当前位置:文档之家› 不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响

不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响

不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响
不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响

不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响摘要:目的:采用RP-HPLC法对苯甲酸钠、山梨酸钾和糖精钠进行分离。研究不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响,建立较优的色谱流出曲线。方法:采用不同型号C-18柱;流动相:0.02mol/L乙酸铵∶甲醇(比例分别采用82∶18、85∶15以及88∶12);流速:分别采用0.8、1.0以及1.2 mL/min;柱温:30℃;进样量:10μL。检测波长:254nm、230 nm。结果:流速、流动相、波长对分离均有不同程度的影响。

关键词:高效液相色谱,色谱条件,色谱分离,影响

添加剂苯甲酸、山梨酸、糖精钠是衡量食品卫生质量的重要指标,它直接关系到人们的身体健康,这些添加剂的长期过量食用对人体有一定危害,在我国食品添加剂使用卫生标准[1](GB2760-1996)中对这些添加剂的使用范围和最大使用限量均有明确规定。目前,高效液相色谱(HPLC)作为化学分离分析的一种重要手段得到广泛应用。高效液相色谱分析实现了分析速度快、分离效率高、样品用样量少且灵敏度高和操作自动化。采用RP-HPLC法对苯甲酸钠、山梨酸钾和糖精钠进行分离。研究不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响,建立较优的色谱流出曲线具有重要意义。

1 仪器与试剂

1.1仪器:Shimadzu高效液相色谱仪(SPD-10A VP紫外-可见检测器、LC-6A 高压泵、CTO-10AS VP柱温箱〈含7725i型手动进样器〉),浙大智达N2000工作站;Sartorius CP225D型电子天平;Millipore Milli-Q型纯水仪;Sartorius BP-20型pH计。

1.2试剂:甲醇为色谱纯;苯甲酸钠、山梨酸钾和糖精钠对照品(Dr. Ehrenstorfer 公司提供);其余试剂均为分析纯。

2 材料与方法:

2.1色谱条件

色谱柱:不同型号C-18柱;流动相:0.02mol/L乙酸铵∶甲醇(比例分别采用82∶18、85∶15以及88∶12);流速:分别采用0.8、1.0以及1.2 mL/min,柱温:30℃;进样量:10μL。检测波长:254nm、230 nm。

3 结果与分析

3.1 不同波长对分离的影响

3.1.1波长对半峰宽、保留值、理论塔板数、分离度的影响

由表一可看出,在检测波长分别为230nm 和245nm ,流速为1.0ml/min ,流动相0.02mol/L 乙酸铵∶甲醇比例为82:18、85:15、88:12时,苯甲酸、山梨酸、糖精钠的半峰宽、保留值、理论塔板数以及分离度的变化不大,说明波长对苯甲酸、山梨酸、糖精钠的半峰宽、保留值、理论塔板数以及分离度影响不大。 3.1.2波长对峰面积的影响

由表一看出,不同流动相下,在波长为230nm 时苯甲酸、山梨酸、糖精钠的峰面积比在254nm 时的峰面积要大许多,表明波长对峰面积影响显著。同一种物质对不同波长光的吸光度不同,在波长为230nm 时苯甲酸、山梨酸、糖精钠吸光度大于在254nm 时的吸光度。

表一:不同波长对分离的影

3.2 流速对分离的影响

3.2.1流速对半峰宽、保留值、理论塔板数的影响

流动

相比

波长

(nm) 半峰宽 保留值 理论塔板数 分离度 平均峰面积

苯甲

酸 山梨酸

糖精钠

苯甲酸

山梨酸

糖精钠

苯甲酸

糖精钠

山梨

R1 R2 苯甲酸 山梨酸 糖精钠

82:18

254

0.107 0.138 0.098 2.612 3.206 3.013 3301 5237 2990 2.3 0.96 404006 885600 354049

230 0.106 0.131 0.097 2.607 3.163 3.061 3351 5517 3230 2.6 0.53 3721749 435656 2408864 85:15

254

0.092 0.096 0.099 2.777 3.089 3.434 5048 5736 6666 2

2.1 416059

915127

372397

230 0.092 0.095

0.1

2.772

3.082 3.421 5029 5831 6484 1.95

2 3806739 459759 2408277 88:12

254

0.098 0.098 0.098 3.087 3.529 4.038 5497 7184 7603

2.7 2.9 405044 899624 359094 230

0.093 0.1

0.106

3.18

3.623 1.172 6477 7272 8582

2.7

3.2

845622

138164

527348

由表二可看出,在三个比例不同的流动相下,流速分别为流速1:0.8ml/min、流速2:1.0ml/min、流速3:1.2ml/min时,苯甲酸、山梨酸、糖精钠的半峰宽、保留值和理论塔板数均随流速的增大而减小,柱效减小。

3.2.2流速对分离度的影响

由表二可知,流速对分离度影响不大。无论流速怎样改变,在流动相比例为82:18时,糖精钠与山梨酸分离度均小于1.5,不利于糖精钠与是山梨酸分离。其他情况下分离度均大于1.5,分离较好。

表二流速对分离的影响

检测波长:254nm

流动相比例流速

ml/min

半峰宽W1/2保留值tR理论塔板数n分离度R 苯甲

山梨

糖精

苯甲

山梨

糖精

苯甲

山梨

糖精

R1 R2

82:18 0.80.127 0.174 0.119 3.249 3.982 3.744 3626 2901 5484 2.4 0.95

1.00.107 0.138 0.098

2.612

3.206 3.013 3301 2990 5237 2.3 0.96 1.20.093 0.123 0.093 2.188 2.678 2.52 3067 2626 4068 2.1 0.8

85:15 0.80.11 0.114 0.120 3.471 3.861 4.293 5516 6355 7090 2 2.1

1.0 0.092 0.095 0.100

2.772

3.082 3.421 5029 5831 6484 2 2 1.2 0.081 0.084 0.087 2.326 2.585 2.865 4568 5247 6008 1.9 1.9

88:12 0.8 0.113 0.117 0.124 3.748 4.276 4.853 6095 7400 8486 2.7 2.8

1.0 0.098 0.098 0.098 3.087 3.529 4.038 5497 7184 7603

2.7 2.9 1.2 0.088 0.087 0.097 2.642

3.017 3.475 4994 6662 7110 2.5 2.9

(注:流动相0.02mol/L乙酸铵∶甲醇比例为82:18时,R1为苯甲酸与糖精钠的分离度,R2为糖精钠与山梨酸的分离度,流动相比例为85:15与88:12时,R1为苯甲酸与山梨酸的分离度,R2为山梨酸与糖精钠的分离度,下同。)

3.3 不同流动相对分离的影响

3.3.1流动相对半峰宽的影响

由表三可看出,在检测波长为230nm与流速为 1.0ml/min条件下,流动相:

0.02mol/L乙酸铵:乙腈为85:15时半峰宽最小,其次是88:12,半峰宽最大时是流动相比例为82:18。在检测波长为245nm与流速为别为0.8ml/min、1.0ml/min、1.2ml/min条件下,半峰宽同样在流动相比例为85:15时最小,其次是88:12,半峰宽在流动相比例为82:18时最大。说明对半峰宽最适宜的流动相0.02mol/L 乙酸铵与乙腈比例是82:18.

