当前位置:文档之家› 二次函数与相似

二次函数与相似

二次函数与相似
二次函数与相似

二次函数与相似

相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探究两个三角形

相似的动态问题,一般情况下首先寻找一组对应角相等。

判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。

如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边分别表示出来,按照对应边成比例,

分和两种情况列方程。

应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等。

应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组)。

还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个一个直角三角形的锐角三角比

是确定的,那么就转化为讨论另一个三角形是直角三角形的问题。

1.(河南倒一)如图,直线与轴交于点A(3,0),与轴交于点B,抛物线经过点A,B.

(1)求点B的坐标和抛物线的解析式;

(2)M(m,0)为轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,

①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;

②点M在轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),

则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.

2.(武汉倒一)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上

(1)求抛物线的解析式;

(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;

(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个

单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

3.(淄博倒一)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(1.5,0),在第一象限内与

直线y=x交于点B(2,t).

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;

(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

4.(海南倒一)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).

(1)求该抛物线所对应的函数解析式;

(2)该抛物线与直线y=0.6x+3 相交于C、D两点,点P是抛物线上的动点且位于x轴下方.直线PM⊥x轴,分别与x 轴和直线CD交与点M、N.

①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;

②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2.是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.

5.(2017·山东莱芜)抛物线y=ax2+bx+c过A(2,3)、B(4,3)、C(6,-5)三点.

(1)求抛物线的表达式

(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足,求点D的坐标. (3)如图②,F为抛物线顶点,过A作直线⊥AB,若点P在直线上运动,点Q在轴上运动,是否存在这样

的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.

6.已知,抛物线y=a x2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=1/2.

(1)求抛物线的解析式及顶点D的坐标;

(2)求证:直线DE是△ACD外接圆的切线;

(3)在直线AC上方的抛物线上找一点P,使S△ACP=1/2S△ACD ,求点P的坐标;

(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.

7.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标;

(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落

在△ABC的内部(不包括△ABC的边界),求m的取值范围;

(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).

1.【答案】(1)B(0,2),;(2)①点M的坐标为(,0)或M(,0);②m=-1或m=或m=.

试题解析:

(1)直线与轴交于点,

∴,解得c=2

∴B(0,2),

∵抛物线经过点,

∴,∴b=

∴抛物线的解析式为;

(2)∵轴,M(m,0),∴N()

①有(1)知直线AB的解析式为,OA=3,OB=2

∵在△APM中和△BPN中,∠APM=∠BPN, ∠AMP=90°,

若使△APM中和△BPN相似,则必须∠NBP=90°或∠BNP =90°,

分两种情况讨论如下:

(I)当∠NBP=90°时,过点N作NC轴于点C,

则∠NBC+∠BNC=90°,NC=m,

BC=

∵∠NBP=90°,∴∠NBC+∠ABO=90°,来源学|科|网

∴∠BNC=∠ABO,

∴Rt△NCB∽Rt△BOA

∴,即,解得m=0(舍去)或m=∴M(,0);

考点:二次函数综合题.

3【考点】HF:二次函数综合题.

【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表

达式;

(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C 点坐标;

(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB

和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,

由条件可证得△MOG∽△POH,由==的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.

【解答】解:

(1)∵B(2,t)在直线y=x上,

∴t=2,

∴B(2,2),

把A、B两点坐标代入抛物线解析式可得,解得,

∴抛物线解析式为y=2x2﹣3x;

(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,

∵点C是抛物线上第四象限的点,

∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),

∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,

∴S△OBC=S△CDO+S△CDB=CD?OE+CD?BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,

∴﹣2t2+4t=2,解得t1=t2=1,

∴C(1,﹣1);

(3)存在.

设MB交y轴于点N,如图1,

∵B(2,2),

∴∠AOB=∠NOB=45°,

在△AOB和△NOB中

∴△AOB≌△NOB(ASA),

∴ON=OA=,

∴N(0,),

∴可设直线BN解析式为y=kx+,

把B点坐标代入可得2=2k+,解得k=,

∴直线BN的解析式为y=x+,

联立直线BN和抛物线解析式可得,解得或,

∴M(﹣,),

∵C(1,﹣1),

∴∠COA=∠AOB=45°,且B(2,2),

∴OB=2,OC=,

∵△POC∽△MOB,

∴==2,∠POC=∠BOM,

当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,

∵∠COA=∠BOG=45°,

∴∠MOG=∠POH,且∠PHO=∠MGO,

∴△MOG∽△POH,

∴===2,

∵M(﹣,),

∴MG=,OG=,

∴PH=MG=,OH=OG=,

∴P(,);

当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,

同理可求得PH=MG=,OH=OG=,

∴P(﹣,);

综上可知存在满足条件的点P,其坐标为(,)或(﹣,).

