当前位置:文档之家› 风机各种功率名词定义及计算方法

风机各种功率名词定义及计算方法

风机各种功率名词定义及计算方法
风机各种功率名词定义及计算方法

风机各种功率名词定义及计算方法

风机是依靠输入的机械能,提高气体压力并排送气体的流体机械。风机系统工作最终是将电能转换为风能,其中包含了功率的的传递和转换,因此功率是风机的一个重要参数。同时,在风机检测试验系统中,功率参数也是测试系统的重要检测项目。

风机在原动机驱动到出风过程中,输入电功率经过了一系列的传动、转换机构。风机的功率参数主要包括了叶轮功率、轴功率、输入功率、空气功率、全压有效功率、静压有效功率等参数,下面根据相关标准及经验解析,对风机主要功率参数进行介绍。

风机主要功率参数

01、风机叶轮功率

供给通风机叶轮的机械功率。

改为:风机通过轴提供给叶轮的机械功率。

注:这里主要讨论通过轴提供的功率,通过其他方式提供给叶轮的功率(如动压、静压差等)不考虑,因此主语部分一定要有。

02、风机轴功

传递到风机轴输入端的功率,是风机实际需要的功率,也是风机的净输入功率。它包括了风机轴、轴承、轴密封件等功率损耗,不包括联轴器、皮带轮、齿轮箱等驱动元件的功率损耗。

改为:传递到风机轴输入端的功率,是风机实际需要的功率,也是风机的净输入功率。它包括了风机轴、轴承、轴密封件等功率损耗,不包括联轴器、皮带轮、齿轮箱等驱动元件的功率损耗。

注:引入“净输入功率”概念,有人把“净输入功率”理解为“最终提供给叶轮的功率”是错误的。

03、风机输入功率

风机输入功率是指风机的净输入功率。扭矩仪测功率时,在联轴器等驱动元件的功率损耗忽略不计情况下,是扭矩仪的读数值,是风机的净输入功率,也就是风机轴功率。

改为:风机输入功率是指风机的净输入功率加上驱动元件的功率损耗部分。

扭矩仪测功率时,在联轴器等驱动元件的功率损耗忽略不计情况下,是扭矩仪的读数值,是风机的净输入功率,也就是风机轴功率。

注:强调一下扭矩仪测的是什么样的功率,明确考虑了那些,那些没考虑。

04、风机所需功率

是风机正常运行所需要的最大功率,包括超负荷情况下电机的预留功率,它是风机选配电机的重要依据。

改为:是风机正常运行所需要的最大功率,包括超负荷情况下电机的预留功率,它是风机选配电机的重要依据。

注:a.张总会议上达成的共识;b.一定要强调“是风机正常运行所需要的最大功率”,否则会烧电机的。

05、轴承的功率损失

轴、轴承、轴密封件等造成的功率损耗,统称为“轴承功率损失”。

改为:轴、轴承、轴密封件等造成的功率损耗,统称为“轴承功率损失”。注:a.张总会上定义的,由三部分组成;b. 名词中把“的”字去掉。06、驱动元件的功率损失

风机正常运行中,联轴器、皮带轮、齿轮箱等驱动元件的功率损耗。

改为:风机正常运行中,联轴器、皮带轮、齿轮箱等驱动元件的功率损耗。

07、功率储备系数

风机运行可能出现的超负荷情况,为了安全所预留超出风机输入功率的部分,此部分在风机配电机时以系数形式参与计算。

08、风机输入功率

通风机通过叶轮将机械能转换成一定的空气能,通常等于质量流量乘以单位质量功,或等于进口容积流量乘以压缩修正系数和通风机压力。

09、全压有效功率

指单位时间内通过风机的空气所获得的实际能量, 它是风机的输出功率, 也称为空气功率。

10、静压有效功率

指单位时间内通过风机的空气所获得的静压能量。它是全压有效功率的一部分。

11、内功率

风机整体计入流动损失和泄漏损失后,单位时间里传给气体的有效功。一般:内功率等于空气功率,等于全压有效功率。

风机匹配电机功率方法

前提条件:同一型号风机,同一使用工况,不同驱动方式。

1、功率计算方法

风机叶轮功率=性能测试报告中的输入功率-(性能测试用驱动方式的轴承的功率损失+性能测试用驱动方式的驱动元件的功率损失)

风机轴功率=风机叶轮功率+各驱动方式的轴承的功率损失+轴封的功率损失

各驱动方式的风机输入功率=风机轴功率+各种驱动方式的驱动元件的功率损失

风机所需功率=各驱动方式的风机输入功率×功率储备系数

2、匹配电机功率方法

电机必需满足“电机额定功率”≥“风机所需功率”的条件,一般情况下选择其中最小额定功率的电机。

3、数据来源

风机叶轮功率:由风机性能测试报告中的输入功率,实验室检测后提供的轴承的功率损失和驱动方式损失功率的数据计算得出;

性能测试报告中输入功率:由英飞实验室报告或AMCA认证测试报告提供;

功率储备系数:由研发根据叶轮类型不同分别提供;

由实验室测试提供:各驱动方式的轴承的功率损失、轴封的功率损失、各种驱动方式的驱动元件的功率损失。

讨论:我理解的轴功率损失减加过程

a. 性能测试报告中原始数据的输入功率-轴功率损失软件计算得到指定条件(标态下)的叶轮功率a

b. 指定条件(标态下)的叶轮功率a 由风机相似性定律推算到不同使用条件下的叶轮功率b

c.风机所需功率(叶轮功率b +轴功率损失+驱动元件功率损失)×功率储备系数

注:1. 这种方法适用于扭矩仪测试或电机直连测试报告数据的处理;

2. 电机皮带连接测试报告标态下的叶轮功率已经包含了驱动元件的功率损失和轴功率损失,再简单由风机相似性定律推算,是不准确的,能否直接在原始数据的输入功率中减去驱动元件功率损耗,我没有找到相关标准依据。驱动元件功率损耗是测试得到?还是推算得到?还是经验得到?