3.3.2流动相对保留值与理论塔板数的影响

由表三可知,检测波长为230nm,流速为1.0ml/min条件下与检测波长为254nm,流速分别为0.8ml/min、1.0ml/min、1.2ml/min条件下时,苯甲酸、山梨酸、糖精钠的保留值与理论塔板数随乙酸铵与乙腈比例82:18、85:15、88:12逐渐增大,表明乙酸铵与乙腈混合流动相中乙酸铵比例增大,苯甲酸、山梨酸、糖精钠的保留值和理论塔板数也增大,柱效增大。

3.3.3流动相对分离度的影响

3.3.3.1对分离度R1的影响

同样由表三可看出,检测波长为230nm,流速为1.0ml/min条件下与检测波长为254nm,流速分别为0.8ml/min、1.0ml/min、1.2ml/min条件下时,流动相0.02mol/L 乙酸铵:乙腈=85:15时分离度R1最小,流动相0.02mol/L乙酸铵:乙腈=82:18时分离度R1较大,流动相0.02mol/L乙酸铵:乙腈=88:12时R1最大,且均大于1.5,有利于混合标样的分离。

3.3.3.2对分离度R2的影响

同样由表三可看出,检测波长为230nm,流速为1.0ml/min条件下与检测波长为254nm,流速分别为0.8ml/min、1.0ml/min、1.2ml/min条件下时,分离度R2随乙酸铵与乙腈比例82:18、85:15、88:12逐渐增大,表明乙酸铵与乙腈混合流动相中乙酸铵比例增大,分离度R2也增大。

表三不同流动相对分离的影响

流速(ml/min) 流动

相比

半峰宽W1/2保留值tR理论塔板数n分离度R

苯甲

山梨

糖精

苯甲

山梨

糖精

苯甲

山梨

糖精

R1 R2

1.0 (波长230nm) 82:18 0.106 0.131 0.097 0.607 3.063 3.161 3351 3230 5517

2.6 0.5 85:15 0.092 0.095 0.100 2.772

3.082 3.421 5029 5831 6484 1.95 2 88:12 0.093 0.100 0.106 3.180 3.623 1.172 6477 7272 8582 2.7 3.2

0.8 82:18 0.127 0.174 0.119 3.249 3.982 3.744 3626 2901 5484 2.4 0.95 85:15 0.110 0.114 0.12 3.471 3.861 4.293 5516 6355 7090 2 2.1 88:12 0.113 0.117 0.124 3.748 4.276 4.853 6095 7400 8486 2.7 2.8

1.0 82:18 0.107 0.138 0.098

2.612

3.206 3.013 3301 2990 5237 2.3 0.96 85:15 0.092 0.096 0.099 2.777 3.089 3.434 5048 5736 6666 2 2.1 88:12 0.098 0.098 0.098 3.087 3.529

4.038 5497 7184 7603 2.7 2.9

1.2 82:18 0.093 0.123 0.093

2.188 2.678 2.52 3067 2626 4068 2.1 0.8 85:15 0.081 0.084 0.087 2.326 2.585 2.865 4568 5247 6008 1.9 1.9 88:12 0.088 0.087 0.097 2.642

3.017 3.475 4994 6662 7110 2.5 3

4、样品分析

由于各种物质在一定的色谱条件下均有确定的保留值,因此保留值可作为一种定性指标,通过与表一数据与样品在各种条件下所得的保留值相对照,可较准确地将样品进行定性分析。

4.1样品一的分析

①流动相:0.02mol/L乙酸铵:乙腈=82:18

检测波长:230nm 检测波长:254nm 流速2: 1.0mL/min

图一图二

出现的保留值:图一:1.188、1.672、2.605、2.988

图二:1.207、1.857、1.982、2.457、2.848、3.040、3.215、4.157、4.565 与表一相对照,图一中峰三保留值为2.605与苯甲酸保留值2.612相近,峰四保留值2.988与糖精钠保留值3.013相近。图二中峰四保留值2.457与苯甲酸保留值2.607相近,峰六保留值3.040与糖精钠保留值3.061相近,峰七保留值3.215与山梨酸保留值3.163相近。

初步判定样品一中含苯甲酸与糖精钠。

②流动相:0.02mol/L乙酸铵:乙腈=85:15

检测波长:230nm 检测波长:254nm 流速2: 1.0mL/min图三图四

出现的保留值:图三:1.188、1.687、1.860、2.790、3.085、3.443

图四:1.182、1.640、2.782、3.082、3.423

与表一相对照图三中峰四保留值2.790与苯甲酸保留值2.772相近,峰五保留值3.085与山梨酸保留值3.082相近峰六保留值3.443与糖精钠保留值3.421相近。图四中峰三保留值与苯甲酸保留值2.777相近,峰四保留值3.082与山梨酸保留值3.089相近,峰五保留值3.423与糖精钠保留值3.434相近。

初步判定样品二中含苯甲酸、糖精钠。

③流动相:0.02mol/L乙酸铵:乙腈=88:12

检测波长:230nm 检测波长:254nm 流速2: 1.0mL/min

图五图六

出现的保留值:图五:1.182、1.707、1.890、3.190、3.632、4.190

图六:1.182、1.673、3.198、3.632、4.198

与表一相对照,图五中峰四、峰五、峰六的保留值与苯甲酸、山梨酸、糖精钠的保留值3.180、3.623、4.172相近。图六中峰三、峰四、峰五的保留值与苯甲酸、山梨酸、糖精钠的保留值3.087、3.529、4.038相近。

初步判定样品一中含苯甲酸、糖精钠。

综上所述,最终可判定样品一中含苯甲酸、糖精钠。

样品二

①流动相:0.02mol/L乙酸铵:乙腈=82:18

检测波长:230nm 检测波长:254nm 流速2: 1.0mL/min

图1 图2

出现的保留值:图1:1.215、1.707、1.907、2.298、2.773、3.002、3.215

图2:1.223、1.682、1.907、2.182、2.315、2.782、3.232

与表一对照,图1中峰五、峰六、峰七与苯甲酸、糖精钠、山梨酸保留值2.607、3.061、3.163相近,图2中峰六、峰七保留值与苯甲酸、山梨酸保留值2.612、

3.206相近,初步判定样品中含山梨酸。

① 动相:0.02mol/L乙酸铵:乙腈=85:15

检测波长:230nm 检测波长:254nm 流速2: 1.0mL/min

图3 图4

出现的保留值:图3:1.183、1.675、1.873、2.120、2.332、2.483、2.783、3.073、

3.427

图4:1.185、1.632、1.852、2.482、2.778、3.077

与表一相对照,图3中峰七、峰八、峰九的保留值与苯甲酸、山梨酸、糖精钠的保留值2.772、3.082、3.421相近,图4中峰四、峰五与苯甲酸、糖精钠的保留值2.326、2.865相近,初步判定样品中含苯甲酸、糖精钠,可能含山梨酸。

① 动相:0.02mol/L乙酸铵:乙腈=88:12

检测波长:230nm 检测波长:254nm 流速2: 1.0mL/min

图5 图6

出现的保留值:图5:1.198、1.690、1.890、3.198、3.625、4.198 图6:1.198、1.640、3.623

与表一相对照,图5中峰四、峰五、峰六的保留值与苯甲酸、山梨酸、糖精钠的保留值3.180、3.623、4.172相近,图6中峰三的保留值与苯甲酸的保留值3.748相近。初步判定含苯甲酸,可能含山梨酸与糖精钠。 综合评价,样品二中含苯甲酸、山梨酸、糖精钠