二次函数与相似三角形问题(含答案)

y x E Q P C B O A 综合题讲解 函数中因动点产生的相似三角形问题 练习1、如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 练习2、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式. (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?

练习3 、如图所示,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标. (2)过点A 作AP∥CB 交抛物线于点P ,求四边形ACBP 的面积. (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 练习4、在平面直角坐标系xOy 中,已知二次函数2 (0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点 A 在点 B 的左边) ,与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,. (1)求此二次函数的表达式;(由一般式... 得抛物线的解析式为2 23y x x =-++) (2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.

2017中考二次函数专题(含答案)

1.如图,抛物线y=x 2+bx+c 与直线y=x ﹣3交于A 、B 两点,其中点A 在y 轴上,点B 坐标为(﹣4,﹣5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D .(1)求抛物线的解析式;(2)以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由.(3)当点P 运动到直线AB 下方某一处时,过点P 作PM ⊥AB ,垂足为M ,连接PA 使△PAM 为等腰直角三角形,请直接写出此时点P 的坐标. 2. 在直角坐标系xoy 中,(0,2)A 、(1,0)B -,将ABO ?经过旋转、平移变化后得到如图15.1所示的BCD ?.

(1)求经过A 、B 、C 三点的抛物线的解析式;(2)连结AC ,点P 是位于线段BC 上方的抛物线上一动点,若直线PC 将ABC ?的面积分成1:3两部分,求此时点P 的坐标;(3)现将ABO ?、BCD ?分别向下、向左以1:2的速度同时平移,求出在此运动过程中ABO ?与BCD ?重叠部分面积的最大值. 3. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 图15.1 C D O B A x y

轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式;⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标. 4. 如图,在平面直角坐标系中,已知抛物线8y 2-+=bx ax 与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经 第25题图

二次函数与相似三角形问题(含答案 完美打印版)

综合题讲解 函数中因动点产生的相似三角形问题 例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式;(用顶点式... 求得抛物线的解析式为x x 4 1y 2 +-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。 分析:1.当给出四边形的两个顶点时应以两个顶点的连线....... 为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况 2. 函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。

y x E Q P C B O A 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、 B 两点,交y 轴于点 C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标; (2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论; (3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式. 练习1、已知抛物线2 y ax bx c =++经过5330P E ? ???? ,, ,及原点(00)O ,. (1)求抛物线的解析式.(由一般式... 得抛物线的解析式为2253 33 y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由. (3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形 OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么

2017中考二次函数专题(含答案)

1.如图,抛物线 y=x2+bx+c 与直线 y=x﹣3 交于 A、B 两点,其中点 A 在 y 轴上,点 B 坐标为(﹣4,﹣5),点 P 为 y 轴左侧的抛物线上一动点,过点 P 作 PC⊥x 轴于点 C,交 AB 于点 D.(1)求抛物线的解析式;(2)以 O, A,P,D 为顶点的平行四边形是否存在?如存在,求点 P 的坐标;若不存在,说明理由.(3)当点 P 运动到 直线 AB 下方某一处时,过点 P 作 PM⊥AB,垂足为 M,连接 PA 使△PAM 为等腰直角三角形,请直接写出此 时点 P 的坐标.
2. 在直角坐标系 xoy 中, A(0, 2) 、 B(1, 0) ,将 ABO 经过旋转、平移变化后得到如图15.1所示的 BCD . (1)求经过 A 、B 、C 三点的抛物线的解析式;(2)连结 AC ,点 P 是位于线段 BC 上方的抛物线上一动点,