3. 据我处理试验报告的观察分析:在原始数据表实测输入功率一项,电测法测功率,按5%轴承功率损耗算,标态数据表中风机全压效率有1~3%的影响;扭矩仪法测功率,按5%轴承功率损耗算,标态数据表中风机全压效率有1~1.5%的影响,因为功率=(扭矩×转速)/9550;

因此,我认为:探求轴承功率损耗和驱动元件功率损耗是工作严谨科学的一件好事,但是,要把它当成提高风机效率的工具,没有多少油水可榨;提高风机效率的最根本途径在于设计更好的叶轮和风机流道。

电机与水泵功率选择修订稿

电机与水泵功率选择 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

电机功率一般为泵功率的~倍。 用电机提升60KG重的货物以min的速度提升。我计算出来的电机功率为 电机功率计算公式可以参考下式: P= F×v÷60÷η 公式中 P 功率 (kW) ,F 牵引力 (kN),v 速度 (m/min) ,η的效率,一般左右。 例如本例中如果取η=, k=; F=60×=588(N)=(KN) P=F×v÷60÷η×k =×÷60÷× =(KW) 由于货物重量轻,提升速度慢,用以上电机足够。可以选大些。 要用电机带动小车,小车在轨道上行驶,不知电机的功率要选多大的,可以假设小车加载荷的质量为40吨,行驶速度为60m/min,行驶轨道为钢轨, 计算公式可以参考下式: P= F×v÷60÷η 公式中 P(kW) ,F(kN),v 速度(m/min) ,η的效率,一般左右。 在匀行时F 等于小车在轨道上运动时的,F=μG , μ是,与和的状态有关; G = 400kN (40 吨)。 启动过程中小车从静止加速到最高速,还需要另一个加速的力, F = ma, m是小车和负载的总质量,a 是,要求越短,a 越大,F 也越大。 所以还要加上这一部分。可以把上面考虑计算出的乘一个系数 k (可取~2倍)作为总。k 越大,加速能力越强。

例如本例中如果取η=, μ=, k=,则 P= F×v÷60÷η×k = ×400 ×60 ÷60 ÷ × = kW 顺便说一下,质量较大的物体加速过程可能较长,还要考虑采用什么,什么样的启动方式。 这句话帮我修改一下“每个电机的kW额定值将超过驱动设备在负荷点时所吸收功率的至少10%,它也将超过驱动设备在所有其它可能的操作条件下吸收功率的至少5%。对于作为变速驱动操作的电机,在本运算中所使用的kW额定值将为允许减少冷却增加损失所需的电机降低额定值后的标称kW额定值。 电机功率应根据机械所需要的功率来选择,使电动机在额定负载下运行P=F。V/ 1000 F—拉力(N),线速度---V(M/S) P1=P/N1N2 N1—生产机械效率 N2—电动机效率 在实际工作中判断匹配合理,电机动行测得工作电流与电机铭牌额定电流相差不大,则选择合理。 电动机功率与转矩 P=TN/9550 T—电机输出转矩 Nm N—电机额定转速r/mim 机械功率 P=TN/97500 T—转矩克/cm N—转速r/mim 伺服电机 :

电机常用计算公式和说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ/ (N × Ae)B=F/IL u磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

电机功率计算公式

电机功率计算公式 选用的电机功率:N=(Q/3600)*P/(1000*η)*K 其中风量Q单位为m3/h,全压P单位为Pa,功率N单位为kW,η风机全压效率(按风机相关标准,全压效率不得低于0.7,实际估算效率可取小些,也可以取0.6,小风机取小值,大风机取大值),K为电机容量系数,参见下表。 1、离心风机 2、轴流风机:1.05-1.1,小功率取大值,大功率取小值。 选用的电机功率N=(Q/3600)*P/(1000*η)*K 风机的功率P(KW)计算公式为P=Q*p/(3600*1000*η0* η1) Q—风量,m3/h; p—风机的全风压,Pa; η0—风机的内效率,一般取0.75~0.85,小风机取低值、大风机取

高值。 η1—机械效率: 1、风机与电机直联取1; 2、联轴器联接取0.95~0.98; 3、用三角皮带联接取0.9~0.95; 4、用平皮带传动取0.85。 如何计算电机的电流: I=(电机功率/电压)*c 功率单位为KW 电压单位:KV C:0.76(功率因数0.85和功率效率0.9乘积)