4 讨 论:在检测波长分别为230nm 和245nm ,流速为1.0ml/min ,流动相0.02mol/L 乙酸铵∶甲醇比例为82:18、85:15、88:12时,波长对苯甲酸、山梨酸、糖精钠的半峰宽、保留值、理论塔板数以及分离度影响不大。波长对峰面积影响显著。在波长为230nm 时苯甲酸、山梨酸、糖精钠吸光度大于在254nm 时的吸光度。流速分别为0.8ml/min 、1.0ml/min 、1.2ml/min 时,苯甲酸、山梨酸、糖精钠的半峰宽、保留值和理论塔板数均随流速的增大而减小,柱效减小。流速对分离度影响不大。流动相0.02mol/L 乙酸铵:乙腈为85:15时半峰宽最小,其次是88:12,半峰宽最大时是流动相比例为82:18。乙酸铵与乙腈混合流动相比例增大,苯甲酸、山梨酸、糖精钠的保留值和理论塔板数也增大,柱效增大。流动相0.02mol/L 乙酸铵:乙腈=85:15时分离度R1最小,流动相0.02mol/L 乙酸铵:乙腈=82:18时分离度R1较大,流动相0.02mol/L 乙酸铵:乙腈=88:12时R1最大。乙酸铵与乙腈混合流动相比例增大,分离度R2也增大。

故较优的色谱流出曲线条件为波长:230cm ,流动相比例为82:18,流速为0.8 ml/min 。

参考文献

1、 王民如,田运佳,刘浩,赵颖欣。高效液相色谱法(HPLC )在食品安全检测中的应用 华

北制药凯瑞特药业有限公司,石家庄050000;河北科技大学生物科学与工程学院,石家庄050035

2、周如梅。高效液相色谱及其应用[A]湖南长沙410015

3、刘君琼。液相色谱法同时检测食品中的苯甲酸、山梨酸、糖精钠(宁德市产品质量检验

所,福建宁德352100)

4、程春梅,李歆,董刘敏,刘洋,苏建国。月饼中安赛蜜、糖精钠、苯甲酸、山梨酸、

脱氢乙酸检测方法的研究江苏省淮安市产品质量监督检验所,江苏淮安223001

苯甲酸钠的测定

1绪论 1.1苯甲酸钠的作用 苯甲酸钠是一种常见的防腐剂,在食品中具有防腐的作用。苯甲酸钠的化学式为C6H5COONa,它的相对分子质量为144.00,俗称“安息香酸钠”,并且英文名为Sodium Benzoate。苯甲酸钠的防腐作用在在酸性和碱性的条件下有很大不同。因为在碱性条件下苯甲酸钠没有杀菌抑菌的功效。相反在酸性条件下,苯甲酸钠是防腐剂的最佳选择,实践证明苯甲酸钠在PH是2.5-4.0时防腐效果最强。 苯甲酸钠和苯甲酸都是较好的防腐剂,二者也有密切的关系。苯甲酸钠在酸性条件下能转化成苯甲酸。虽然如此,它们也不完全相同,苯甲酸钠的溶解度比苯甲酸的溶解度强。例如,苯甲酸是在1870年,由H. Fleck在试验中尝试用一种酸来代替以熟知的水杨酸时,意外地发现了一个新物质的存在,那就是苯甲酸并且发现了它的具有防腐的特殊作用。苯甲酸虽然是一种酸,但在当时那个时代并不能大量生产,所以还不能替代水杨酸。因此,直到近代才开始投入使用。一经使用得到了众人的认可,从此,苯甲酸作为防腐剂在食品中的使用居于前几位。苯甲酸具有很多优点,其中它有一个最大的优势:价格便宜、效果好。 由于水果在自然条件下储存时间短,不易运输。人们为了延长时间,用苯甲酸钠来做水果的保鲜剂。因为苯甲酸钠有杀菌作用,对细菌,霉菌和发酵菌都有较好的抑制作用。除了水果,在一些果汁,果酱,牛奶,果冻中苯甲酸钠也常被使用。善于观察的人会发现化妆品和护理用品的保质期都在两年到三年之间,这都是防腐剂的神奇功效。 1.2测定苯甲酸钠的方法 1.2.1高效液相色谱法 方法: 标准曲线制备:分别取不同量苯甲酸钠、山梨酸钾、糖精钠标准贮备液制成混合标准系列,样品制备:样品制备:吸取1.0mL样品于10mL比色管中,加入甲

生物学综合实验雪碧中苯甲酸钠含量的测定-含色谱知识

高压液相色谱测雪碧中苯甲酸的含量 实验原理:高压液相色谱仪主要有进样系统、输液系统、分离系统、检测系统、 和数据处理系统组成,核心部分为分离系统,其机理是在高压的条件下根据被分离的组份在固定相和流动相间分配的平衡将不同的组份分离的一种技术。从分析原理上讲高效液相色普法和经典液相色谱法没有本质的区别,但由于它采用了新型高压输液泵、高灵敏度检测器和高效微粒固定相,使经典的液相色谱法焕发出新的活力。高压液相色谱的优点是明显的,如:分离效果好、选择性高、检测灵敏度高、分离速度快等。 实验步骤:(1)实验仪器的准备:高压液相色谱仪未使用时柱子内充满了纯 甲醇,需要先使柱子内充满5%的甲醇和95%的水,然后再使柱子内的流动相换成5%的甲醇和95%的乙酸铵水溶液,当看到基线稳定时,仪器待用。 (2)雪碧的前处理:超声脱气法脱去雪碧中存在的二氧化碳等气体,用0.45微米的滤膜抽滤雪碧,稀释样品待测。 (3)标准品的准备:把标准品稀释成不同的浓度,分别为5,10,20,50,100这五个浓度待用。 (4)样品的测定:样品测定前先测定标准品的浓度,确定保留时间(被分离样品组分从进样开始到柱后出现该组分浓度极大值时的时间,也即从进样开始到出现某组分色谱峰的顶点时为止所经历的时间,称为此组分的保留时间)。测定不同浓度的标准品,进样针需要润洗三至四次。上样品:用样品润洗进样针5-6次,每次需完全润洗,但不能把样品针拔出,润洗完成后,缓慢吸取样品,达到最大刻度处,中间不能出现气泡;打开上样阀门,进样针缓慢插入进样孔指顶部,有阻力后继续前进,至不能前进,把进样针中的样品缓慢推入到样品孔中,拔出进样针,关闭上样阀门。待测定结果出现后,保存测定结果,测下一样品。直至测定结束。 (5)实验仪器的关闭:需要先使柱子内充满5%的甲醇和95%的水,然后再使柱子内的流动相换成纯甲醇溶液,关闭仪器,关闭计算机。 实验结果:

气相色谱分离条件优化

气相色谱分离条件优化 一、实验目的 1.了解气相色谱仪的基本结构和工作原理。 2.学习气相色谱仪的使用。 3.体会气相色谱操作条件对分离结果的影响。 4.掌握色谱柱性能评价指标的测定及计算方法。 二、基本原理 气相色谱法是以气体作为流动相的一种色谱分析法,色谱分离条件对分析结果有着重要的影响。本实验的主要目标是通过对色谱分离条件进行优化,使被测混合样品中各组分之间的分离度大于1.5,峰形基本对称。 色谱柱是色谱仪的核心部件,其分离性能可通过塔板数、选择性因子和分离度来进行评价,本实验的另一个要求学会是对色谱柱的性能进行评价。 有效塔板数是评价色谱柱柱效的指标,其计算公式如下: 22 ''1/25.5416R R t t n Y Y ????== ? ????? 式中:t ’R 为组分的调整保留时间,Y 1/2为色谱峰的半峰宽度,Y 为色谱峰的峰底宽度。 选择性因子是评价色谱柱对两组分分离选择性的指标,其计算公式如下: R(2)R(1) t t α'=' 分离度是评价色谱柱分离总效能的指标,两个色谱峰的分离度可以通过下式计算: ()(2)(1) 1/2(1)1/2(2)-12R R t t R Y Y '=+ 三. 已具备的色谱仪器条件 1. 气相色谱仪:热导检测器。 载气:氮气 2. 填充色谱柱:2m ×3mm i.d.,5% SE-30,102硅烷化白色担体,100-120目 四、样品信息 1. 丁酮(56.1℃),环己烷(80.7℃),正庚烷(98.5℃),甲苯(110.6℃),乙酸正丁酯(126.1℃)混合试样(等体积比) 2. 上述五种物质的纯品 3. 空气