若直线 PC 将 ABC 的面积分成1: 3 两部分,求此时点 P 的坐标;(3)现将 ABO 、BCD 分别向下、向左 以1: 2 的速度同时平移,求出在此运动过程中 ABO 与 BCD 重叠部分面积的最大值.
y A
C
BO D
x
图15.1
3. 如图,已知抛物线 y=ax2+bx+c(a≠0)的对称轴为直线 x=-1,且经过 A(1,0),C(0,3)两点,与 x 轴 的另一个交点为 B.⑴若直线 y=mx+n 经过 B,C 两点,求直线 BC 和抛物线的解析式;⑵在抛物线的对称轴 x=-1 上找一点 M,使点 M 到点 A 的距离与到点 C 的距离之和最小,求点 M 的坐标;⑶设点 P 为抛物线的

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

(完整版)二次函数压轴题(相似类)

二次函数压轴题(相似类) 1.如图,在平面直角坐标系中,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点(点A在点B的右侧),与y 轴交于点C,点A的坐标为(4,0),抛物线的对称轴是直线x=. (1)求抛物线的解析式; (2)M为第一象限内的抛物线上的一个点,过点M作MG⊥x轴于点G,交AC于点H,当线段CM=CH时,求点M的坐标; (3)在(2)的条件下,将线段MG绕点G顺时针旋转一个角α(0°<α<90°),在旋转过程中,设线段MG与抛物线交于点N,在线段GA上是否存在点P,使得以P、N、G为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由. 2.如图,顶点为C(﹣1,1)的抛物线经过点D(﹣5,﹣3),且与x轴交于点A、B两点(点B在点A的右侧).(1)求抛物线的解析式; (2)抛物线上存在点Q,使得S△OAQ=,求点Q的坐标; (3)点M在抛物线上,点N在x轴上,且∠MNA=∠OCD,是否存在点M,使得△AMN与△OCD相似?若存在,直接写出点M的坐标;若不存在,说明理由. 3.如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C 在点D的左侧). (1)求抛物线的解析式;(2)求点O到直线AB的距离; (3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标. 4.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B,M(m,0)为x轴上一动点,点M在线段OA上运动且不与O,A重合,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N. (1)求点B的坐标和抛物线的解析式; (2)在运动过程中,若点P为线段MN的中点,求m的值; (3)在运动过程中,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标; 5. 如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知B点的坐标为B(8,0). (1)求抛物线的解析式及其对称轴方程; (2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由; (3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值; (4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

人教中考数学专题题库∶二次函数的综合题含答案

一、二次函数 真题与模拟题分类汇编(难题易错题) 1.(6分)(2015?牡丹江)如图,抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0).请解答下列问题: (1)求抛物线的解析式; (2)点E (2,m )在抛物线上,抛物线的对称轴与x 轴交于点H ,点F 是AE 中点,连接FH ,求线段FH 的长. 注:抛物线y=ax 2+bx+c (a≠0)的对称轴是x=﹣ . 【答案】(1)y=-2x-3;(2). 【解析】 试题分析:(1)把A,B 两点坐标代入,求待定系数b,c ,进而确定抛物线的解析式;(2)连接BE ,点F 是AE 中点,H 是AB 中点,则FH 为三角形ABE 的中位线,求出BE 的长,FH 就知道了,先由抛物线解析式求出点E 坐标,根据勾股定理可求BE ,再根据三角形中位线定理求线段HF 的长. 试题解析:(1)∵抛物线y=x 2+bx+c 经过点A (﹣1,0),B (3,0),∴把A,B 两点坐标代入得: ,解得: ,∴抛物线的解析式是:y=-2x-3;(2)∵点 E (2,m )在抛物线上,∴把E 点坐标代入抛物线解析式y=-2x-3得:m=4﹣4﹣3=﹣3,∴E (2,﹣3),∴BE= = .∵点F 是AE 中点,点H 是抛物线的对称轴与 x 轴交点,即H 为AB 的中点,∴FH 是三角形ABE 的中位线,∴FH=BE=×= .∴ 线段FH 的长 . 考点:1.待定系数法求抛物线的解析式;2.勾股定理;3.三角形中位线定理. 2.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线 y x m =+过顶点C 和点B .