解释一下风机轴功率计算公式:N=QP/1000*3600*0.8*0.98 Q是流量,单位为m3/h,p是全风压,单位为Pa(N/m2)。 注意:功率的基本单位是W,在动力学中,W=N.m/s。 QP的单位为N.m/h=W*3600。 风机轴功率一般用kW表示。 1000是将W换算为kW。 3600将小时换算为秒。 上述计算获取的是风机本身的输出功率,风机轴功率是指风机的输入功率,也等于电机的输出功率。风机输出功率除以转换效率就是风机的轴功率。 0.8是风机内效率估计值。 0.98是机械效率估计值。

风机的电机功率如何确定

风机电机功率计算公式: 选用的电机功率N=(Q/3600)*P/(1000*η)*K其中风量Q单位为m3/h,全压P单位为Pa,功率N单位为kW,η风机全压效率(按风机相关标准,全压效率不得低于0.7,实际估算效率可取小些,也可以取0.6,小风机取小值,大风机取大值),K为电机容量系数,参见下表。 1、离心风机 功率KW 一般用灰尘高温 小于0.5 1.5 1.2 1.3 0.5-1 1.4 1-2 1.3 2-5 1.2 大于5 1.1-1.15 2、轴流风机:1.05-1.1,小功率取大值,大功率取小值 选用的电机功率N=(Q/3600)*P/(1000*η)*K 风机的功率P(KW)计算公式为P=Q*p/(3600*1000*η0* η1) Q—风量,m3/h; p—风机的全风压,Pa; η0—风机的内效率,一般取0.75~0.85,小风机取低值、大风机取高值 η1—机械效率,1、风机与电机直联取1;2、联轴器联接取0.95~0.98;3、用三角皮带联接取0.9~0.95;4、用平皮带传动取0.85 如何计算电机的电流: I=(电机功率/电压)*c 功率单位为KW 电压单位:KV C:0.76(功率因数0.85和功率效率0.9乘积) 解释一下风机轴功率计算公式N=QP/1000*3600*0.8*0.98 Q是流量,单位为m^3/h,p是全风压,单位为Pa(N/m^2)。 注意:功率的基本单位是W,在动力学中,W=N.m/s。 QP的单位为N.m/h=W*3600。 风机轴功率一般用kW表示。 1000是将W换算为kW。 3600将小时换算为秒。

上述计算获取的是风机本身的输出功率,风机轴功率是指风机的输入功率,也等于电机的输出功率。风机输出功率除以转换效率就是风机的轴功率。 0.8是风机内效率估计值。 0.98是机械效率估计值。

泵轴功率和电机配置功率之间的关系

泵轴功率和电机配置功率之间的关系 额定功率即铭牌功率,也是电动机的轴输出功率,也是负荷计算所采纳的数据。Pe=1.732*0.38*Ie*额定功率因数*电动机效率。因此,电动机额定电流Ie=Pe/(1.732*0.38*额定功率因数*电动机效率)电动机的输入功率P1=Pe/电动机效率。P1跟我们关系不大,一般不再换算此值。例如:一台YBF711-4小型电机的铭牌数据:额定功率250W,额定电压380V,额定电流0.85A,功率因数0.68,无效率数据。 如果不算效率,额定电流=0.25/(1.732*0.38*0.68)=0.56A,跟0.85A 不符。如果算效率:额定电流=0.85=0.25/(1.732*0.38*0.68*效率)。由此可以反算效率为:0.25/(1.732*0.38*0.68*0.85)=0.66。 水泵所需功率与电动机额定功率的关系。假设水泵的扬程为H (m),流量为Q(L/s),那么很容易推算其实际需要的有效功率P3为:P3=H*Q*g(g=9.8,常数)(W);因为水泵本身也存在效率,因此需要提供给水泵的实际功率P2=P3/水泵效率。P2算出来往往跟电机的额定功率不会正好相等,因此就选择一个大于(但接近)P2的一个电机功率Pe。比如P3=10KW,水泵效率为0.7,电机功率为0.9,那么P2=P3/0.7=14.3kw,可选择Pe=15KW或18.5KW的配套电机;电机的实际输入功率P1=15/0.9=16.7kw(或18.5/0.9=20.1KW)。 泵轴功率是设计点上原动机传给泵的功率,在实际工作时其工况点会变化,另电机输出功率因功率因数关系会有变化。因此,原动机传给泵的功率应有一定余量,经验作法是电机配备功率大于泵轴功率。轴功率余量见下表,并根据国家标准Y系列电机功率规格选配。

风机参数计算(精)

风机常识-风机知识 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。风机分类及用途: 透平式风机--通过旋转叶片压缩输送气体的风机。 容积式风机—用改变气体容积的方法压缩及输送气体机械。 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 (以绝对压力计 通风机—排气压力低于112700Pa ; 鼓风机—排气压力在112700Pa~343000Pa之间;压缩机—排气压力高于343000Pa 以上; (在标准状

低压离心通风机:全压P ≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P ≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法 型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力), 即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差), 其单位常用Pa 、KPa 、mH2O 、 mmH2O 等。 流量:单位时间内流过风机的气体容积, 又称风量。常用Q 来表示, 常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量, 这个时候需要考虑风机进口的气体密度, 与气体成份, 当地大气压, 气体温度, 进口压力有密切影响, 需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n 来表示、其单位用r/min(r表示转速,min 表示分钟。