食品中苯甲酸钠、山梨酸钾的测定数据处理

图-1标准物质色谱图 表-1标准物质色谱图积分结果 积分结果 序号峰名称保留时间峰面积峰高相对峰面积相对峰高样品量 min mAU*min mAU % % 1 2.780 1.436 8.774 0.87 3.99 n.a. 2 3.090 0.068 0.304 0.04 0.14 n.a. 3 3.893 0.069 0.267 0.0 4 0.12 n.a. 4 山梨酸钾11.583 59.573 94.722 36.17 43.02 0.1556 5 苯甲酸钠16.460 103.564 116.092 62.88 52.73 0.1553 总和: 164.710 220.159 100.00 100.00 表-2 标准溶液的测定 峰面积(单位:mAU*min) 0.02mg/ml 0.04mg/ml 0.08mg/ml 0.16mg/ml 0.32mg/ml 山梨酸钾 5.771 14.91 28.717 59.573 123.639 苯甲酸钠10.277 24.129 52.067 103.564 214.488

山梨酸钾 图-3 待测物质色谱图 表-4 待测物质积分结果分析 积分结果 序号峰名称保留时间峰面积峰高相对峰面积相对峰高样品量min mAU*min mAU % % 1 1.683 2.843 3.058 4.00 0.57 n.a. 2 2.24 3 5.267 93.777 7.41 17.38 n.a. 3 2.290 14.12 4 174.078 19.88 32.27 n.a. 4 2.360 13.416 115.601 18.89 21.43 n.a. 5 2.630 1.363 17.059 1.92 3.1 6 n.a. 6 2.69 7 0.562 11.160 0.79 2.07 n.a. 7 2.830 0.243 3.887 0.34 0.72 n.a. 8 2.933 1.076 10.714 1.51 1.99 n.a.

气相色谱法分离苯和甲苯

气相色谱法分离苯和甲苯 姓名:曲连发学号:2011302110074 院系:动科动医学院 一.实验内容 1.熟悉气相色谱仪的构造; 2.了解HP-6890N型气相色谱仪的使用方法; 3.进行苯和甲苯的气相色谱分析,并通过保留时间对组分定性。 二.实验目的 1.通过实验熟悉气相色谱仪的主要构造,掌握基本使用方法,了解氢火焰例子化监测器的工作原理和应用范围,掌握利用保留时间对物质定性的方法; 2.掌握归一化法的原理以及定量分析方法; 3.掌握外标法和外标工作曲线法在气相色谱定量分析中的应用。 三.实验原理 ◆气相色谱仪的一般流程: 1.气路系统 由载气源、载气压力盒流速控制装置、载气压力盒流速显示三部分组成。 黑色外表的高压钢瓶内装氮气,作为载气; 绿色外表的高压钢瓶内装氢气、氧气,作为燃气。 转子流量计显示的是柱前流速,不能反映色谱柱内真实的流速。 2.进样系统 进样器:分为手动进样针和自动进样器。 气化室:“20℃法”即其内温度要高于样品沸点的20℃。 3.分离系统 分为填充柱和毛细管柱,现在多用弹性石英的毛细管柱,其渗透性大,速度快,柱效高。

4.检测系统 热导池检测器:通用型、浓度型; 氢火焰离子化检测器:通用型、质量型; 氮-磷检测器:选择型、质量型; 电子俘获检测器:选择型、质量型、 5.记录和数据处理 6.温度控制系统 ◆气相色谱分离原理: 试样中的各组分在色谱分离柱中的两相(固定相和流动相)间反复进行分配,由于各组分在性质和结构上的差异,使其被固定相保留的时间不同,随着流动相的移动,各组分按一定次序流出色谱柱。 四.色谱条件 仪器型号:Agilent 6890 N型气相色谱仪; 色谱柱:HP-5弹性石英毛细管柱(30mx0.32mmx0.5μm); 检测器:FID(氢火焰离子化检测器); 检测器温度:250℃; 进样口温度:200℃; 标温:程序升温60℃(5min)5℃/min 100℃(6min)10℃/min 150℃ (4min) 五.实验步骤 1.讲解HP-6890N型气相色谱仪的六大主要部件和各部件用途; 2.打开各气源,并打开HP-6890N型气相色谱仪和工作站; 3.设定分离甲苯和苯的气相色谱条件,包括进样口温度、检测器温度、柱温度、各种气体的流量比例、进样的分流比等; 4.待一起达到设定条件状态后,用微量注射器分别进1μL苯和甲苯样品,经检测器检测并经记录仪响应会出色谱图,从图中得出苯和甲苯的保留时间t1和t2;

不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响

不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响摘要:目的:采用RP-HPLC法对苯甲酸钠、山梨酸钾和糖精钠进行分离。研究不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响,建立较优的色谱流出曲线。方法:采用不同型号C-18柱;流动相:0.02mol/L乙酸铵∶甲醇(比例分别采用82∶18、85∶15以及88∶12);流速:分别采用0.8、1.0以及1.2 mL/min;柱温:30℃;进样量:10μL。检测波长:254nm、230 nm。结果:流速、流动相、波长对分离均有不同程度的影响。 关键词:高效液相色谱,色谱条件,色谱分离,影响 添加剂苯甲酸、山梨酸、糖精钠是衡量食品卫生质量的重要指标,它直接关系到人们的身体健康,这些添加剂的长期过量食用对人体有一定危害,在我国食品添加剂使用卫生标准[1](GB2760-1996)中对这些添加剂的使用范围和最大使用限量均有明确规定。目前,高效液相色谱(HPLC)作为化学分离分析的一种重要手段得到广泛应用。高效液相色谱分析实现了分析速度快、分离效率高、样品用样量少且灵敏度高和操作自动化。采用RP-HPLC法对苯甲酸钠、山梨酸钾和糖精钠进行分离。研究不同色谱条件对苯甲酸钠、山梨酸钾和糖精钠色谱分离的影响,建立较优的色谱流出曲线具有重要意义。 1 仪器与试剂 1.1仪器:Shimadzu高效液相色谱仪(SPD-10A VP紫外-可见检测器、LC-6A 高压泵、CTO-10AS VP柱温箱〈含7725i型手动进样器〉),浙大智达N2000工作站;Sartorius CP225D型电子天平;Millipore Milli-Q型纯水仪;Sartorius BP-20型pH计。 1.2试剂:甲醇为色谱纯;苯甲酸钠、山梨酸钾和糖精钠对照品(Dr. Ehrenstorfer 公司提供);其余试剂均为分析纯。 2 材料与方法: 2.1色谱条件 色谱柱:不同型号C-18柱;流动相:0.02mol/L乙酸铵∶甲醇(比例分别采用82∶18、85∶15以及88∶12);流速:分别采用0.8、1.0以及1.2 mL/min,柱温:30℃;进样量:10μL。检测波长:254nm、230 nm。