2018年中考总复习专题:二次函数与相似的结合

二次函数与相似的结合 题型一:动点在线段上 如图,平面直角坐标系xOy 中,已知(1,0)B -,一次函数5y x =-+的图像与x 轴、y 轴 分别交于点A 、C 两点,二次函数2 y x bx c =-++的图像经过点A 、点B ; (1)求这个二次函数的解析式; (2)点P 是该二次函数图像的顶点,求△APC 的面积; (3)如果点Q 在线段AC 上,且△ABC 与△AOQ 相似,求点Q 的坐标; 如图,抛物线2 2y ax ax c =++(0)a >与x 轴交于(3,0)A -、B 两点(A 在B 的左侧), 与y 轴交于点 (0,3)C -,抛物线的顶点为M ; (1)求a 、c 的值; (2)求tan MAC ∠的值; (3)若点P 是线段AC 上一个动点,联结OP ;问是否存在点P ,使得以点O 、C 、P 为 顶点的三角形与△ABC 相似?若存在,求出P 点坐标;若不存在,请说明理由;

如图,已知抛物线2 y ax x c =-+的对称轴为直线x =1,与x 轴的一个交点为A (-1,0),顶点为B . 点C (5,m )在抛物线上,直线BC 交x 轴于点E . (1) 求抛物线的表达式及点E 的坐标; (2) 联结AB ,求∠B 的正切值; (3) 点G 为线段AC 上一点,过点G 作CB 的垂线交x 轴于点M (位于点E 右侧), 当△CGM 与△ABE 相似时,求点M 的坐标. 【参考答案】24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1)∵抛物线2y ax x c =-+的对称轴为直线x =1,∴1 2 a = . ∵抛物线与x 轴的一个交点为A (-1,0),∴3 2 c =- . ∴抛物线的表达式为213 22 y x x = --.………………………………………………(2分) ∴顶点B (1,-2).…………………………………………………………………(1分) ∵点C (5,m )在抛物线上,∴6m =. ∴C 点坐标为(5,6). 设直线BC 的表达式为y =kx +b (k ≠0), 则652k b k b =+??-=+? ,∴2, 4.k b =??=-?即BC 的表达式为y =2x -4. x y A B E C O (第24题图)

数学二次函数的专项培优练习题(含答案)及详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0)(OA<OB),与y轴交于点C,且满足x12+x22﹣x1x2=13. (1)求抛物线的解析式; (2)以点B为直角顶点,BC为直角边作Rt△BCD,CD交抛物线于第四象限的点E,若EC =ED,求点E的坐标; (3)在抛物线上是否存在点Q,使得S△ACQ=2S△AOC?若存在,求出点Q的坐标;若不存在,说明理由. 【答案】(1)y=x2﹣2x﹣3;(2)E 113 +113 + 3)点Q的坐 标为(﹣3,12)或(2,﹣3).理由见解析. 【解析】 【分析】 (1)由根与系数的关系可得x1+x2=m,x1?x2=﹣(m+1),代入x12+x22﹣x1x2=13,求出m1=2,m2=﹣5.根据OA<OB,得出抛物线的对称轴在y轴右侧,那么m=2,即可确定抛物线的解析式; (2)连接BE、OE.根据直角三角形斜边上的中线等于斜边的一半得出BE=1 2 CD=CE.利 用SSS证明△OBE≌△OCE,得出∠BOE=∠COE,即点E在第四象限的角平分线上,设E点坐标为(m,﹣m),代入y=x2﹣2x﹣3,求出m的值,即可得到E点坐标; (3)过点Q作AC的平行线交x轴于点F,连接CF,根据三角形的面积公式可得S△ACQ=S△ACF.由S△ACQ=2S△AOC,得出S△ACF=2S△AOC,那么AF=2OA=2,F(1,0).利用待定系数法求出直线AC的解析式为y=﹣3x﹣3.根据AC∥FQ,可设直线FQ的解析式为y=﹣3x+b,将F(1,0)代入,利用待定系数法求出直线FQ的解析式为y=﹣3x+3,把它与抛 物线的解析式联立,得出方程组 223 33 y x x y x ?=-- ? =-+ ? ,求解即可得出点Q的坐标. 【详解】 (1)∵抛物线y=x2﹣mx﹣(m+1)与x轴负半轴交于点A(x1,0),与x轴正半轴交于点B(x2,0), ∴x1+x2=m,x1?x2=﹣(m+1),

