68N m

=++=

6. 电机的额定扭矩

(0.35~0.5)g J T T = (5.36~7.66)J T N m = 3.3.7 电机的选择

根据以上计算的扭矩及文献[12],选择电机型号为SIEMENS 的IFT5066,其额定转矩为6.7 N m 。

4 纵向进给系统

4.1 已知技术参数

纵向最大行程(Z 轴)650 mm ; 工作进给速度为1 15000mm/min ; 纵向快速进给速度:15 m/min ;

床鞍及其他的估计尺寸(长?宽?高):600mm ?300mm ?100mm ; 材料选为HT200。

4.2 滚珠丝杠的计算及选择 4.2.1 滚珠丝杠导程的确定

在本设计中,电机和丝杠直接相连,传动比为1i =,设电机的最高工作转速为

max 1500/m in

n r =,则由公式(3.1)可得丝杠导程为:

3

m ax m ax

1510101500

h v P n ?≥

==

4.2.2 确定丝杠的等效转速:

由公式(3.2) ,最大进给速度时丝杠的转速:3

m ax m ax 15101500/m in

10

h

v n r P ?=

==

最小进给速度时丝杠的转速:min min 10.1/m in

10

h

v n r P =

=

=

由公式(3.3) ,丝杠等效转速为:

max 1min 2

12

1000/m in

m n t n t n r t t +=

=+

4.2.3 估计工作台质量及工作台承重:

横向工作台质量:12000G N =

床鞍及其他:3926003001007.85109.81101386G N -=??????= 总质量:12200013863386G G G N =+=+=

4.2.4 确定丝杠的等效负载:

取滑动导轨摩擦系数为0.025,则丝杠所受的力为(如图4.1所示):

m ax ()2212000.025[33861920)]2X Y Z F F f G F F =+-

+

=+?+- =1335.6N

(4.1)

min 0.025338684.65F fG N

==?=

其等效负载可按公式(3.5)估算:

1

333

m ax

11m in

221122

926.2m F n t F

n t F N n t n t ??+==

?+?

?

4.2.5 确定丝杠所受的最大动载荷:

由公式(3.6)得:

6

606015000100090010

h m T n =??=?

n =cr 1

3

6

6013413.510h m a m w T n C F f N τ

??== ???

图4.1 受力分析 查表选定丝杠为外循环插管式垫片预紧导珠管埋入型,型号: CDM2510-2.5。丝杠公称直径为φ25mm ,基本导程10h P m m =,其额定动载荷15975a C N =,额定静载荷

34170oa C N

=,圈数?列数=2.5?1,丝杠螺母副的接触刚度为767/c K N m μ=,丝杠底

径24.5mm ,螺母长度为125mm ,取丝杠的精度为3级。在本设计中采用双螺母垫片预紧。两边的轴承选为φ17mm 与φ20mm 。

4.3 校核 4.3.1 临界压缩负荷

轴向固定的长丝杠在承受压缩负荷时,应验算其压杆稳定性。临界压缩负荷按公式(3.7)(3.8)计算:

丝杠螺纹部分长度65012540815u L mm =++=,取 850u L mm = 支承跨距 11000L m m =, 丝杠全长 1100L m m =

2

11

8

max 2

6

4 3.14 2.1100.6810

208011335.695010

N F N --?????∴=

=>=?cr F

可见c r F 远大于max F ,临界压缩负荷满足要求。 4.3.2 临界转速 由公式(3.9)

2

6

4

2

220.110

3.1710

4

4

A d m

π

π

--==

??=?

1251100850

65040877.50.92

2

c L m

-=

+++

=≈

取 11c L L m ==,

2

m ax 2

0.02019910 4.7304456.5/m in 1500/m in

1

cr

n

r n r ≈??=>=

满足要求。

4.3.3 丝杠拉压振动与扭转振动的固有频率

由公式 (3.10)(3.11)(3.12) :

已知:轴承的接触刚度760/B K N m μ=,丝杠螺母的接触刚度556.25/C K N m μ=,丝杠的最小拉压刚度min 102.5/s K N m μ=(见后面计算)。螺母座刚度1000/H K N m μ=。

111114760

556.25

1000

4102.5

e

K =

+

+

+

??

179.67/e K N m

μ?=

丝杠系统轴向拉压振动的固有频率:

721.12/6889.7/m in 1500/m in

B rad s r r ω=

=

==>

显然,丝杠的扭转振动的固有频率远大于1500r/min ,能满足要求。 4.3.4 丝杠扭转刚度

丝杠的扭转刚度由公式(3.13)计算:

4

24.8

7.84

2696.1/1100

T K Nm r ==

由文献[7,8]得:

数控机床进给系统设计

数控机床进给系统设计

第一章、数控机床进给系统概述 数控机床伺服系统的一般结构如图图1-1所示: 图1-1数控机床进给系统伺服 由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。 1.1、伺服系统对伺服电机的要求 (1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min 或更低速时,仍有平稳的速度而无爬行现象。 (2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 (3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。 (4)电机应能随频繁启动、制动和反转。 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。 数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。 1.2、伺服系统的分类 数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反

馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。 进给伺服系统按其控制方式不同可分为开环系统和闭环系统。闭环控制方式通常是具有位置反馈的伺服系统。根据位置检测装置所在位置的不同,闭环系统又分为半闭环系统和全闭环系统。半闭环系统具有将位置检测装置装在丝杠端头和装在电机轴端两种类型。前者把丝杠包括在位置环内,后者则完全置机械传动部件于位置环之外。全闭环系统的位置检测装置安装在工作台上,机械传动部件整个被包括在位置环之内。 开环系统的定位精度比闭环系统低,但它结构简单、工作可靠、造价低廉。由于影响定位精度的机械传动装置的磨损、惯性及间隙的存在,故开环系统的精度和快速性较差。 全闭环系统控制精度高、快速性能好,但由于机械传动部件在控制环内,所以系统的动态性能不仅取决于驱动装置的结构和参数,而且还与机械传动部件的刚度、阻尼特性、惯性、间隙和磨损等因素有很大关系,故必须对机电部件的结构参数进行综合考虑才能满足系统的要求。因此全闭环系统对机床的要求比较高,且造价也较昂贵。闭环系统中采用的位置检测装置有:脉冲编码器、旋转变压器、感应同步器、磁尺、光栅尺和激光干涉仪等。 数控车床的进给伺服系统中常用的驱动装置是伺服电机。伺服电机有直流伺服电机和交流伺服电机之分。交流伺服电机由于具有可靠性高、基本上不需要维护和造价低等特点而被广泛采用。 直流伺服电动机引入了机械换向装置。其成本高,故障多,维护困难,经常因碳刷产生的火花而影响生产,并对其他设备产生电磁干扰。同时机械换向器的换向能力,限制了电动机的容量和速度。电动机的电枢在转子上,使得电动机效率低,散热差。为了改善换向能力,减小电枢的漏感,转子变得短粗,影响了系统的动态性能。 交流伺服已占据了机床进给伺服的主导地位,并随着新技术的发展而不断完善,具体体现在三个方面。一是系统功率驱动装置中的电力电子器件不断向高频化方向发展,智能化功率模块得到普及与应用;二是基于微处理器嵌入式平台技术的成熟,将促进先进控制算法的应用;三是网络化制造模式的推广及现场总线技术的成熟,将使基于网络的伺服控制成为可能。 1.3、主要设计任务参数 车床控制精度:0.01mm(即为脉冲当量);最大进给速度:V max=5m/min。最大加工直径为D =400mm,工作台及刀架重:110㎏;最大轴,向力=160㎏;导轨静摩擦系数=0.2; max 行程=1280mm;步进电机:110BF003;步距角:0.75°;电机转动惯量:J=1.8×10-2㎏.m2。

机械机床毕业设计9CA6140横向进给系统及刀架的数控改造

CA6140横向进给系统及刀架的数控改造 学生: 学号: 专业:机械设计制造及其自动化 班级:机电一体化 指导教师: 机电工程系 年六月

摘要 所谓数字控制机床是按照含有机床(刀具)运动信息程序所指定的顺序自动执行操作的过程。而计算机数控机床就是数控机床在计算机监控下进行工作。它的优点很多,可以在同一机床上一次装夹可完成多个操作,生产率显著提高等优点,但它的价格昂贵。由于我国现在使用的机床大多数为普通车床,自动化程度低,要更新现有机床需要很多资金。为了解决这个问题,也为了适应多品种中、小批量零件加工我们选择机床经济型数控改造。纵向进给机构的改造:拆去原机床的溜板箱、光杠与丝杠以及安装座,配上滚珠丝杠及相应的安装装置,纵向驱动的步进电机及减速箱安装在车床的床尾,不占据丝杠空间。横向进给机构的改造:拆除横向丝杠换上滚珠丝杠,由步进电机带动。总体设计方案:CA6140车床主轴转速部分保留圆机床的手动变速功能。车床的纵向和横向进给运动采用步进电机驱动。最后,根据已知条件对纵向横向伺服进给机构进行设计与计算。 关键词:数控、车床、改造

ABSTRACT Numerical Control (NC) is any machining process in which the operations are executed automaticallu in sequences as specified by the program that contains the information for the tool movement .When Numerical Control is performed under computer supervision, it is called Computer Numerical Control (CNC).CNC machines have many advantages over conventional machines. For example, there is a possibility lf performing operations on the same machine in one setup and production is significantly increased. One of its disadvantages is that they are quite expensive. In our country conventional machine is used widely. So if the machines are replaced, there is going to need a large money. In order to agree with the development of our economy, we can reform the conventional machines. The reformation of the vertical mechanism: we demolish the current smooth leading, leading screw and installing stand. Then replace the ball leaking to the relevant position. The reformation of the horizontal mechanism: we make the horizontal ball lead screw instead of the conventional screw. And Stepper motor drives the screw. The overall master design: the spindle’s gearshift of the CA6140 mechanism controlled by the former operating lever. The moving of the vertical table and the horizontal table is drove by the ball screw, which is drove by the Stepper motors. The last, we design the vertical and horizontal mechanism on the basis of known numbers. Key word: Numerical Control、machining、information

数控机床进给伺服系统的组成和分类

机床加工,大多是低速时进行切削,即在低速时进给驱动要有大的转矩输出。 二、进给伺服系统的组成 如图所示为数控机床进给伺服系统的组成。从图中可以看出,它是一个双闭环系统,内环是速度环,外环是位置环。位置环的输入信号是计算机给出的指令信号和位置检测装置反馈的位置信号,这个反馈是一个负反馈,即与指令信号的相位相反。指令信号是向位置环送去加数,而反馈信号向位置环送去减数。位置检测装置通常有光电编码器、旋转变压器、光栅尺、感应同步器或磁栅尺等。它们或者直接对位移进行检测,或者间接对位移 进行检测。 开环伺服系统开环伺服系统是最简单的进给伺服系统,无位置反馈环节。如图所示,这种系统的伺服驱动装置主要是步进电动机、功率步进电动机、电液脉冲电动机等。由数控系统发出的指令脉冲,经驱动电路控制和功率放大后,使步进电动机转动,通过齿轮副 与滚珠丝杠螺母副驱动执行部件。 闭环伺服系统 闭环伺服系统原理图如图所示。系统所用的伺服驱动装置主要是直流或交流伺服电动机以及电液伺服阀—液压马达。与开环进给系统最主要的区别是:安装在执行部件上的位置检测装置,测量执行部件的实际位移量并转换成电脉冲,反馈到输入端并与输人位置指令信号进行比较,求得误差,依此构成闭环位置控制。由于采用了位置检测反馈装置,所以闭环伺服系统的位移精度主要取决于检测装置的精度。闭环伺服系统的定位精度一般可 达±0.01mm~±0.005 mm。

半闭环伺服系统 半闭环伺服系统如图所示。将检测元件安装在中间传动件上,间接测量执行部件位置的系统称为半闭环系统。闭坏系统可以消除机械传动机构的全部误差,而半闭环系统只能补偿系统环路内部分元件的误差,因此,半闭环系统的精度比闭环系统的精度要低一些, 但是它的结构与凋试都比较简单。 全数字伺服系统 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已经开始采用高速度、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化,应用数字PID算法,用PID程序来代替PID调节器的硬件,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。位置、速度和电流构成的三环结构 如图所示。