电机功率计算公式

电机功率计算公式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一,电机额定功率和实际功率的区别 是指在此数据下电机为最佳工作状态。 额定电压是固定的,允许偏差10%。 电机的实际功率和实际电流是随着所拖动负载的大小而不同; 拖动的负载大,则实际功率和实际电流大; 拖动的负载小,则实际功率和实际电流小。 实际功率和实际电流大于额定功率和额定电流,电机会过热烧毁; 实际功率和实际电流小于额定功率和额定电流,则造成材料浪费。 它们的关系是: 额定功率=额定电流IN*额定电压UN*根3*功率因数 实际功率=实际电流IN*实际电压UN*根3*功率因数 二,280KW水泵电机额定电流和启动电流的计算公式和相应规范出处 (1)280KW电机的电流与极数、功率因素有关一般公式是:电流=((280KW/380V)0.8.5机的电流怎么算 答:⑴当电机为单相电机时由P=UIcosθ得:I=P/Ucosθ,其中P为电机的额定功率,U为额定电压,cosθ为功率因数; ⑵当电机为三相电机时由P=√3×UIcosθ得:I=P/(√3×Ucosθ),其中P为电机的额定功率,U为额定电压,cosθ为功率因数。 功率因数

在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号 cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。 (1) 最基本分析:拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。在这个例子中,功率因数是 (如果大部分设备的功率因数 小于时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。保尔金能使两个峰值重新接近在一起,从而提高系统运行效率。 对于功率因数改善

水泵的配套电机功率与轴功率的区别

水泵的配套电机功率与轴功率的区别 水泵的扬程、流量和功率是考察水泵性能的重要参数: 1.流量水泵的流量又称为输水量,它是指水泵在单位时间内输送水的数量。以符号Q来表示,其单位为升/秒、立方米/秒、立方米/小时。 2.扬程水泵的扬程是指水泵能够扬水的高度,通常以符号H来表示,其单位为米。离心泵的扬程以叶轮中心线为基准,分由两部分组成。从水泵叶轮中心线至水源水面的垂直高度,即水泵能把水吸上来的高度,叫做吸水扬程,简称吸程;从水泵叶轮中心线至出水池水面的垂直高度,即水泵能把水压上去的高度,叫做压水扬程,简称压程。即水泵扬程=吸水扬程压水扬程应当指出,铭牌上标示的扬程是指水泵本身所能产生的扬程,它不含管道水流受摩擦阻力而引起的损失扬程。在选用水泵时,注意不可忽略。否则,将会抽不上水来。 3.功率在单位时间内,机器所做功的大小叫做功率。通常用符号N来表示。常用的单位有:公斤?米/秒、千瓦、马力。通常电动机的功率单位用千瓦表示;柴油机或汽油机的功率单位用马力表示。动力机传给水泵轴的功率,称为轴功率,可以理解为水泵的输入功率,通常讲水泵功率就是指轴功率。 由于轴承和填料的摩擦阻力;叶轮旋转时与水的摩擦;泵内水流的漩涡、间隙回流、进出、口冲击等原因。必然消耗了一部分功率,所以水泵不可能将动力机输入的功率完全变为有效功率,其中定有功率损失,也就是说,水泵的有效功率与泵内损失功率之和为水泵的轴功率。 水泵的配套功率与轴功率之间也有区别,它要比轴功率大一些主要考虑水泵与动力机配套成机组,中间必须有一个传动装置,而它的运转又必然消耗一部分功率。另外,为确保机组安全运行,防止动力机超负载,配套功率还要留有余地,这样,就要考虑一个安全备用系数K,K=1.5-2,一般来说,水泵轴功率较小时,K值取大些;轴功率大时,K值取小些。

风机各种功率名词定义及计算方法

风机各种功率名词定义及计算方法 风机是依靠输入的机械能,提高气体压力并排送气体的流体机械。风机系统工作最终是将电能转换为风能,其中包含了功率的的传递和转换,因此功率是风机的一个重要参数。同时,在风机检测试验系统中,功率参数也是测试系统的重要检测项目。 风机在原动机驱动到出风过程中,输入电功率经过了一系列的传动、转换机构。风机的功率参数主要包括了叶轮功率、轴功率、输入功率、空气功率、全压有效功率、静压有效功率等参数,下面根据相关标准及经验解析,对风机主要功率参数进行介绍。 一 风机主要功率参数 01、风机叶轮功率 供给通风机叶轮的机械功率。 改为:风机通过轴提供给叶轮的机械功率。 注:这里主要讨论通过轴提供的功率,通过其他方式提供给叶轮的功率(如动压、静压差等)不考虑,因此主语部分一定要有。 02、风机轴功 传递到风机轴输入端的功率,是风机实际需要的功率,也是风机的净输入功率。它包括了风机轴、轴承、轴密封件等功率损耗,不包括联轴器、皮带轮、齿轮箱等驱动元件的功率损耗。 改为:传递到风机轴输入端的功率,是风机实际需要的功率,也是风机的净输入功率。它包括了风机轴、轴承、轴密封件等功率损耗,不包括联轴器、皮带轮、齿轮箱等驱动元件的功率损耗。 注:引入“净输入功率”概念,有人把“净输入功率”理解为“最终提供给叶轮的功率”是错误的。