二次函数与相似

二次函数与相似 例1 抛物线y=ax 2-3ax+b 经过A(-1,0),C(0,2),交x 轴于另一点B. (1) 求此抛物线的解析式; (2) 点M 为y 使AN 平行且等于BM 的一半?若存在,请求出点N 的坐标; 若不存在,请说明理由; (3) 若点P 为抛物线上一点,ta n ∠ACP=3,求出点P 的坐标。 ① 一般相似: 1 、 如图,在坐标系中,把抛物线2 x y =平移,平移所得到的抛物线与x 轴交于A (-3,0)、B ( 1,0)两点,与y 轴交于C 点。 (1) 求平移后的抛物线的解析式; (2)在线段AC 上是否存在点M ,使△AOM 与△ABC 相似,若存在,求出点M 的坐标。 ②直角相似: 2、P 为抛物线322++-=x x y 上一动点,以AC 为斜边构造直 角三角形,使直角顶点P 落在抛物线的对称轴上,求点P 的坐标. (若无斜边的指定) ③K 型相似:

3、如图,在直角坐标系中,抛物线32 ++=bx ax y 与x 轴交于A 、B 两点,与y 轴交于C 点,且OB=OC=3OA 。 (1)求此抛物线的解析式; (2)过C 点作C D ⊥y 轴交抛物线于D 点,连接AC 、BD ,E 为BD 上一点,DE:BE=7:3,P 为线段AB 上一点,若∠CPE=∠CAP ,求P 点的坐标; (3)如图2,将(1)中抛物线沿x 轴正方向平移,平移后的抛物线交y 轴于点F ,与x 轴的右交点为E 点,G 为AC 中点,延长GO 交EF 于点H ,是否存在这样的抛物线,使得G H ⊥EF ,若存在,求平移后的抛物线的解析式,若不存在,请说明理由。 专题训练 1、抛物线y=ax 2+2ax+b 与x 轴交于A(-4,0)、B 两点,与y (1) 求抛物线的解析式; (2) P 的抛物线上一点且P C ⊥BC,Q 是PC 延长线上一点,QC=3 1 将抛物线向右平移m 个单位后恰好经过点Q ,将原抛物线 向下平移n 个单位后与线段PQ 只有一个公共点,请求出m n (3)在(2)的条件下,原抛物线上是否存在一点M,使得S △若存在,请求出M 点的坐标,若不存在,请说明理由。

二次函数专题培优(含答案)

二次函数专题复习 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,.

专题训练二次函数与相似三角形

专题训练:二次函数与相似三角形 例1、如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。 ⑴求抛物线的解析式; ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标; ⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。 例2、已知:如图,抛物线22 1 412-+= x x y 与y x 、轴分别相交于A 、B 两点,将△AOB 绕着点O 逆时针旋90°到△''A OB ,且抛物线2 2(0)y ax ax c a =++≠过点''B A 、。 (1)求A 、B 两点的坐标; (2)求抛物线2 2y ax ax c =++的解析式; (3)点D 在x 轴上,若以'B D 、B 、为顶点的三角形与△B B A ''相似,求点D 的坐标. 图1 O A B y x O A B y x 图 2 B' A'O B A y x

例3、已知:矩形OABC 在平面直角坐标系中的位置如图所示,()6,0A ,()0,3C ,直线 3 4 y x = 与BC 边交于D 点. (1)求D 点的坐标; (2)若抛物线2 y ax bx =+经过A 、D 两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 是对称轴上一动点,以P 、O 、M 为顶点的三角形与△OCD 相似,求出符合条件的点P .

例4、已知抛物线c bx x y ++=2 4 3与坐标轴交于点A,B,C 三点,A 点的坐标为)0,1(-,过点C 的直线343 -= x t y 与x 交于点,Q 点P 是线段BC 上的一个动点,过点P 作OB PH ⊥于点H ,若)10(,5<<=t t PB ,请回答下面的问题; (1)、求出抛物线的解析式 (2)、求线段QH 的长,(用含有t 的式子表示) (3)、根据P 点的变化,是否存在t 的值,使得以点Q H P ,,为顶点的三角形与COQ ?相似?若存在,求出所有的t 的值,若不存在,说明理由;

二次函数练习题及答案

二次函数练习题 一、选择题: 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是() A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限() A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交 x轴于点A(m,0)和点B,且m>4,那么AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是() 9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线 x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点, 且-1

10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是() A. B. C. D. 二、填空题: 11. 二次函数y=x2-2x+1的对称轴方程是______________. 12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________. 13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________. 14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________. 15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________. 16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的 情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m. 17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________. 18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________. 三、解答题: 19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;