机床夹紧、进给液压传动系统设计

液压传动课程设计 中国矿业大学机电学院 选修课

设计参数: 不计惯性负载 题目:在某专用机床上有一夹紧进给液压系统,完成工件的先夹紧后、后进给任务,工作原理如下: 夹紧油缸: 快进→慢进→达到夹紧力后启动进给油缸工作 进给油缸: 快进→慢进→达到进给终点→快速退回 夹紧油缸快速退回。 夹紧缸快进速度:0.05m/s 夹紧缸慢进速度:8mm/s 最大夹紧力:40KN 进给油缸快进速度:0.18m/s 进给油缸慢进速度:0.018m/s 最大切削力:120KN 夹紧缸行程:用行程开关调节(最大250mm) 进给缸行程:用行程开关调节(最大1000mm) 一、工况分析: 1.负载分析

已知最大夹紧力为40KN,则夹紧油缸工作最大负载 140 F KN = 已知最大切削力为120KN,则进给油缸工作最大负载 2120 F KN = 根据已知负载可画出负载循环图1(a) 根据已知快进、快退速度及工进时的速度范围可画出速度循环图1(b) 图1(a) 图1(b)

2.确定液压缸主要参数 根据系统工作原理可知系统最大负载约为120KN 参照负载选择执行元件工作压力和主机类型选择执行元件工作压力最大负载宜选取18p MPa =。动力滑台要求快进、快退速度相等,选用单杆液压缸。此时液压缸无缸腔面积1A 与有缸腔面积2A 之比为2,即用活塞杆直径d 与活塞直径D 有d=的关系。为防止液压缸冲击,回油路应有背压2P ,暂时取MPa P 6.02=。 从负载循环图上可知,工进时有最大负载,按此负载求液压缸尺寸。根据液压缸活塞力平衡关系可知: M e F A p A p η+= 2211 212A A = 其中,M η为液压缸效率,取95.0=M η 2 46 2 111046.8910)3.04(95.031448)2 (m p p F A M e -?=?-= - = η m A D 1067.014 .31046.894441 =??== -π m D d 075.0707.0== 将D 和d 按GB2348-30圆整就近取标准值,即

数控车床纵向进给系统和横向进给系统的设计1

数控车床纵向进给系统和横向进给系统的设计1

1绪论 1.1数控系统的发展简史 1952年第一代数控系统——电子管数控系统的诞生。20世纪50年代末,完全由固定布线的晶休管元器件电路所组成的第二代数控系统——晶体管数控系统被研制成功,取代了昂贵的、易坏的、难以推广的电子管控制装置。随着集成电路技术的发展,1965年出现了第三代数控系统——集成电路数控系统。1970年,在美国芝加哥国际机床展览会上,首次展出了第四代数控系统——小型计算机数控系统,然后,随着微型计算机以其无法比拟的性能价格比渗透各个行业,1974年,第五代数控系统——微型计算机数控系统也出现了。应用一个或多个计算机作为数控系统的核心组件的数控系统统称为计算机数控系统(CNC)。综上所述,由于微电子技术和计算机技术的不断发展,数控机床的数控系统也随着不断更新,发展非常迅速,几乎5年左右时间就更新换代一次[1]。 数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高科技含量的机电一体化产品。欧、美、日等工业化国家已先后完成了数控机床产品进程,1990年日本机床产值数控化率达75%,美国达70.1%,德国达57%。目前世界数控机床年产量超过15万台,品种超过1500多种[2]。 1.2我国数控系统的发展现状及趋势 1.2.1 数控技术状况 目前,我国数控系统正处在由研究开发阶段向推广应用阶段过渡的关键时期,也是由封闭型向开放型过渡的时期。 我国数控系统在技术上已趋于成熟,在重大关键技术(包括核心技术),已达到国 际先进水平。自“七五”以来,国家一直把数控系统的发展作为重中之重来支持,现已开发出具有中国版权的数控系统,掌握了国外一直对我国封锁的一些关键技术。例如,曾长期困扰我国、并受到西方国家封锁的多坐标联动技 当量的超精密数控系统、数控仿型系统、非圆术对我们已不再是难题,0.1m 齿轮加工系统、高速进给数控系统、实时多任务操作系统都已研制成功。尤其是基于PC机的开放式智能化数控系统,可实施多轴控制,具备联网进线等功能

数控机床进给系统设计

第一章、数控机床进给系统概述 数控机床伺服系统的一般结构如图图1-1所示: 图1-1数控机床进给系统伺服 由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。 1.1、伺服系统对伺服电机的要求 (1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r /min或更低速时,仍有平稳的速度而无爬行现象。 (2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 (3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在0.2s以内从静止启动到额定转速。 (4)电机应能随频繁启动、制动和反转。 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。 数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。 1.2、伺服系统的分类 数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。