气相色谱法的分离原理及理论基础

气相色谱法的分离原理及理论基础 气相色谱法的分离原理是利用要分离的诸组分在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数),当两相作相对运动时,这些组分在两相间的分配反复进行,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动可以有明显的差距,最后使这些组分得到分离。 气相色谱法的理论基础主要表现在两个方面,即色谱过程动力学和色谱过程热力学,也可以这样说,组分是否能分离开取决于其热力学行为,而分离得好不好则取决于其动力学过程。 色谱过程动力学��发展高效色谱技术及色谱峰形预测的理论基础 色谱过程动力学是研究物质在色谱过程中运动规律的科学。其研究的主要目的是根据物质在色谱柱内运动的规律解释色谱流出曲线的形状;探求影响色谱区域宽度扩张及峰形拖尾的因素和机理,从而为获得高效能色谱柱系统提供理论上的指导,为峰形预测、重叠峰的定量解析以及为选择最佳色谱分离条件奠定理论基础。 在色谱发展过程中,用来描述色谱过程动力学的理论模型主要有:1940年提出的平衡色谱理论,解释了部分实验事实,但由于该理论忽略了传质速率有限性与物质分子纵向扩散性的影响,对一些现象不能解释;1941年Martin等人引入了理论塔板的概念,在该理论中,色谱过程被比拟为蒸馏过程,而色谱柱被视为一系列平衡单元-理论塔板的结合。在色谱柱足够长、理论塔板高度充分小,以及分配等温线呈线性的情况下,这一理论对色谱流出曲线分布和谱带移动规律,以及柱长与理论塔板高度H对区域扩张的影响等给予了近似的解释。但是塔板理论对影响理论塔板高度H的各种因素没有从本质上考虑,而色谱过程本质上并不是分馏过程,因而这一理论还只是半经验式的理论。 首先揭露影响色谱区域宽度内在因素的是纵向扩散理论和考察传质速率有 限性的的速率理论。在气相色谱中有同时考察传质速率和纵向扩散影响的van Deemter方程式,考察径向扩散的Golay毛细管色谱方程式。van Deemter方程式和Golay方程式分别描述了填充柱和毛细管柱两种色谱柱的理论塔板高度H的各种影响因素,两个公式综合到一起可简化如下: H=A+B/u+(Cg+Cl)u 色谱过程热力学��色谱定性及研究高选择性色谱方法和柱系统等的理论基础 由气相色谱的分离原理可知,实现气相色谱分离的基本条件是欲被分离的物质有不同的分配系数,而不同的分配系数也是气相色谱定性鉴别组分的基础。物

苏秀琴--紫外分光光度法同时测定饮料中的山梨酸钾和苯甲酸钠

题目:紫外分光光度法同时测定饮料中的山梨酸钾和苯甲酸钠 专业:化学 姓名:苏秀琴 指导老师: 地址:甘肃省陇西县德兴乡人民政府

毕业论文诚信声明 本人郑重声明:所呈交的毕业论文,是本人独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 作者签名:苏秀琴 二O一五年九月二十日

紫外分光光度法同时测定饮料中的山梨酸钾和苯甲酸钠 苏秀琴 (甘肃省陇西县德兴乡人民政府,甘肃陇西 748104) 内容摘要:介绍了饮料中山梨酸钾和苯甲酸钠的紫外分光光度法同时测定方法。实验表明该方法可快速准确地测定饮料中的山梨酸钾和苯甲酸钠,样品中山梨酸钾最小检出限为0.00067g/L,回收率为92%-94%;苯甲酸钠最小检出限为0.0014g/L,回收率为94%-96%。 关键词:山梨酸钾;苯甲酸钠;同时测定;紫外分光光度法 Simultaneous determination of potassium sodium benzoate and sodium benzoate in beverages by Ultraviolet Spectrophotometry Su Xiuqin (Longxi County, Dexing County, Gansu Township People's government, Longxi Gansu 748104) Abstract: the simultaneous determination method of potassium sodium benzoate and sodium benzoate in beverage was introduced. The experimental results show that the method can quickly and accurately determine the potassium sodium benzoate and sodium benzoate in the beverage, the minimum detection limit of potassium sodium benzoate was 0.00067g/L, the recovery was 92%-94%, the minimum detection limit of sodium benzoate was 0.0014g/L, the recovery was 94%-96%. Key words: potassium sodium benzoate; sodium benzoate; simultaneous determination; UV Spectrophotometry 一﹑实验目的 (一)通过实验了解食品防腐剂的紫外光谱吸收特性,并利用这些特性对食品中所含的防腐剂进行定型鉴定. (二)掌握工作曲线的制作方法,并对食品中防腐剂的含量进行定量测定. 二﹑实验原理 食品添加剂对于改善食品色﹑香﹑味,延长食品保质期具有重要作用.山梨酸和苯甲酸及它们的盐在饮料中使用较为广泛,但都具有一定的毒性,其中苯甲酸还是防腐剂中使用量最大者.监测它们在饮料中的使用量,对于保障人们身体健康具有重要

苯甲酸钠的含量测定

验证性试验 实验十二 苯甲酸钠的含量测定 一、实验目的 1.掌握双相滴定法测定药物含量的原理。 2.掌握苯甲酸钠含量测定的方法与操作。 二、仪器与试药 1.仪器 Mettler AL204电子天平 分液漏斗 规格:250mL 塞锥形瓶 规格:250mL 酸式滴定管 规格:25mL 量筒 烧杯 2.试药 苯甲酸钠原料 乙醚 甲基橙指示液 盐酸滴定液 (0.5mol/L) 蒸馏水 三、实验原理 苯甲酸钠为有机酸的碱金属盐,显碱性,可用盐酸标准液滴定。 COO Na + H C l COOH +N aC l 在水溶液中滴定时,由于碱性较弱(Pk b =9.80)突跃不明显,故加入与水不相溶混的溶剂乙醚提除反应生成物苯甲酸,使反应定量完成,同时也避免了苯甲酸在瓶中析出影响终点的观察。 四、实验内容 取本品1.5g ,精密称定,置分液漏斗中,加水约25mL ,乙醚50mL 与甲基橙指示液2滴,用盐酸滴定液 (0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,分取水层,置具塞锥形瓶中,乙醚层用水5mL 洗涤,洗涤液并入锥形瓶中,加乙醚20mL ,继续用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,即得,每1mL 的盐酸滴定液(0.5mol/L)相当于72.06mg 的C 7H 5O 2Na 。 本品按干燥品计算,含C 7H 5O 2Na 不得少于99.0% 计算:苯甲酸钠%= V:供试品消耗盐酸滴定液的体积(mL ); F :盐酸滴定液浓度校正因数; T :滴定度; W: 供试品取样量(g ); 五、注意事项 1.滴定时应充分振摇,使生成的苯甲酸转入乙醚层。 2.在振摇和分取水层时,应避免样品的损失,滴定前,应用乙醚检查分液漏斗是否严密。 六、思考题 1.乙醚为什么要分两次加入?第一次滴定至水层显持续橙红色时,是否已达终点?为什么? 2.分取水层后乙醚层用5mL 水洗涤的目的是什么? 七、参考文献 《中国药典》2010年版二部,321,化学工业出版社。 V T F 100%W ???

气相色谱的分离基本原理word精品

、气相色谱的分离基本原理是什么? 利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和 脱附能力或其他亲和性能作用的差异。当两相作相对运动时样品各组分在两相中反复多 次受到各种作用力的作用,从而使混合物中各组分获得分离。 二、简述气相色谱仪的基本组成。 基本部件包括5个组成部分。气路系统;2?进样系统;3.分离系统;4.检测系统;5.记录系统。 简述气相色谱法的特点?、高分离效能;、高选择性;、高灵敏度;、快速; 、应用广泛。 三、什么叫保留时间? 从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称 为保留时间,用t表示。 四、什么是色谱图? 进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线 图称为色谱图。 五、什么是色谱峰?峰面积? 1色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。、出峰到峰回到基线所包围的面积,称为峰面积。 六、怎样测定载气流速? 高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测, 将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。测试载气流速在室温下测试。 七、怎样控制载气流速? 载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳 流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。非程序升温色谱一 般没有稳流阀,只靠稳压阀控制流速。 八、气相色谱分析怎样测其线速度? 1 一般测定线速度实际上是测定色谱柱的死时间;、甲烷作为不滞留物,测定甲烷的保 留时间(TCD检测器以空气峰),、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。 九、气相色谱分析中如何选择载气流速的最佳操作条件? 在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。因此,从速率理论关于峰 形扩张公式可求出最佳流速值。通常色谱柱内径4mm,可用流速为30ml/mi n 十、气相色谱分析中如何选择载气的最佳操作条件? 1载气的性质对柱效和分析时间有影响;、用相对分子质量小的载气时,最佳流速和最