二次函数与相似

二次函数与相似 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探究两个三角形 相似的动态问题,一般情况下首先寻找一组对应角相等。 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 如果已知∠A=∠D,探求△ABC与△DEF相似,只要把夹∠A和∠D的两边分别表示出来,按照对应边成比例, 分和两种情况列方程。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等。 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组)。 还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个一个直角三角形的锐角三角比 是确定的,那么就转化为讨论另一个三角形是直角三角形的问题。 1.(河南倒一)如图,直线与轴交于点A(3,0),与轴交于点B,抛物线经过点A,B. (1)求点B的坐标和抛物线的解析式; (2)M(m,0)为轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N, ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标; ②点M在轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外), 则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值. 2.(武汉倒一)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上 (1)求抛物线的解析式; (2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE; (3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个 单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.

二次函数与相似三角形

课题二次函数与相似三角形 教学目标知识与 技能 根据条件寻找或构造相似三角形,从而得出点的坐标。 过程与 方法 通过复习,掌握中考题型中二次函数的综合应用。 情感态 度与价 值观 培养学生的参与意识和探索精神。 教学重点根据条件寻找或构造相似三角形 教学难点根据条件寻找或构造相似三角形 教学准备课件,活页练习 教学课时1课时 教学过程个案修改 (手写)一、导入: 我们已经学完了二次函数的基础知识,从今天开始我们要学习二次函 数与其他知识的综合应用。首先,我们来学习中考中最常见的一种—— 二次韩数与相似三角形。 二、复习提问: 1、二次函数的一般形式是 2、如何确定一条抛物线与X轴和y轴的交点坐标? 3、抛物线的顶点坐标如何确定? 4、相似三角形的判断方法有哪些? 三、例题讲解: .如图,已知抛物线y=–(x–2)2+1 的图像与x轴交于A、B 两点 (点A在点B左侧),与y轴交于点C. (1)求点A,点B,点C的坐标;

(2)若点D是抛物线的顶点,DH垂直于x轴,垂足为H,试判断直角三角形DHA与直角三角形COB是否相似?说明理由. (3)若点M在抛物线上且在x轴上方,过点M作MG垂直于x轴, 垂足为点G,是否存在M,使得△AMG与△AOC相似。若存在,求出M 点坐标;若不存在,说明理由。 分析: (1)第一步是基础知识,可由学生自己解决,只对个别不会的学生加以辅导,可以由B号学生帮助解决 (2)第二步要判断两个直角三角形相似,可以证明夹着直角的四条边成比例;另外,还要注意强调格式——先回答问题,再书写证明过程(3)第三步要先设出点M的坐标,进一步表示出MG和AG的长度,然后再分两种情况利用四条线段成比例得方程,从而解得点M的坐标。另外,题目中“点M在抛物线上且在x轴上方”能给我们 什么信息,需要注意什么? 教学组织: (1)学生自己分析题意,找出不会的地方; (2)小组内讨论,初步解决 (3)汇总不能解决的问题,教师分析解决 (4)书写第(3)问解答过程,A号展示 四、变式练习: 上题中,若点D是抛物线的顶点,点M在抛物线上且在x轴上方,

二次函数与菱形的专题

二次函数与菱形 1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式. (2)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积. (3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形若存在,请求出此时点P的坐标;若不存在,请说明理 由. 2.已知抛物线y=ax2+bx+8(a≥1)过点D(5,3),与x轴交于点B、C(点B、C均在y轴右侧)且BC=2,直线BD交y轴于点A. (1)求抛物线的解析式; (2)在坐标轴上是否存在一点N,使△ABN与△BCD相似若存在,求出点A、N的坐标;若不存在,请说明理由. (3)在直线BD上是否存在一点P和平面内一点Q,使以Q、P、B、C四点为顶点的四边形为菱形若存在,请直接写出点P的坐标;若不存在,请说明理由. 3.如图,二次函数图象的顶点为坐标原点O,y轴为对称轴,且经过点A(3,3),一次函数的图象经过点A和点B(6,0). (1)求二次函数与一次函数的解析式; (2)如果一次函数图象与y轴相交于点C,E是抛物线上OA段上一点,过点E作y轴平行的直线DE与直线AC交于点D,∠DOE=∠EDA,求点E的坐标;