毕业论文CNC数控车床纵向进给系统设计说明

1前言 我国数控车床从20世纪70年代初进入市场,至今通过各大机床厂家的不懈努力,通过采取与国外著名机床厂家的合作、合资、技术引进、样机消化吸收等措施,使得我国的机床制造水平有了很大的提高,其产量在金属切削机床中占有较大的比例.但我国在五轴加工技术、高速加工技术、精密加工技术等方面与国外方面还有很大的差距。主要问题有:1缺乏系统深入的科研工作, 难以对各种技术资料进行积累, 设计方法旧。2、缺乏实事的科学精神, 忽视了数控机床本身的技术特点、发展规律, 没有实事地制定数控机床发展的规划, 盲目性大。3、没有合理地运用资源。各个研究所孤军奋战,不通力合作,并且床行业人员素质低, 缺乏各方面人才。4、我国制造业大环境的制约。我国依靠引进和合作生产来发展各类主机, 至今我国许多高性能、新结构的数控机床大都为合作产品, 基本处于仿制阶段。 国产数控机床及其功能部件无论在技术参数上,还是在各种动态指标上,与工业发达国家的同类产品均存在一定差距。目前,国机床集团在引进技术的基础上成功开发出BW60HS/I型系列高速卧式加工中心,并已批量进入市场。该机采用电主轴,主轴最高转速16 000 r/min,由零至最高转速的时间为l s,快速移动速度60 m/min。宁江集团开发的高速加工中心主轴转速高达40 000 r/min。 当前,在数控机床精密化方面,美国的水平最高,不仅生产中小型精密机床,而且由于国防和尖端技术的需要,研究开发了大型精密机床。其代表产品有LLL 实验室研制成功的DTM一3型精密车床和LODTM大型光学金刚石车床,它们是世界公认水平最高的、达到当前技术最前沿的大型精密机床。其它国家也相应研制成功各种类似的装备,如英国的Cran·field、日本的东芝机械等。近年来我国对超精密机床的研制也一直在进行。机床研究所研制成功了JCS一027型超精密车床、JCS一03型超精密铣床、JCS一035型数控超精密车床等。

数控车床横向进给系统设计

1、数控机床进给系统概述 1.1 伺服进给系统概述 数控机床的伺服进给系统由伺服驱动电路、伺服驱动装置、机械传动机构和执行部件组成。它的作用是接收数控系统发出的进给速度和位移指令信号,由伺服驱动电路作转换和放大后,经伺服驱动装置(直流、交流伺服电动机,功率步进电机,电业脉冲马达等)和机械传动机构,驱动机床的工作台、主轴刀架等执行部件实现工作进给和快速移动。数控机床的伺服进给系统与一般机床的进给系统有本质的差别,他能根据指令信号精确地控制执行部件的运动速度与位置,以及几个执行部件按一定运动规律所合成的运动轨迹。 1.2 伺服进给系统分类 数控私服进给系统按有无位置检测和反馈进行分类,有以下三种: (1)开环伺服系统 (2)半闭环伺服系统 (3)闭环伺服系统 1.3 伺服进给系统的基本要求 (1)精度要求 (2)响应速度 (3)调速范围 (4)低速、大转矩 2、运动设计 2.1传动方案拟定 数控机床按控制方式分为开环、闭环、半闭环,由于采用直流式交流伺服电机的闭环控制方案,结构复杂,技术难度大,调试和维修困难,造价也高。闭环控制可以达到很好的机床精度,能补偿机械传动系统中各种误差,消除间隙、干扰等对加工精度的影响,一般应用于要求高的数控设备中,由于数控车床加工精度不十分高,采用闭环系统的必要性不大。若采用直流或交流伺服电机的半闭环控制,精度较闭环控制的查,但是稳定性好,成本较低,调试维修较容易;但是对于经济型数控机床来说必要性不大。故在本次设计中,采用开环控制步进电机驱动。 确定设计任务后,初步拟定三种传动方案即1电机直接与丝杠相连;2电机通过同步带的传动带动丝杠转动;3电机通过齿轮传动带动丝杠转动。

数控车床纵向进给系统和横向进给系统的设计

数控车床纵向进给系统和横向进给系统的设计

目录 1 绪论 (3) 1.1 数控系统的发展简史及国外发展现状 (3) 1.2 我国数控系统的发展现状及趋势 (3) 1.3 伺服系统的特点 (4) 1.4 设计的内容、目的和方法 (7) 2 总体方案设计 (8) 2.1 方案设计及总体布局 (8) 2.2 主切削力的计算 (8) 3 横向进给系统 (11) 3.1 已知技术参数 (11) 3.2 滚珠丝杠的计算及选择 (11) 3.3 校核 (14) 4 纵向进给系统 (20) 4.1 已知技术参数 (20) 4.2 滚珠丝杠的计算及选择 (20) 4.3 校核 (21) 5 床身及导轨 (26) 5.1 床身 (26) 5.2 导轨 (27) 6 数控系统选择 (29) 6.1 西门子数控系统的优点 (29) 6.2 数控连线图 (30) 7 数控编程 (31) 结论 (35) 致谢 (36)

1绪论 1.1数控系统的发展简史及国外发展现状 1949年美国帕森公司首先提出了机床数字控制的概念。1952年第一代数控系统——电子管数控系统的诞生。20世纪50年代末,完全由固定布线的晶休管元器件电路所组成的第二代数控系统——晶体管数控系统被研制成功,取代了昂贵的、易坏的、难以推广的电子管控制装置。随着集成电路技术的发展,1965年出现了第三代数控系统——集成电路数控系统。1970年,在美国芝加哥国际机床展览会上,首次展出了第四代数控系统——小型计算机数控系统,然后,随着微型计算机以其无法比拟的性能价格比渗透各个行业,1974年,第五代数控系统——微型计算机数控系统也出现了。应用一个或多个计算机作为数控系统的核心组件的数控系统统称为计算机数控系统(CNC)。综上所述,由于微电子技术和计算机技术的不断发展,数控机床的数控系统也随着不断更新,发展非常迅速,几乎5年左右时间就更新换代一次[1]。 数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高科技含量的机电一体化产品。欧、美、日等工业化国家已先后完成了数控机床产品进程,1990年日本机床产值数控化率达75%,美国达70.1%,德国达57%。目前世界数控机床年产量超过15万台,品种超过1500多种[2]。 1.2我国数控系统的发展现状及趋势 1.2.1 数控技术状况 目前,我国数控系统正处在由研究开发阶段向推广应用阶段过渡的关键时期,也是由封闭型向开放型过渡的时期。 我国数控系统在技术上已趋于成熟,在重大关键技术(包括核心技术),已达到国际先进水平。自“七五”以来,国家一直把数控系统的发展作为重中之重来支持,现已开发出具有中国版权的数控系统,掌握了国外一直对我国封锁的一些关键技术。例如,曾 当长期困扰我国、并受到西方国家封锁的多坐标联动技术对我们已不再是难题,0.1m 量的超精密数控系统、数控仿型系统、非圆齿轮加工系统、高速进给数控系统、实时多任务操作系统都已研制成功。尤其是基于PC机的开放式智能化数控系统,可实施多轴控制,具备联网进线等功能既可作为独立产品,又是一代开放式的开发平台,为机床厂