气相色谱分离原理

色谱分离过程是被分离的样品(混合物),在两相间进行分配,其中一相固定不动的,称为固定相。另一相是流动的,称为流动相或移动相。混合物借助流动相的推动,顺流动相的流向而迁移。混合物各组分迁移的速度取决于各组分在固定相和流动相之间的分配系数(对气-液分配色谱)或吸附能(气-固吸附色谱)。分配系数大的或吸附能大的组分停留在固定相中时间长,从色谱柱中流出的时间晚。分配系数或吸附能小的组分在固定相中停留时间短,先从柱中流出。从而使混合物中各个组分得以分离。为此,分配系数或吸附能的差异是色谱分离的前提。在所确定的色谱体系,组分之间如果没有分配系数或吸附能的差异,这些组分就彼此不能分离。重叠流出柱(即为一个色谱峰)。各组分的分配系数或吸附能的差异越大,越容易分离,反之就难分离。 色谱方法的类型繁多,从流动相的状态分,可分为气相色谱和液相色谱两大类。气相色谱多以小分子量的惰性气体作为流动相(如氮、氦、氩)。固定相是液体或固体。无论液体或固体固定液都是以担载在多孔固体物质表面的形式存在。被分析样品在色谱柱迁移过程是气态或蒸气态。适合分析气体或低沸点化合物。采用适当的进样技术和程序升温技术,能分析较高沸点的化合物,配合裂解技术也可分析高聚物。性能好的色谱仪柱箱温度可达到450℃,只要在这个温度范围内,蒸气压不小于0.2毫米汞柱,热稳定性好的化合物多都可以用气相色谱法分析。从分离机理看又可以分为气-固吸附和气-液分配型两类。 液相色谱法的流动相是液体。不同的分离机理,可选用不同的液体作为流动相,如不同极性的有机溶剂。不同极性溶剂与水的混合溶液。不同pH值的缓冲溶液等。固定相有多孔吸附型固体、液体担载在固体基质或化学键合在固体基质微粒上、离子交换剂等微粒。液相色谱可分析各种有机化合物、离子型无机化合物及热不稳定具有生物活性的生物大分子。 总之,气相色谱是一种能够快速分离复杂混合物中各个组分的技术。分离过程是在气相中进行的,通过检测器将柱流出物转换成电信号,从这些电信号得到定性定量的信息。 本资料主要涉及气相色谱的有关问题。 为使初学者对色谱过程有一个感性的认识,让我们将色谱过程比拟为水上货运航行过程:假设有三艘载货船以河水流速,沿1000米长河床顺水航行,每艘船沿岸上卸货的任务不同,其中A船沿岸航行无上卸货任务,以河水流速航行至终点;B船只有两次靠岸卸货任务;C船沿岸上卸货最多,需停靠10次。假设河水流速50米/分,船每次停靠费时5分钟。很容易算出,A船20分钟后抵达终点; B船30分钟;C船70分钟才能达到终点。不难理解,三艘船虽然都以同样的速度航行,但它们花费在停靠岸的时间不同,所以到达时间不同。我们可以把1000米的河床比拟成色谱柱,沿岸堆放的货物好比固定液,水流就好比载气。(当然这样的比拟并不十分确切) 让我们联系这种比拟,了解气相色谱常见的几个术语即其关系。

苯甲酸钠

苯甲酸钠 开放分类:化学品医学科学自然科学药品 ?新知社新浪微博腾讯微博人人网QQ空间网易微博开心001天涯飞信空间MSN移动说客 苯甲酸钠 苯甲酸钠又名安息香酸钠,无臭或微带安息香气味,易溶于水,为一种酸性防腐剂,是苯甲酸的钠盐。苯甲酸钠是很常用的食品防腐剂,有防止变质发酸、延长保质期的效果,在世界各国均被广泛使用。由于具有毒性,有些国家如日本已经停止生产苯甲酸钠,并对它的使用作出限制。 编辑摘要 苯甲酸钠- 简介

苯甲酸钠用作防腐剂 苯甲酸钠又称为安息香酸。苯甲酸钠在常温下难溶于水,在空气(特别是热空气)中微挥发,有吸湿性,大约常温下0.34g/100ml;但苯甲酸钠溶于热水;也溶于乙醇、氯仿和非挥发性油。在使用中多选用苯甲酸钠;苯甲酸和苯甲酸钠的性状和防腐性能都差不多。 苯甲酸钠亲油性较大,易穿透细胞膜进入细胞体内,干扰细胞膜的通透性,抑制细胞膜对氨基酸的吸收;苯甲酸钠进入细胞体内电离酸化细胞内的碱储,并抑制细胞的呼吸酶系的活性,阻止乙酰辅酶A缩合反应,从而起到食品防腐的目的。[1] 1870年,英国科学家H.Fleck在寻求一种酸来代替熟知的水杨酸时,第一次描述了苯甲酸的防腐作用,他确立了这种物质的防腐作用,由于当时对于苯甲酸钠的安全性研究并不深入,而且生产技术不够成熟,直到20世纪初才首次用于食品防腐,此后因为价格低廉成为全世界使用最多的防腐剂之一。[2] 苯甲酸钠- 理化性质

苯甲酸钠 苯甲酸钠大多为白色颗粒,无味或微带安息香气味,味微甜,有收敛性;PH在8左右;苯甲酸钠也是酸性防腐剂,在碱性介质中无杀菌、抑菌作用;其防腐最佳PH是2.5-4.0,在PH5.0时5%的溶液杀菌效果也不是很好。 苯甲酸钠易燃。相对密度1.2659。熔点122.4℃,沸点249℃,折射率1.504。蒸气易挥发。闪点(闭杯)121-123℃。易溶于水(常温)53.0g/100ml左右,溶于乙醇、甲醇、乙醚、氯仿、苯、甲苯、二硫化碳、四氯化碳和松节油。 在100℃时迅速升华,能随水蒸气同时挥发。苯甲酸常以游离酸、酯或其衍生物的形式广泛存在于自然界。例如,在安息香胶内以游离酸和苄酯的形式存在;在一些植物的叶和茎皮中以游离的形式存在;在香精中以甲酯或苄酯的形式存在;在马尿中以其衍生物马尿酸的形式存在。[3] 警惕饮料中含有苯甲酸钠