(3)点M是线段AC延长线上的一个动点,过点M作y轴的平行线交抛物线于F,以点O、C、M、F为顶点的四边形能否为菱形若能,求出点F的坐标;若不能,请说明理由. 4.如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F. (1)求m的值及该抛物线对应的解析式; (2)P(x,y)是抛物线上的一点,若S △ADP =S △ADC ,求出所有符合条件的点P的坐标; (3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形若能,请直接写出点M的运动时间t的值;若不能,请说明理由. 5.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、 B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P从点D出发,沿DC边向点C运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G. (1)求抛物线的解析式; (2)当t为何值时,四边形BDGQ的面积最大最大值为多少 (3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为

二次函数专项测试卷及答案

第二十二章 二次函数 专项综合测试卷 求二次函数解析式 类型一 利用“一般式”求二次函数解析式 1.(2018福建龙岩上杭月考)已知二次函数的图象经过点(0,3)、(-3,0)、(2,-5). (1)试确定此二次函数的解析式; (2)请你判断点P (-2,3)是否在这个二次函数的图象上. 2.(2020广东惠州博罗期中)已知抛物线2y ax bx c =++经过A (0,2),B (4,0), C (5,-3)三点,当x ≥0时,图象如图所示. (1)求抛物线的解析式,并写出抛物线的顶点坐标; (2)画出抛物线2y ax bx c =++在y 轴左侧的部分.

3.(2019广东广州越秀月考)已知抛物线2y ax bx c =++过点A (-1,1),B (4,-6), C (0,2). (1)求此抛物线的函数解析式; (2)该抛物线的对称轴是_________,顶点坐标是__________; (3)选取适当的数据,并在直角坐标系内描点画出该抛物线. 类型二 利用“顶点式”求二次函数解析式 4.(2019四川广安月考)某抛物线的对称轴为直线3x =,y 的最大值为-5,且与212 y x =的图象开口大小相同,则这条抛物线的解析式为( ) A. 21(3)52y x =-++ B. 21(3)52 y x =--- C. 21(3)52y x =++ D. 21(3)52y x =-- 5.(2020山东济宁任城期中)已知一个二次函数有最大值4.当x >5时,y 随x 的增大而减小,当x <5时,y 随x 的增大而增大,且该函数图象经过点(2,1),求该函数的解析式. 6.(2020浙江宁波鄞州期中)已知二次函数2y ax bx c =++的图象顶点坐标为(1,4),且经过点C (3,0). (1)求该二次函数的解析式; (2)当x 取何值时,y 随x 的增大而减小? (3)当3y x ≤-+时,直接写出x 的取值范围.

二次函数与相似专题复习

东升学校九年级上数学导学稿(编号:813) 班级 姓名 组 号 时间 年 月 日 课题:二次函数与相似问题 课型:新授 主备 严光华 审核 九年级数学组 例1.已知抛物线经过A (-2,0),B (-3,3)及原点O ,顶点为C . (1)求抛物线的解析式; (2)P 是抛物线上第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M , 是否存在点P 使得以点P 、M 、A 为顶点的三角形与△BOC 相似?若存在, 求出点P 的坐标;若不存在,请说明理由. 例2.把抛物线 向左平移1个单位,再向下平移4个单位, 得到抛物线 所得抛物线与轴交于A,B 两点(点A 在点B 的左边),与轴交于点C ,顶点为D. (1)写出h,k 的值;(2)判断 的形状,并说明理由; (3)在线段AC 上是否存在点,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由. 例3.抛物线 与X 轴的两个交点分别为A (-3,0)、B (1,0), 过顶点C 作CH ⊥x 轴于点H . (1)直接填写:a= ,b = ,顶点C 的坐标为 ; (2)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. 2y x =2()y x h k =-+ACD △32++=bx ax y

例4.如图,已知△ABC的三个顶点坐标分别为A(-4,0)、B(1,0)、C(-2,6). (1)求经过A、B、C三点的抛物线解析式; (2)设直线BC交y轴于点E,连接AE,求证:AE=CE (3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F,为顶点的三角形与△ABC相似吗?请说明理由. 练习一 如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2. (1)求这条抛物线对应的函数关系式; (2)连接BD,试判断BD与AD的位置关系,并说明理由 (3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由. 练习二 如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标为(3,0) (1)求抛物线的解析式; (2)如图2,设E是抛物线上在第一象限内的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长 (3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.

相关主题
文本预览
相关文档 最新文档