03、风机输入功率 风机输入功率是指风机的净输入功率。扭矩仪测功率时,在联轴器等驱动元件的功率损耗忽略不计情况下,是扭矩仪的读数值,是风机的净输入功率,也就是风机轴功率。 改为:风机输入功率是指风机的净输入功率加上驱动元件的功率损耗部分。 扭矩仪测功率时,在联轴器等驱动元件的功率损耗忽略不计情况下,是扭矩仪的读数值,是风机的净输入功率,也就是风机轴功率。 注:强调一下扭矩仪测的是什么样的功率,明确考虑了那些,那些没考虑。 04、风机所需功率 是风机正常运行所需要的最大功率,包括超负荷情况下电机的预留功率,它是风机选配电机的重要依据。 改为:是风机正常运行所需要的最大功率,包括超负荷情况下电机的预留功率,它是风机选配电机的重要依据。 注:a.张总会议上达成的共识;b.一定要强调“是风机正常运行所需要的最大功率”,否则会烧电机的。 05、轴承的功率损失 轴、轴承、轴密封件等造成的功率损耗,统称为“轴承功率损失”。 改为:轴、轴承、轴密封件等造成的功率损耗,统称为“轴承功率损失”。注:a.张总会上定义的,由三部分组成;b. 名词中把“的”字去掉。06、驱动元件的功率损失

关于风机电机功率选择的说明

关于风机电机功率选择的说明: 致: 1、系统使用风量:40万m3/h; 2、因焦化粉尘摩啄力较强,真密度较大,极易在管道内沉积堵塞管道;风机选型充分考虑 尘管道堵塞问题,水平管流速为22~24m/s,垂直风管流速为18~20m/s; 3、风机选型充分考虑海拔对风机性能的影响,在达钢地区使用风压保证值不低于5000Pa; 4、计算方法:(计算方式见:附加2.) N(所需功率)=(Q×P÷1000×η×3600×0.98)×1.15 =(400000×5000÷1000×0.83×3600×0.98)×1.15 =(200 0000 0000÷2928240)×1.15 =726.786×1.15 =785.55(kw) 0.98—风机机械效率;1.15—电机储备系数;0.78—经计算所得电机内效率(温度50℃;风压保证值5000Pa); 根据风机选型手册计算所需功率为:785.55kw,电机考虑100kw左右的储备功率,故选用900kw电机, 5、依据我方对焦化筛焦楼的治理经验,如风机电机功率选择太小,控制风量风压太小,管 道流速不能控制粉尘悬浮,又粉尘摩啄力较强,真密度较大,极易在管道内沉积堵塞管道,布袋的透气性降低,除尘器阻力增大,导致系统不能有效收尘。 6、正常工作时风机电机输出功率应在600kw左右,由我们选择的为变频调速电机及变频控 制工作方式(0 Hz~120 Hz可调),本身就具备了节能的目的,并不比小功率电机多耗能,反而具备了在管道粉尘沉积布袋除尘器阻力增大时可有效控制和调节等优越功能。 7、电机功率的增大,增加的投资成本是有我方承担的,不增加用户的投资成本的前提下具 备了储能、扩容等优点。 2012年4月23日

电机功率计算公式

电机电流计算公式: 单相电动机电流计算公式 I=P/(U*cosfi) 例如,如果单相电压U=0.22kv,cosfi=0.8,则I=P/(0.22*0.8)=5.68p 三相电动机电流计算公式 I=P/(1.732*U*cosfi) 例如,如果三相电压U=0.38kv,cosfi=0.8,则I=P/(1.732*0.38*0.8)=1.9p 根据经验,220V:kW/6A,380V:kW/2a,660V:kW/1.2a,3000V:4kw/1a 电机功率计算公式:(常用三相电机功率计算) P1=1.732*U*I*cosφ 其中P1(W)为三相电动机的功率,u(V)为线电压,I(a)为线电流,cosφ功率因数通常为0.8 计算公式为:P2=3*P1

这是三相电源Y接线的三倍功率。 [导读]电动机的功率应根据生产机械所需的功率来选择,使电动机在额定负荷下尽可能地运行。选择时要注意以下两点: 电动机的功率应根据生产机械所需功率选择,使电动机在额定负荷下尽可能地运行。选择时要注意以下两点: ①如果电机功率过小,会出现“小马拉车”现象,导致电机长期过载,其绝缘层会因受热而损坏,甚至导致电机烧毁。 ②如果电机功率过大,机械输出功率不能得到充分利用,功率因数和效率都不高,不仅给用户和电网带来损失,而且还会浪费电能。最重要的是,所有的传动元件对于传动功率来说都会过大,造成传动元件选择过多,严重浪费设备投资。 电机电流计算公式: 单相电动机电流计算公式 I=P/(U*cosfi)

例如,如果单相电压U=0.22kv,cosfi=0.8,则I=P/(0.22*0.8)=5.68p 三相电动机电流计算公式 I=P/(1.732*U*cosfi) 例如,如果三相电压U=0.38kv,cosfi=0.8,则I=P/(1.732*0.38*0.8)=1.9p 根据经验,220V:kW/6A,380V:kW/2a,660V:kW/1.2a,3000V:4kw/1a 电机功率计算公式:(常用三相电机功率计算) P1=1.732*U*I*cosφ 其中P1(W)为三相电动机的功率,u(V)为线电压,I(a)为线电流,cosφ功率因数通常为0.8 计算公式为:P2=3*P1 这是三相电源Y接线的三倍功率。 电动机功率计算方法详细说明 7.jpg公司