数控机床进给伺服系统类故障诊断与处理

数控机床进给伺服系统类故障诊断与处理 数控机床在工作时常出现由于进给伺服系统原因造成的机床故障,此类故障出现的常见形式有爬行、抖动、伺服电动机不转、过载、工件尺寸无规律偏差等。针对这些典型故障,采用一定的机床维修技术,可以实现快速排除此类故障。 数控机床的进给伺服系统是以数控机床的各坐标为控制对象,以机床移动部件的位置和速度为控制量的自动控制系统,又称位置随动系统、进给伺服机构或进给伺服单元。在数控机床中,进给伺服系统是数控装置和机床本体的联系环节,它接收数控系统发出的位移、速度指令,经变换、放大后,由电动机经机械传动机构驱动机床的工作台或溜板沿某一坐标轴运动,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 伺服进给系统常见故障形式 1.1爬行

般是由于进给传动链的润滑状态不良、伺服系统增益过低及外 加负载过大等因素所致。尤其要注意的是,伺服和滚珠丝杠连接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹、磨损、断裂等,造成滚珠丝杠转动或伺服电动机的转动不同步,从而使进给忽快忽慢,产生爬行现象。 1.2抖动 在进给时出现抖动现象,其可能原因有:1、接线端子接触不良,如紧固的螺钉松动;2、位置控制信号受到干扰,如屏蔽不好等;3、测速信号不稳定,如测速装置故障、测速反馈信号干扰等。如果窜动发生在正、反向运动的瞬间,则一般是由于进给传动链的反向间隙或者伺服系统增益过大引起。 1.3过载 当进给运动的负载过大、参数设定错误、频繁正、反向运动以及进给 传动链润滑状态不良时,均会引起过载的故障。此故障一般机床可以

自行诊断出来,并在CRT显示屏上显示过载、过热或过电流报警。同 时,在进给伺服模块上用指示灯或者数码管显示驱动单元过载、过电 流等报警信息。 1.4伺服电动机不转 当速度、位置控制信号未输出、或者使能信号(即伺服允许信号,一般为DC+24V继电器线圈电压)未接通以及进给驱动单元故障都会造成此故障。此时应查阅电气图纸,测量数控装置的指令输出端子的信号是否正常,通过CRT观察I/O状态,分析机床PLC梯形图,以确定进给轴的启动条件,观察如润滑、冷却等是否满足。如是进给驱动单元故障则用交换法,可判断出相应单元是否有故障。 进给伺服系统常见故障典型案例分析 案例1.故障现象:一台配套SIEMENS840系统的加工中心在自动加工过程中,Y轴有抖动现象,加工零件表面不光滑。 故障诊断与处理:为了判定故障原因,将机床操作方式置于手动方式,用手摇脉冲发生器控制Y轴进给,在JOG方式下,来回移动丫轴,发现丫

数控机床进给系统范文

数控机创进给系统 数控机床的进给传动系统常用伺服进给系统来工作。 伺服进给系统的作用是根据数控系统传来的指令信息,进行放大以后控制执行部件的运动,不仅控制进给运动的速度,同时还要精确控制刀具相对于工件的移动位置和轨迹。因此,数控机床进给系统,尤其是轮廓控制系统,必须对进给运动的位置和运动的速度两方面同时实现自动控制。 数控机床进给系统的设计要求除了具有较高的定位精度之外,还应具有良好的动态响应特性,系统跟踪指令信号的响应要快,稳定性要好。 一个典型的数控机床闭环控制的进给系统组成:位置比较、放大元件、驱动单元、机械传动装置和检测反馈元件等几部分。 机械传动装置:是指将驱动源旋运动变为工作台直线运动的整个机械传动链,包括减速装置、丝杠螺母副等中间传动机构。 第一节概述 一、数控机床对进给传动系统的要求 1.减少摩擦阻力:在数控机床进给系统中,普遍采用滚珠丝杠螺母副、静压丝杠螺母副,滚动导轨、静压导轨和塑料导轨。 2.减少运动惯量 3.高的传动精度与定位精度设计中,通过在进给传动链中加入减速齿轮,以减小脉冲当量(即伺服系统接收一个指令脉冲驱动工作台移动的距离),预紧传动滚珠丝杠,消除齿轮、蜗轮等传动件的间隙等办法,可达到提高传动精度和定位精度的目的。 4.宽的进给调速范围:伺服进给系统在承担全部工作负载的条件下,应具有很宽的调速范围,以适应各工件材料、尺寸和刀具等变化的需要,工作进给速度范围可达3~6000mm/min(调速范围1:2000)。 5.响应速度要快:所谓快响应特性是指进给系统对指令输入信号的响应速度及瞬态过程结束的迅速程度,即跟踪指令信号的响应要快;定位速度和轮廓切削进给速度要满足要求;工作台应能在规定的速度范围内灵敏而精确地跟踪指令,进行单步或连续移动,在运行时不出现丢步或多步现象 6.无间隙传动:进给系统的传动间隙一般指反向间隙,即反向死区误差,它存在于整个传动链的各传动副中,直接影响数控机床的加工精度。因此,应尽量消除传动间隙,减小反向死区误差。设计中可采用消除间隙的联轴节及有消除间隙措施的传动副等方法。 7.稳定性好、寿命长:稳定性是伺服进给系统能够正常工作的最基本的条件,特别是在低速进给情况下不产生爬行,并能适应外加负载的变化而不发生共振。所谓进给系统的寿命,主要指其保持数控机床传动精度和定位精度的时间长短,即各传动部件保持其原来制造精度的能力。 8.使用维护方便 二、联轴器 联轴器是用来连接进给机构的两根轴使之一起回转,以传递转矩和运动的一种装置。机器运转时,被连接的两轴不能分离,只有停车后,将联轴器拆开,两轴才能脱开。 联轴器的类型:有液压式、电磁式和机械式;而机械式联轴器是应用最广泛的一种,它借助于机械构件相互间的机械作用力来传递转矩,

机电一体化课程C6140数控车床纵向进给传动机构..