紫外可见分光光度计法测定饮料中苯甲酸钠的含量

紫外-可见分光光度计法测定饮料中苯甲酸钠的含量 一、实验目的 1. 了解和熟悉紫外-分光光度计的原理和结构,学习UV-2501的操作。 2. 掌握紫外分光光度法测定苯甲酸钠的吸收光谱图。 3. 掌握标准曲线法测定样品中苯甲酸钠的含量。 二、实验原理 为了防止食品在储存、运输过程中发生腐蚀、变质,常在食品中添加少量防腐剂。防腐剂使用的品种和 用量在食品卫生标准中都有严格的规定,苯甲酸及其钠盐、钾盐是食品卫生标准允许使用的主要防腐剂之 一,根据GB2760- 1996规定,碳酸饮料中苯甲酸钠的允许最大使用量为0.2g/kg。 苯甲酸具有芳香结构,在波长225nm和272nm处有K吸收带和B吸收带。根据苯甲酸(钠)在225nm 处有最大吸收,测得其吸光度即可用标准曲线法求岀样品中苯甲酸钠的含量。 三、仪器和试剂 1. 紫外可见分光光度计UV-2501 (日本岛津),1.0cm石英比色皿,50ml容量瓶。 2. NaOH 溶液(0.1mol/L ) 3. 苯甲酸钠标准溶液的配制 (1) 苯甲酸钠标准贮备液(1.000g/L ):准确称量经过干燥的苯甲酸钠 1.000g (105 C干燥处理2h)于1000mL 容量瓶中,用适量的蒸馏水溶解后定容。该贮备液可置于冰箱保存一段时间。 (2) 苯甲酸钠标准溶液(100.0mg/L ):准确移取苯甲酸钠储备液10.00mL于100mL容量瓶中,加入蒸馏水 稀释定容。 (3) 系列标准溶液的配制:分别准确移取苯甲酸钠标准溶液 1.00mL、2.00mL、3.00mL、4.00mL和5.00mL 于5个50mL容量瓶中,各加入0.1mol/L NaOH溶液1.00mL后,用蒸馏水稀释定容。得到浓度分别为 2. 0 mg/L、4.0mg/L、6.0mg/L、8.0mg/L 和10.0mg/L 的苯甲酸钠系列标准溶液。 4. 雪碧(500mL ) 5. 蒸馏水 四、实验步骤 1.吸收曲线的绘制 (2)吸收曲线的测定 用某一浓度较高的标准液如4号或5号溶液,于210nm~300nm波长范围内扫描,即的苯甲酸钠的吸收 曲线。 (3)由吸收曲线上找岀最大吸收波长X nax。 2. 工作(标准或校正)曲线的绘制 按溶液由稀到浓的顺序分别测定他们的吸光度A,然后以浓度为横坐标,吸光度A为纵坐标作图,求岀 线性方程和相关系数。

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

山梨酸钾和苯甲酸钠

山梨酸钾和苯甲酸钠,山梨酸及其盐类开发 山梨酸类 山梨酸类有山梨酸、山梨酸钾和山梨酸钙三类品种。山梨酸不溶于水外,使用时须先将其溶于乙醇或硫酸氢钾中,使用时不方便且有刺激性,故一般不常用;山梨酸钙FAO/WHO 规定其使用范围小,所以也不常使用;山梨酸钾则没有它们的缺点,易溶于水、使用范围广,我们经常可以在一些饮料、果脯、罐头等食品看到它的身影;在这里我重点介绍一下山梨酸钾:它为不饱和六碳酸;一般市场上出售的山梨酸钾呈白色或浅黄色颗粒,含量在98%--102%;无臭味、或微有臭味,易吸潮、易氧化而变褐色,对光、热稳定,相对密度1.363,熔点在270℃分解,其1%溶液的PH:7—8。山梨酸钾为酸性防腐剂,具有较高的抗菌性能,抑制霉菌的生长繁殖;其主要是通过抑制微生物体内的脱氢酶系统,从而达到抑制微生物的生长和起防腐作用,对细菌、霉菌、酵母菌均有抑制作用;其效果随pH的升高而减弱,PH达到3时抑菌达到顶峰,PH达到6时仍有抑菌能力,但最底浓度(MIC)不能底于0.2%,实验证明PH:3.2比PH2.4的山梨酸钾溶液浸渍,未经杀菌处理的食品的保存期短2—4倍。 山梨酸、山梨酸钾和山梨酸钙它们三种的作用机理相同,毒性比苯甲酸类和尼泊金酯要小,日允许量为25mg/Kg ,苯甲酸5倍,尼泊金酯的2.5倍是一种相对安全的食品防腐剂;在我国可用于酱油、醋、面酱类、果酱类、酱菜类、罐头类和一些酒类等等食品。 山梨酸钾CAS No.:590-00-1 山梨酸CAS No:110-44-1 HS No:2916190090 虽然国家对儿童食品饮料等规定不能使用苯甲酸钠,只能用山梨酸或者山梨酸钾。但因我国目前食品安全意识淡薄,一些厂家为了节约成本,使用具有毒性的苯甲酸钠,希望为了自己和家人的健康,在购买各类食品及饮料时注意所含成分,不要大意,这点毒性不会使我们立即致死,或立即出现较大的疾病,但是它是我们身体的一种隐患,给我们带来很大染上癌症等各类疾病的可能性。 山梨酸钾和苯甲酸钠 以碳酸钾冒充山梨酸钾,一是碳酸钾不具备防腐作用,起不到山梨酸钾应有的抑菌效果,因为,起抑菌作用的是山梨酸钾,而不是钾离子。这种伪劣产品流入市场,会损害经销商、用户和消费者的利益。二是产品会变色,影响感官指标。按照规定,正常的山梨酸钾的外观呈白色。而掺入了碳酸钾的山梨酸钾产品,在存放了大约3个月之后,会发生变色反应,由白色变为黄色或棕色,影响销售。 以苯甲酸钾冒充山梨酸钾,苯甲酸钾虽有防腐作用,但对人体也有一定的毒副作用,而山梨酸钾是世界公认的安全型食品添加剂,在食品生产过程中,以山梨酸钾代替苯甲酸钾和苯甲酸钠,有利于提高食品的安全性,符合健康消费的潮流。 掺有碳酸钾的山梨酸钾产品,在存放3个月之后,颜色会变成黄色或棕色。一些不法企业,便在伪劣产品中添加化工原料增白剂,以增加产品的白度、掩盖劣变后产生的黄色。据卫生专家介绍,这些化工增白剂会对人体的健康产生严重的危害。 一些小型企业生产的伪劣山梨酸钾,刚出车间时,色泽仍为白色。质次价低的山梨酸钾会发生变色、防腐效果差,价钱特低的山梨酸钾,肯定是质量不好. 据业内人士介绍,产品标准不完善,是伪劣山梨酸钾充斥市场的一个根本原因。我国现行的山梨酸钾国家标准是在参考美国FCC标准的基础上而制定的。在我国的国家标准和美国的FCC标准之中,对山梨酸钾纯度(含量)的判定是以“钾离子的含量”来衡量的。 山梨酸钾是以山梨酸和碳酸钾为原料,在经过化学反应后制作而成,其中的山梨酸根和钾离子结合成山梨酸钾。由于碳酸钾和苯甲酸钾的价格比山梨酸低,而在产品中违规添加碳