风机功率P(KW)计算_空间加热

风机所需功率P(KW)计算公式为 P=Q*p/(3600*1000*η0* η1) Q—风量,m3/h; p—风机的全风压,Pa; η0—风机的内效率,一般取0.75~0.85,小风机取低值、大风机取高值η1—机械效率, 1、风机与电机直联取1; 2、联轴器联接取0.95~0.98; 3、用三角皮带联接取0.9~0.95; 4、用平皮带传动取0.85 通风机效率公式: 风机效率= 风机功率/电机功率 电机功率= 3×电流×电压×0.8×0.95 风机功率= 风量/60×负压/1000 扇风机轴功率计算: N=h×Q/(102×η) N:扇风机轴功率,千瓦;h:扇风机全压,毫米水柱; Q:通风扇风机的风量,米3/秒;η:扇风机静效率。

空间加热功率计算功率计算方式: 设备室体散热量+工件吸热量+设备室内空气加热量+补充新鲜空气加热量=总需热量总需热量×其它耗损系数×热量余数 KW/小时×发热体热效率 设备室体散热量: 保温层散热系数×设备室体保温层面积之和×(工作温度----环境温度) 保温层散热系数:0.05W(㎡/℃) 相当于: 0.05J(㎡/℃) 0.05×222×(140-20)=1332(J/小时) 空气加热量计算: 密度×体积×(9.8牛顿/千克)=空气重量 1.293×100×9.8≈1268千克 空气比热×空气重量×(所需温度-室温)=空间所需热量 空气比热:1006J(KG /℃) 1006×1268×(140-20)=153072960(J/小时) 工件吸热量计算: 铁比热×工件重量×(所需温度-室温)=工件吸热量 铁比热:460J(KG/℃) 460×3600×(140-20)=198720000(J/小时) 新鲜空气补充: 每小时补充的空气×空气比热×(工作温度—环境温度) 760×1006×(140-20)=91781485(J/小时) 总耗热量: 1332+153072960+198720000+91781485=443575777(J/小时) 总加温所需功率:(一小时) 总需热量×其它耗损系数×热量余数 KW/小时×发热体热效率 其它设备耗损系数:取1.2

风机常用计算公式

风机常用计算公式 风机是一种用于压缩和输送气体的机械,从能量观点来看,它是把原动机的机械能量转变为气体能量的一种机械。 风机分类及用途: 按作用原理分类 透平式风机--通过旋转叶片压缩输送气体的风机。 容积式风机—用改变气体容积的方法压缩及输送气体机械。 按气流运动方向分类 离心式风机—气流轴向驶入风机叶轮后,在离心力作用下被压缩,主要沿径向流动。 轴流式风机—气流轴向驶入旋转叶片通道,由于叶片与气体相互作用,气体被压缩后近似在园柱型表面上沿轴线方向流动。 混流式风机—气体与主轴成某一角度的方向进入旋转叶道,近似沿锥面流动。 横流式风机—气体横贯旋转叶道,而受到叶片作用升高压力。 按生产压力的高低分类(以绝对压力计算) 通风机—排气压力低于112700Pa; 鼓风机—排气压力在112700Pa~343000Pa之间; 压缩机—排气压力高于343000Pa以上; 通风机高低压相应分类如下(在标准状态下) 低压离心通风机:全压P≤1000Pa 中压离心通风机:全压P=1000~5000Pa 高压离心通风机:全压P=5000~30000Pa 低压轴流通风机:全压P≤500Pa 高压轴流通风机:全压P=500~5000Pa 一般通风机全称表示方法

型式和品种组成表示方法 压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有静压、动压、全压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、KPa、mH2O、mmH2O等。 流量:单位时间内流过风机的气体容积,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h(秒、分、小时)。(有时候也用到“质量流量”即单位时间内流过风机的气体质量,这个时候需要考虑风机进口的气体密度,与气体成份,当地大气压,气体温度,进口压力有密切 影响,需经换算才能得到习惯的“气体流量”。 转速:风机转子旋转速度。常以n来表示、其单位用r/min(r表示转速,min表示分钟)。功率:驱动风机所需要的功率。常以N来表示、其单位用Kw。 常用风机用途代号

水泵轴功率计算公式

水泵轴功率计算公式 英文词条名: 1)离心泵 流量×扬程×9.81×介质比重÷3600÷泵效率 流量单位:立方/小时, 扬程单位:米 P=2.73HQ/Η, 其中H为扬程,单位M,Q为流量,单位为M3/H,Η为泵的效率.P为轴功率,单位KW. 也就是泵的轴功率P=ΡGQH/1000Η(KW),其中的Ρ=1000KG/M3,G=9.8 比重的单位为KG/M3,流量的单位为M3/H,扬程的单位为M,1KG=9.8牛顿 则P=比重*流量*扬程*9.8牛顿/KG =KG/M3*M3/H*M*9.8牛顿/KG =9.8牛顿*M/3600秒 =牛顿*M/367秒 =瓦/367 上面推导是单位的由来,上式是水功率的计算,轴功率再除以效率就得到了. 设轴功率为NE,电机功率为P,K为系数(效率倒数) 电机功率P=NE*K (K在NE不同时有不同取值,见下表) NE≤22 K=1.25 22