C6140卧式车床纵向进给系统数控化改造 设计设计说明书

一、绪论3 1.机床数控改造的意义3 2.数控改造的主要内容3 3.车床数控改造的必要性与可行性4 二、课题任务及要求4 1.题目:C6140卧式车床纵向进给系统数控化改造设计4 2.主要技术要求4 三、进给系统的改造与设计方案5 四、纵向进给系统的设计计算5 1.脉冲当量的确定5 2.切削力的计算5 3.滚珠丝杆螺母副的计算和选型6 4.同步带减速箱的设计7 5.步进电机的计算与选型9 6.同步带传递功率的校核13 五、绘制进给系统的装配图13 六、控制系统的硬件电路设计14 七、步进电机驱动电源选用17 八、总结19

一、绪论 1.机床数控改造的意义 普通卧式车床应用广泛,约占车床类总数的65%。卧式车床主轴转速和进给量的调整范围大,工艺范围广,能进行多种表面的加工。但其结构也有不足之处,如刚度低,抗震性差,传动件间存在间隙,精度不足,且受操作人员技能的限制较大。而数控机床作为机电一体化的典型产品,在机械制造业中发挥着巨大的作用,很好地解决了现代机械制造中结构复杂、精密、批量小、尺寸多变零件的加工问题,且能稳定产品的加工质量,大幅度地提高生产效率。但从目前企业面临的情况看,因数控机床价格较贵,一次性投资较大而使中小型企业心有余而力不足。而机床的数控化改造由于其投资少、周期短,改造后能满足企业生产的需要,并且能有效地利用机床的剩余价值,成为中小型企业的首选。 a.节省资金 机床的数控改造同购置新机床费相比,一般可节省40% ~ 60% 的费用,大型及特殊设备尤为明显。一般机床改造只需花新机床购置费的1/3,即使将原机床的结构进行彻底改造升级,也只需花费购买新机床60% 的费用,并可以利用车间现有的基础。 b.性能稳定可靠 因原机床各基础件经过长期时效,几乎不会产生应力变形而影响精度。 c.提高生产效率 机床经数控改造后,即可实现加工的自动化,效率可比传统机床提高3~7 倍。对复杂零件而言,难度越高,功效提高得越多。且可以不用或少用工装,不仅节约了费用,而且可以缩短生产准备周期。 2.数控改造的主要内容 对卧式车床进行改造,主要是将纵向和横向进给系统改成用微机控制的、能独立运动的进给伺服系统;将手动的刀架换成能自动换刀的电动刀架。这样,利用数控装置,车床就可以按预先输入的加工指令进行切削加工。由于加工过程中的切削参数、切削次序和刀具都可以按程序自动进行调节和更换,再加上纵、横

数控机床进给系统设计示例

数控机床系统总体设计方案的确定和设计内容 注:下面内容中所指:横向即为X轴方向,纵向即为Y轴方向 最大加工直径为400和500mm的设计方案确定计算内容和公式与320mm的一样,把各自的参数代入即可。 总体方案设计的内容 接到一个数控装置的设计任务以后,必须首先拟订总体方案,绘制系统总体框图,才能决定各种设计参数和结构,然后再分别对机械部分和电气部分进行设计计算。 机床数控系统总体方案的拟订包括以下内容:系统运动方式的确定,伺服系统的的选择,执行机构的结构及传动方式的确定,计算系统的选择等内容。 一般应根据设计任务和要求提出数个总体方案,进行综合分析,比较和论证,最后确定一个可行的总体方案。 2.2 总体方案设计 2.2.1 设计任务 用微机数控技术改造最大加工直径为320毫米普通车床的进给系统 主要技术参数: 最大加工直径(mm):在床身上:320 在床鞍上:175 最大加工长度(mm): 750 溜板及刀架重量(N):纵向:800 横向:400 刀架快移速度(m/min):纵向:2 横向:1 最大进给速度(m/min):纵向:0.8 横向:0.4 最小分辨率(mm) : 纵向:0.01 横向:0.005 定位精度(mm) : 0.02 主电机功率(KW):3 起动加速时间(ms):25 2.2.2 总体方案确定 (1)系统的运动方式与伺服系统的选择

由于改造后的经济型数控车床应具有定位,直线插补,顺。逆圆,暂停,循环加工,公英制罗纹加工等功能,故应选择连续控制系统。考虑到属于经济型数控机床加工精度要求不高,为了简化结构,降低成本,采用步进电机开环控制系统。 (2)数控系统 根据机床要求,采用8位微机。由于MCS-51系列单片机具有集成度高,可靠性好,功能强,速度快,抗干扰性强,具有很高的性能价格比等特点,决定采用MCS-51系列的80C51单片机扩展系统。 控制系统由微机部分,键盘及显示器,I/O接口,步进电机驱动器等组成,系统的加工程序和控制命令通过键盘操作实现,显示器采用液晶显示模块显示加工数据及机床状态等信息。 (3)机械传动方式 为实现机床所要求的分辨率,采用步进电机经齿轮减速再传动丝杠,为保证一定的传动精度和平稳性,尽量减少摩擦力,选用滚珠丝杠螺母副。同时,为提高刚度和消除间隙。采用有预加负荷的结构。齿轮传动也要消除齿侧间隙的结构。 综上所述,系统总体方案框图见下图。

CA6140普通车床横向进给系统的数控化改造设计说明书

一、设计任务书 课程设计题目 CA6140普通车床横向进给系统的数控化改造(经济型) 学院 机械工程学院 专业 机械制造及其自动化 年级 2010 已知参数和设计要求: 1.工作台重量:W =300N (粗估) 2.滚珠丝杆导程:T =4mm (供参考) 3.行程:S =190mm 4.脉冲当量: =0.005mm 5.快速进给速度:min /5.1m V =快 6.快速进给速度:min /5.0m V =进 7.时间常数:t ≤100ms 学生应完成的工作: 1.机械结构装配图 A1图纸2张,要求视图基本完整、符合标准。 2.数控系统组成框图(或画在设计说明书里面) A2图纸1张。 3.数控系统电气原理图 A1图纸1张。 4.软件框图(或画在设计说明书里面) A2图纸1张 目前资料收集情况(含指定参考资料): 1.机床设计图册 哈工大 华中纺织工业大学 2.机床设计手册 机械工业出版社 3.机械设计手册 化学工业出版社 4.微机接口设计参考书 课程设计的工作计划: 1.方案论证 1.5天 2.机械部分设计 6.5天 3.电气部分设计 3.5天 4.软件设计 1.5天 5.编写说明书 1天(约8000字) 6.准备答辩及答辩 1天 任务下达日期 2013 年 12 月 23 日 完成日期 年 月 日 指导教师 (签名) 学 生 (签名)