苯甲酸钠

苯甲酸钠 摘要:近年来, 随着社会经济的飞速发展及科技的高度进步, 越来越多的食品添加剂被开发出来并且被广泛使用。与此同时, 因食品添加剂的使用所引起的食品安全事件也屡见不鲜, 成为最近人们众说纷纭、持续关注的话题。现在以苯甲酸钠为例,对苯甲酸钠的定义、使用的相关要求以及与食品安全的关系等方面进行分析。 1、苯甲酸钠的定义及其相关性质 1.1苯甲酸钠的定义 苯甲酸钠(化学式:C6H5CO2Na),又名安息香酸钠,无臭或微带安息香气味,易溶于水,为一种酸性防腐剂,是苯甲酸的钠盐。苯甲酸钠是很常用的食品防腐剂,有防止变质发酸、延长保质期的效果,在世界各国均被广泛使用。然而近年来对其毒性的顾虑使得它的应用受限,有些国家如日本已经停止生产苯甲酸钠,并对它的使用作出限制。 1.2苯甲酸钠的性质 苯甲酸在常温下难溶于水,在空气(特别是热空气)中微挥发,有吸湿性,大约常温下0.34g/100ml;但溶于热水;也溶于乙醇、氯仿和非挥发性油。在使用中多选用苯甲酸钠;苯甲酸和苯甲酸钠的性状和防腐性能都差不多。 苯甲酸钠大多为白色颗粒,无臭或微带安息香气味,味微甜,有收敛性;易溶于水(常温)53.0g/100ml左右,PH在8左右;苯甲酸钠也是酸性防腐剂,在碱性介质中无杀菌、抑菌作用;其防腐最佳PH是2.5-4.0,在PH5.0时5%的溶液杀菌效果也不是很好。苯甲酸钠亲油性较大,易穿透细胞膜进入细胞体内,干扰细胞膜的通透性,抑制细胞膜对氨基酸的吸收;进入细胞体内电离酸化细胞内的碱储,并抑制细胞的呼吸酶系的活性,阻止乙酰辅酶A 缩合反应,从而起到食品防腐的目的。 2、苯甲酸钠的防腐机理和作用 苯甲酸类防腐剂是以其未离解的分子发生作用的,未离解的苯甲酸亲油性强,易通过细胞膜,进入细胞内,干扰霉菌和细菌等微生物细胞膜的通透性,阻碍细胞膜对氨基酸的吸收,进入细胞内的苯甲酸分子,酸化细胞内的储碱,抑制微生物细胞内的呼吸酶系的活性,从而起到防腐作用。苯甲酸是一种广谱抗微生物试剂,对酵母菌、霉菌、部分细菌作用效果很好,在允许最大使用范围内,在pH值4.5以下,对各种菌都有抑制作用。其作用主要如下: (一)主要用作食品防腐剂,也用于制药物、染料等。 (二)用于医药工业和植物遗传研究,也用作染料中间体、杀菌剂和防腐剂。 (三)抗微生物剂。 (四)苯甲酸钠也是重要的酸型食品防腐剂。使用时转化为有效形式苯甲酸。此外,也可作为 饲料的防腐剂。 (五)该品用作食品添加剂(防腐剂)、医药工业的杀菌剂、染料工业的媒染剂、塑料工业的 增塑剂,也用作香料等有机合成的中间体。 (六)用作血清胆红素试验的助溶剂、食品添加剂(防腐剂)、医药工业的杀菌剂、染料工业 的媒染剂、塑料工业的增塑剂,也用作香料等有机合成的中间体。 3、苯甲酸钠的具体应用 苯甲酸钠是我国用量最大的食品防腐剂。主要用于酱油、醋、酱菜、碳酸饮料等产品的防腐防霉。我国人口众多, 调味品及酱菜类的消费量很大。 3.1 医药工业中的应用

气相色谱分离的条件选择word精品

气相色谱分离的条件选择 一?载气及流速 1.载气对柱效的影响:主要表现在组分在载气中的扩散系数 D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有 较小的D m(g)。 (1 )涡流扩散项与载气流速无关; (2)当载气流速u小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数D m(g)较小,从而减小分子扩散的影响,提高柱效; (3)当载气流速u较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如H2、He作载气可以减小气相传质阻力,提高柱效。 2.流速(u)对柱效的影响:从速率方程可知,分子扩散项与流速成反 比,传质阻力项与流速成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u图。 由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间,选用的载气流速稍高于最佳流速。 图1 H-u曲线 二.固定液的配比又称为液担比。

从速率方程式可知,固定液的配比主要影响C s U,降低d f,可使C s U减小从而提高柱效。但固定液用量太少,易存在活性中心,致使峰形拖尾;且会引起柱容量下降,进样量减少。在填充柱色谱中,液担比一般为 5 %?25 %。 三.柱温的选择重要操作参数,主要影响来自于K、k、D m(g) 、D s(l) ;从而直接影响分离效能和分析速度。柱温与R和t密切相关。提高t,可以改善Cu, 有利于提高R,缩短t。但是提高柱温又会增加B/u导致R降低,5 变小。但降低t 又会使分析时间增长。 在实际分析中应兼顾这几方面因素, 选择原则是在难分离物质对能得到良好的 分离, 分析时间适宜且峰形不托尾的前提下,尽可能采用较低的柱温。同时,选用的柱温不能高于色谱柱中固定液的最高使用温度(通常低20-50 C)。对于沸程宽的多组分混合物可采用程序升温法”可 以使混合物中低沸点和高沸点的组分都能获得良好的分离。 四.气化温度的选择 气化温度的选择主要取决于待测试样的挥发性、沸点范围。稳定性等因素。气化温度一般选在组分的沸点或稍高于其沸点, 以保证试样完全气化。对 于热稳定性较差的试样,气化温度不能过高,以防试样分解。 五.色谱柱长和内径的选择 能使待测组分达到预期的分离效果, 尽可能使用较短的色谱柱。一般常用的填充柱为I?3m。填充色谱柱内径为3?4mm。 六.进样时间和进样量的选择 1.进样迅速(塞子状) ——防止色谱峰扩张; 2.进样量要适当:在检测器灵敏度允许下,尽可能少的进样量:液体样0.1 ?10uI,气体试样为0.1?10ml

苏秀琴 紫外分光光度法同时测定饮料中的山梨酸钾和苯甲酸钠

甘肃联合大学学生毕业论文 题目:紫外分光光度法同时测定 饮料中的苯甲酸钠和山梨酸钾 作者:苏秀琴 指导老师:展惠英 学院系化工学院 专业 2010 级工业分析与检验

三年制班工业分析与检验日 20 月 6 年2012.

紫外分光光度法同时测定饮料中的山梨酸钾和苯甲酸钠内容摘要:介绍了饮料中山梨酸钾和苯甲酸钠的紫外分光光度法同时测定方法。实验表明该方法可快速准确地测定饮料中的山梨酸钾和苯甲酸钠,样品中山梨酸钾最小检出限为0.00067g/L,回收率为92%-94%;苯甲酸钠最小检出限为0.0014g/L,回收率为94%-96%。 关键词:山梨酸钾;苯甲酸钠;同时测定;紫外分光光度法 一﹑实验目的 (一)通过实验了解食品防腐剂的紫外光谱吸收特性,并利用这些特性对食品中所含的防腐剂进行定型鉴定. (二)掌握工作曲线的制作方法,并对食品中防腐剂的含量进行定量测定. 二﹑实验原理 食品添加剂对于改善食品色﹑香﹑味,延长食品保质期具有重要作用.山梨酸和苯甲酸及它们的盐在饮料中使用较为广泛,但都具有一定的毒性,其中苯甲酸还是防腐剂中使用量最大者.监测它们在饮料中的使用量,对于保障人们身体健康具有重要的现实意义. 为了防止食品在储存﹑运输过程中发生变质﹑腐败,常在食品中添加少量防腐剂.防腐剂使用的品种和用量在食品卫生标准中都有严格的规定,苯甲酸和山梨酸以及他们的钠盐﹑钾盐是食品标准允许使用的两种主要防腐剂.苯甲酸具有芳烃结构,在波长228nm和272nm处有K吸收带和B吸收带,山梨酸具有α不饱和羟基结构,在波长250nm处有β跃迁的K吸收带,因此根据他们的紫外吸收光谱特征可以对他们进行定性鉴定和定量测定. 由于食品中防腐剂的用量很少,一般在千分之一左右,同时食品中其他成分可能产生干扰.因此需要预先将防腐剂与其他成分分离,并经提纯浓缩后进行测定.常用的从食品中分离防腐剂的方法有蒸馏法和溶剂萃取法等.本实验可以采用溶剂萃取的方法,用乙醚将防腐剂从样品中提取出来,在经碱性水溶液处理及乙醚萃取以达到分离﹑提纯的目的. 三﹑试剂 山梨酸钾标准溶液:0.0052㎎/ml﹑苯甲酸钠标准溶液:0.0052㎎/ml﹑盐酸(1:1);乙醚(AR)﹑饱和NaCl溶液,以上试剂为分析纯,水为重蒸馏水,7%的葡萄糖饮料. 四﹑仪器

相关主题
文本预览
相关文档 最新文档