流量Q M3/H 扬程H 米H2O 效率N % 渣浆密度A KG/M3 轴功率N KW N=H*Q*A*G/(N*3600) 电机功率还要考虑传动效率和安全系数。一般直联取1,皮带取0.96,安全系数1.2 (3)泵的效率及其计算公式 指泵的有效功率和轴功率之比。Η=PE/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 PE=ΡG QH (W) 或PE=ΓQH/1000(KW) Ρ:泵输送液体的密度(KG/M3) Γ:泵输送液体的重度Γ=ΡG(N/ M3) G:重力加速度(M/S) 质量流量QM=ΡQ (T/H 或 KG/S) (4)水泵的效率介绍 什么叫泵的效率?公式如何? 答:指泵的有效功率和轴功率之比。Η=PE/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。有效功率即:泵的扬程和质量流量及重力加速度的乘积。 PE=ΡG QH W 或PE=ΓQH/1000(KW)

各种工况下风机所需功率计算

各种工况下风机所需功率计算 冶炼用的矿石在冶炼之前对矿石要进行烧结,烧结要用烧结机,而烧结炉则需用烟气主抽离心风机和冷却通离心风机。例如某中型钢厂有两个矿石烧结车间,一个装有62.5m2烧结机5台的车间,共使用离心风机29台,其中用在烧结机上有18台;另一个装有75m2烧结机3台的车间,共使用离心风机90台,其中用在烧结机上有8台,其它离心风机用在通风、除尘、降温及冷却。 离心风机行业生产的抽送烧结烟气的离心鼓离心风机有几十种型号规格,现举出几种型号的性能参数。 由沈阳鼓离心风机厂生产的D1600、D2000抽送烧结烟气的离心鼓离心风机,是为18~24m2烧结机配套的设备。该类鼓离心风机为单级单吸入双支撑结构,用电动机直接驱动。铸铁机壳水平剖分为上下两半,下机壳安装左右铸铁底座上。转子由优质碳素钢主轴、低合金结构钢焊接叶轮及轴套等组成。轴承为滑动轴承。 2、焦炉煤气输送鼓离心风机 焦炭是冶炼钢铁的主要燃料和还原剂,也是高炉中料粒的支撑剂和疏松剂,而炼焦炉内的煤气须经离心风机抽出后,一部分作为炼焦炉的燃料,一部分加压后送往钢厂作为燃料,另一部分用作生产其它副产品。 焦炉煤气输送的典型代表产品是沈阳鼓离心风机厂生产的D1250-31型离心鼓离心风机。其主要结构特点是机组由电动机、齿轮增速机、离心鼓离心风机、润滑系统和仪控系统组成。机壳为水平剖分式结构,轴承箱下面有横纵向定位键槽,以保持机体良好对中,并能适应机壳热膨胀;轴承箱与壳体铸成一体,增强刚度便于拆卸检修。 转子由主轴、3个叶轮、隔套、平衡盘和半联轴器等组成;叶轮采用高强度合金钢焊接结构。 轴承分为支撑轴承和止推轴承两部分,支撑轴承为椭圆瓦滑动轴承,止推轴承为米切尔双面止推滑动轴承。 密封设在级间、叶轮进口、平衡盘外围及轴两端,均为迷宫式拉别令密封。 其主要性能参数:进口流量为1250m3/min,进口压力98.07kPa,出口压力313.82kPa,主轴转速4776r/min,功率3670kW。 3、高炉鼓离心风机

电机功率计算公式

,电机额定功率和实际功率的区别 是指在此数据下电机为最佳工作状态。 额定电压是固定的,允许偏差10%。 电机的实际功率和实际电流是随着所拖动负载的大小而不同; 拖动的负载大,则实际功率和实际电流大; 拖动的负载小,则实际功率和实际电流小。 实际功率和实际电流大于额定功率和额定电流,电机会过热烧毁;实际功率和实际 电流小于额定功率和额定电流,则造成材料浪费。它们的关系是: 额定功率二额定电流IN*额定电压UN*根3*功率因数 实际功率=实际电流IN*实际电压UN*根3*功率因数 ,280KW水泵电机额定电流和启动电流的计算公式和相应规范出处 (1) 280KW电机的电流与极数、功率因素有关一般公式是:电流= ((280KW/380V)/1.73)/0.8.5=501A (2) 启动电流如果直接启动是额定电流的7 倍。 (3)减压启动是根据频敏变阻器的抽头。选用BP4-300WI频敏变阻器启器动启动电流电额定值的2.4 倍。 三,比如一台37KW的绕线电机额定电流如何计算? 电流=额定功率/ V3*电压*功率因数 1、P = V3X U X I X COS? ; 2、I = P/ V3X U XC OS^ ; 3 . I = 37000/ V3X 380X 0.82 四.电机功率计算口诀 计算口诀 三相二百二电机,千瓦三点五安培。 三相三百八电机,一个千瓦两安培。 三相六百六电机,千瓦一点二安培。 三相三千伏电机,四个千瓦一安培。 三相六千伏电机,八个千瓦一安培。 注: 以上都是针对三相不同电压级别,大概口算的口诀,具体参考电机铭比如: 三相22OV电机,功率:11kw,额定电流:11*3.5=38.5A 三相380V电机, 功率:11kw,额定电流:11*2=22A 三相660V电机,功率:110kw,额定电流:110*1.2=132A