二、设计要求 2.1总体方案设计要求 总体方案设计应考虑机床数控系统的类型,计算机的选择,以及传动方式和执行机构的选择等。 (1)普通车床数控化改造后应具有定位、纵向和横向的直线插补、圆弧插补功能,还要求能暂停,进行循环加工和螺纹加工等,因此,数控系统选连续控制系统。 (2)车床数控化改装后属于经济型数控机床,在保证一定加工精度的前提下应简化结构、降低成本,因此,进给伺服系统采用步进电机开环控制系统。 (3)根据普通车床最大的加工尺寸、加工精度、控制速度以及经济性要求,经济型数控机床一般采用8位微机。在8位微机中,MCS —51系列单片机具有集成度高、可靠性好、功能强、速度快、抗干扰能力强、具有很高的性价比,因此,可选 MCS —51系列单片机扩展系统。 (4)根据系统的功能要求,微机数控系统中除了CPU 外,还包括扩展程序存储器,扩展数据存储器、I/O 接口电路;包括能输入加工程序和控制命令的键盘,能显示加工数据和机床状态信息的显示器,包括光电隔离电路和步进电机驱动电路,此外,系统中还应包括螺纹加工中用的光电脉冲发生器和其他辅助电路。 (5)设计自动回转刀架及其控制电路。 (6)纵向和横向进给是两套独立的传动链,它们由步进电机、齿轮副、丝杠螺母副组成,其传动比应满足机床所要求的分辨率。 (7)为了保证进给伺服系统的传动精度和平稳性,选用摩擦小、传动效率高的滚珠丝杠螺母副,并应有预紧机构,以提高传动刚度和消除间隙,齿轮副也应有消除齿侧间隙的机构。 (8)采用贴塑导轨,以减小导轨的摩擦力。 (9) 原机床的主要结构布局基本不变,尽量减少改动量 ,以降低成本 缩短改造周期。 (10)机械结构改装部分应注意装配的工艺性,考虑正确的装配顺序,保正 安装、调试、拆卸方便,需经常调整的部位调整应方便。 Y 向 X 向 微 机光电隔离 功率放大 步 进 电机 光电隔离功率放大步 进电机 上拖板 下拖板

数控车床纵向进给系统和横向进给系统的设计

1绪论 1.1数控系统的发展简史及国外发展现状 1949年美国帕森公司首先提出了机床数字控制的概念。1952年第一代数控系统——电子管数控系统的诞生。20世纪50年代末,完全由固定布线的晶休管元器件电路所组成的第二代数控系统——晶体管数控系统被研制成功,取代了昂贵的、易坏的、难以推广的电子管控制装置。随着集成电路技术的发展,1965年出现了第三代数控系统——集成电路数控系统。1970年,在美国芝加哥国际机床展览会上,首次展出了第四代数控系统——小型计算机数控系统,然后,随着微型计算机以其无法比拟的性能价格比渗透各个行业,1974年,第五代数控系统——微型计算机数控系统也出现了。应用一个或多个计算机作为数控系统的核心组件的数控系统统称为计算机数控系统(CNC)。综上所述,由于微电子技术和计算机技术的不断发展,数控机床的数控系统也随着不断更新,发展非常迅速,几乎5年左右时间就更新换代一次[1]。 数控机床是先进制造业的基础机械,是最典型的多品种、小批量、高科技含量的机电一体化产品。欧、美、日等工业化国家已先后完成了数控机床产品进程,1990年日本机床产值数控化率达75%,美国达70.1%,德国达57%。目前世界数控机床年产量超过15万台,品种超过1500多种[2]。 1.2我国数控系统的发展现状及趋势 1.2.1 数控技术状况 目前,我国数控系统正处在由研究开发阶段向推广应用阶段过渡的关键时期,也是由封闭型向开放型过渡的时期。 我国数控系统在技术上已趋于成熟,在重大关键技术(包括核心技术),已达到国际先进水平。自“七五”以来,国家一直把数控系统的发展作为重中之重来支持,现已开发出具有中国版权的数控系统,掌握了国外一直对我国封锁的一些关键技术。例如,曾长期困扰我国、并受到西方国家封锁的多坐标联动技术对我们已不再是难题,0.1m 当量的超精密数控系统、数控仿型系统、非圆齿轮加工系统、高速进给数控系统、实时多任务操作系统都已研制成功。尤其是基于PC机的开放式智能化数控系统,可实施多轴控制,具备联网进线等功能既可作为独立产品,又是一代开放式的开发平台,为机床厂

数控机床进给系统设计

数控机床进给系统设 计 Revised on November 25, 2020

第一章、数控机床进给系统概述 数控机床伺服系统的一般结构如图图1-1所示: 图1-1数控机床进给系统伺服 由于各种数控机床所完成的加工任务不同,它们对进给伺服系统的要求也不尽相同,但通常可概括为以下几方面:可逆运行;速度范围宽;具有足够的传动刚度和高的速度稳定性;快速响应并无超调;高精度;低速大转矩。 、伺服系统对伺服电机的要求 (1)从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如 /min或更低速时,仍有平稳的速度而无爬行现象。 (2)电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4-6倍而不损坏。 (3)为了满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。电机应具有耐受4000rad/s2以上的角加速度的能力,才能保证电机可在以内从静止启动到额定转速。 (4)电机应能随频繁启动、制动和反转。 随着微电子技术、计算机技术和伺服控制技术的发展,数控机床的伺服系统已开始采用高速、高精度的全数字伺服系统。使伺服控制技术从模拟方式、混合方式走向全数字方式。由位置、速度和电流构成的三环反馈全部数字化、软件处理数字PID,使用灵活,柔性好。数字伺服系统采用了许多新的控制技术和改进伺服性能的措施,使控制精度和品质大大提高。 数控车床的进给传动系统一般均采用进给伺服系统。这也是数控车床区别于普通车床的一个特殊部分。 、伺服系统的分类 数控车床的伺服系统一般由驱动控制单元、驱动元件、机械传动部件、执行件和检测反馈环节等组成。驱动控制单元和驱动元件组成伺服驱动系统。机械传动部件和执行元件组成机械传动系统。检测元件与反馈电路组成检测系统。 进给伺服系统按其控制方式不同可分为开环系统和闭环系统。闭环控制方式通常是具有位置反馈的伺服系统。根据位置检测装置所在位置的不同,闭环系统又分为半闭环系统和全闭环系统。半闭环系统具有将位置检测装置装在丝杠端头和装在电机轴端两种类型。前者把丝杠包括在位置环内,后者则完全置机械传动部件于位置环之外。全闭环系统的位置检测装置安装在工作台上,机械传动部件整个被包括在位置环之内。 开环系统的定位精度比闭环系统低,但它结构简单、工作可靠、造价低廉。由于影响定位精度的机械传动装置的磨损、惯性及间隙的存在,故开环系统的精度和快速性较差。全闭环系统控制精度高、快速性能好,但由于机械传动部件在控制环内,所以系统的动态性能不仅取决于驱动装置的结构和参数,而且还与机械传动部件的刚度、阻尼特性、

数控机床进给传动系统

数控机床进给模块之机械部件装配一.进给传动系统图 纵向和横向进给传动系统图 二.系统图的主要构造和功用 电动机: 1. 步进电动机 步进电动机是一种将电脉冲信号转换成机械角位移的驱动元件。步进电动机

是一种特殊的电动机,一般电动机通电后都是连续转动的,而步进电动机则有定位与运转两种状态。当有一个电脉冲输入时,步进电动机就回转一个固定的角度,这角度称为步距角,一个步距角就是一步,所以这种电动机称为步进电动机。又由于它输入的是脉冲电流,也称作脉冲电动机。当电脉冲连续不断地输入,步进电动机便跟随脉冲一步一步地转动,步进电动机的角位移量和输入的脉冲个数严格成正比例,在时间上与输入脉冲同步。因此,只需控制输入脉冲的数量、频率及电动机绕组的通电顺序,便可获得所需转角、转速和方向。在无脉冲输入时,步进电动机的转子保持原有位置,处于定位状态。步进电动机的调速范围广、惯量小、灵敏度高、输出转角能够控制,而且有一定的精度,常用作开环进给伺服系统的驱动元件。与闭坏系统相比,它没有位置速度反馈回路,控制系统简单,成本大大降低,与机床配接容易,使用方便,因而在对精度、速度要求不十分高的中小型数控机床上得到了广泛地应用。 2. 直流伺服电动机 由于数控机床对进给伺服驱动装置的要求较高,而直流电动机具有良好的调速特性,因此在半闭坏、闭坏伺服控制系统中,得到较广泛地使用。直流进给伺服电动机就其工作原理来说,虽然与普通直流电动机相同。然而,由于机械加工的特殊要求,一般的直流电动机是不能满足需要的。首先,一般直流电动机转子的转动惯量过大,而其输出转矩则相对较小。这样,它的动态特性就比较差,尤其在低速运转条件下,这个缺点就更突出。在进给伺服机构中使用的是经过改进结构,提高其特性的大功率直流伺服电动机,主要有以下两种类型:(1)小惯量直流电动机。主要结构特点是其转子的转动惯量尽可能小,因此在结构上与普通电动机的最大不同是转子做成细长形且光滑无槽。以此表现为转子的转动惯量小,仅为普通直流电动机的1/10左右。因此,响应特别快,机电时间常数可以小于10 ms,与普通直流电动机相比,转矩与惯量之比要大出40~50倍。且调速范围大,运转平稳,适用于频繁起动与制动,要求有快速响应(如数控钻床、冲床等点定位)的场合。但由于其过载能力低,并且电动机的自身惯量比机床相应运动部件的惯量小,因此应用时都要经过一对中间齿轮副,才能与丝杠相连接,在某些场合也限制了它广泛地使用。 (2)大惯量直流电动机。又称宽调速直流电动机,是在小惯量电动机的基础上发展起来的。在结构上和常规的直流电动机相似,其工作原理相同。当电枢线圈通过直流电流时,就会在定子磁场的作用下,产生带动负载旋转的电转矩。小惯量电动机是从减小电动机转动转量来提高电动机的快速性,而大惯量电动机则是在维持一般直流电动机转动惯量的前提下,尽量提高转矩的方法来改善其动态特性。它既具有一般直流电动机便于调速、机械特性较好的优点,又具有小惯量直流电动机的快速响应性能。因此,可归纳为以下特点: 1)转子惯量大。这种电动机的转子具有较大的惯量,容易与机床匹配。可以和机床的进给丝杠直接连接,省掉了减速机构,故可使机床结构简单,即避免了齿轮等传动机构产生的噪声和振动,又提高了加工精度。 2)低速性能好。这种电动机低速时输出转矩大,能满足数控机床经常在低速进给时进给量大、转矩输出大的特点,如能在1 r/min甚至0.1 r/min下平稳运转。 3)过载能力强、动态响应好。由于大惯量直流电动机的转子有槽,热容量大,同时采用了冷却措施后,提高了散热能力。因此可以过载运行30分钟。另外,电动机的定子采用矫顽力很高的铁氧体永磁材料,可使电动机过载10倍而不会去磁,这就显著地提高了电动机的瞬间加速力矩,改善了动态响应,加减速特性好。 4)调速范围宽。这种电动机机械特性和调速特性的线性度好,所以调速范围宽而运转平稳。一般调速范围可达1∶10000以上。

相关主题
文本预览
相关文档 最新文档