电机功率的计算公式

电机功率的计算公式 扬程40米,流量45L/S 也就是每秒要将45L的水提升40米 假设管径是100MM,水的流速是(45*10^-3)/(π/4*10^-2)=5.732M/S 水每秒获得的能量是动能+势能 动能E1=0.5*45*5.732^2=4237J 势能E2=45*9.8*40=17640J 总能量E=E1+E2=21877J 所需功率=21877W=21.877KW 假设加压泵的效率η=0.8 则电机所需功率P=21.877/0.8=27KW 1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ) 其中,P—是电动机轴输出功率 U—是电动机电源输入的线电压 I—是电动机电源输入的线电流 COSφ—是电动机的功率因数 2、电动机的输出功率:指的是电动机轴输出的机械功率 3、输入功率指的是:电源给电动机输入的有功功率: P=√3*U*I*COSφ(KW) 其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I 这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。

皮带输送机电机功率计算公式 p=(kLv+kLQ+_0.00273QH)K KW 其中第一个K为空载运行功率系数,第二个K为水平满载系数,第三个K为附加功率系数。L为输送机的水平投影长度。Q为输送能力T/H.向上输送取加号向下取负号。 有功功率=I*U*cosφ 即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 功率因数的角度怎么预算? 许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。 在功率三角形中,有功功率P与视在功率S的比值,称为功率因数cosφ,其计算公式为:cosφ=P/S=P/[(P2+Q2)^(1/2)] P为有功功率,Q为无功功率。 在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。 1 影响功率因数的主要因素 (1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。 (2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。 (3)供电电压超出规定范围也会对功率因数造成很大的影响。 当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

电机及减速机扭矩与功率计算公式

电机及减速机扭矩与功率关系1.电机功率,转矩,转速的关系: 由物理学定律: 功=力*距离J=F*S ; 再由功率=功/时间=力*距离/时间=力*速度得到: P=J/T=F*S/t=F*V ---公式(1) 转矩(T)=扭力(F)*作用半径(R) T=F*R 推出F=T/R ---公式(2) 线速度(V)=ω*R=2πR*每秒转速(n转/秒) =2πR*每分转速(n转/分)/60 =πR*n(转/分)/30 ---公式(3) 将公式2、3代入公式1得: P=F*V=T/R*πR*n(转/分)/30 =π/30*T*n(转/分) 此处: P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟如果将P的单位换成KW,那么就是如下公式 P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n T=9549.29≈9550P/n 此处:

P 功率单位为k W T 转矩单位N.m n每分钟转速单位转/分钟 2.转矩 2.1转矩相关术语 转矩定义 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩(torsional moment)。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。 转矩可分为静态转矩和动态转矩。 静态转矩是指不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 以下几种常见转矩术语: (1)静止转矩的值为常数,传动轴不旋转; (2)恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; (3)缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; (4)微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是指随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。(1)振动转矩的值是周期性波动的;

(4)水泵和风机的功率计算及风量、风压的附加系数

①通风机(水泵)的机械效率(传动效率):ηm=N/N m ②通风机的(全压)效率或水泵的效率:η=N y/N=P·Q/N(风机) η=N y/N=γ·H·Q/N(水泵) ③通风机(水泵)的电机功率:N m =K×N/ηm= K×N y/(η·ηm)= K×P·Q/(η·ηm) (风机) N m =K×N/ηm= K×N y/(η·ηm)= K×γ·H·Q/ (η·ηm)(水泵) ④通风机或水泵的有效功率(轴出功率):N y= P·Q=γ·H·Q(W) ⑤通风机或水泵的轴功率(轴入功率):N (W) ⑥ 注意:以上公式中,通风机风量Q的单位为m3/h,电机容量安全系数K=1.15~1.5 5.7.2选择通风机时,应按下列因素确定: 1、采用定转速通风机时,通风机的压力附加:10%~15%; 通风机的风量附加:5%~10%; 2、采用变频通风机时,通风机的压力应以系统计算的总压力损失作为额定风压, 但风机电动机的功率应在计算值上再附加:15%~20%; 3、除尘系统,风量附加:10%~15%(正压除尘器系统不计除尘器的漏风量); 风压附加:10%; 4、排烟系统,风量附加:10%~20%; 风压全压应满足最不利环路要求; 5、风机的选用设计工况效率,不应低于风机最高效率的:90%;

5.8.2风管漏风量应根据管道长短及其气密程度,按系统风量百分率计算。 一般送风系统漏风率宜采用:5%~10%; 一般排风系统漏风率宜采用:5%~10%; 除尘系统漏风率宜采用:10%~15%; 5.8.3通风、除尘、空气调节系统各环路的压力损失应进行压力平衡计算。各并联环路压力 损失的相对差额,不宜超过下列数值: 一般送风系统各并联环路压力损失相对差额,不宜超过15%; 一般排风系统各并联环路压力损失相对差额,不宜超过15%; 除尘系统各并联环路压力损失相对差额,不宜超过10%;

相关主题
文本预览
相关文档 最新文档