当前位置:文档之家› 高考物理专题6第14讲机械振动和机械波及光学中常考的2个问题教案

高考物理专题6第14讲机械振动和机械波及光学中常考的2个问题教案

高考物理专题6第14讲机械振动和机械波及光学中常考的2个问题教案
高考物理专题6第14讲机械振动和机械波及光学中常考的2个问题教案

第14讲机械振动和机械波及光学中常考的2个问题

主要题型:填空、作图、计算等.

难度档次:

中档难度或中档难度偏上.主要考查机械振动与机械波、光现象.一般选取3~4个高频考点组成2~3个小题.一般为“关联性综合”.也可“拼盘式组合”.只对考点知识直接使用.只做模块内综合.,

高考热点

名师助考

1.判断波的传播方向和质点振动方向的方法

①上下波法;②特殊点法;③微平移法(波形移动法).

2.利用波传播的周期性,双向性解题

(1)波的图象的周期性:相隔时间为周期整数倍的两个时刻的波形相同,从而使题目的解答出现多解的可能.

(2)波传播方向的双向性:在题目未给出传播方向时,要考虑到波可沿x轴正向或负向传播的两种可能性.

3.光线通过平板玻璃砖后,不改变光线行进方向及光束性质,但会使光线发生侧移,侧移量的大小跟入射角、折射率和玻璃砖的厚度有关.

4.对几何光学方面的问题,应用光路图或有关几何图形进行分析与公式配合,将一个物理问题转化为一个几何问题,能够做到直观、形象、易于发现隐含条件.

课堂笔记

常考问题43 机械振动、机械波与光的折射、全反射的组合

【例1】 (2012·课标全国卷,34)(1)一简谐横波沿x 轴正向传播,t =0时刻的波形如图14-1(a)所示,x =0.30 m 处的质点的振动图线如图(b)所示,该质点在t =0时刻的运动方向沿y 轴________(填“正向”或“负向”).已知该波的波长大于0.30 m ,则该波的波长为________m.

图14-1

(2)一玻璃立方体中心有一点状光源.今在立方体的部分表面镀上不透明薄膜,以致从光源发出的光线只经过一次折射不能透出立方体,已知该玻璃的折射率为 2,求镀膜的面积与立方体表面积之比的最小值.

解析 (1)依据振动图象描述的是同一质点不同时刻的运动特征可知t =0时刻质点运动方向沿y 轴正

向.因为横波沿x 轴正向传播且波长大于0.30 m ,则0.3 m =38

λ,解得λ=0.8 m(对应P 点),如下图所示.

(2)如图,考虑从玻璃立方体中心O 点发出的一条光线,假设它斜射到玻璃立方体上表面发生折射.根据折射定律有

n sin θ=sin α①

式中,n 是玻璃的折射率,入射角等于θ,α是折射角.现假设A 点是上表面面积最小的不透明薄膜

边缘上的一点.由题意,在A 点刚好发生全反射,故αA =π2

② 设线段OA 在立方体上表面的投影长为R A ,由几何关系有sin θA =

R A

R 2A +? ????a 22③ 式中a 为玻璃立方体的边长.由①②③式得R A =

a 2 n 2-1④ 由题给数据得R A =a

2

⑤ 由题意,上表面所镀的面积最小的不透明薄膜应是半径为R A 的圆.所求的镀膜面积S ′与玻璃立方体

的表面积S 之比为S ′S =6πR 2

A 6a 2⑥ 由⑤⑥得S ′S =π4

.⑦ 答案 (1)正向 0.8 (2)π4

(1)如图14-2所示,图甲为某一列波在t =1.0 s 时的图象,图乙为参与该波动的P 质点的

振动图象.

①试确定波的传播方向;

②求该波的波速v ;

③在图甲中画出3.5 s 时的波形图(至少画一个波长);

④求再经过3.5 s 时P 质点的路程s 和位移.

图14-2

图14-3

(2)如图14-3所示,横截面为14

圆周的柱状玻璃棱镜AOB ,其半径为R ,有一束单色光垂直于OA 面射入棱镜,玻璃的折射率为n = 3,光在真空中的速度为c .试求:

①该单色光距离OB 至少多远时,它将不能从AB 面直接折射出来.

②满足①问中的单色光在棱镜中传播的时间.

借题发挥

1.对波的理解

①各质点都依次重复波源的简谐振动,但后一质点总要滞后前一质点.

②波向前传播过程中,波头的形状相同.

③波的“总体形式”向前做匀速直线运动,即匀速向前传播.

④任一个质点的起振方向都与振源的起振方向相同.

⑤机械波的波速v 取决于介质,与频率无关.

2.巧解波动图象与振动图象相结合的问题

求解波动图象与振动图象综合类问题可采用“一分、一看、二找”的方法

(1)分清振动图象与波动图象.此问题最简单,只要看清横坐标即可,横坐标为x则为波动图象,横坐标为t则为振动图象.

(2)看清横、纵坐标的单位.尤其要注意单位前的数量级.

(3)找准波动图象对应的时刻.

(4)找准振动图象对应的质点.

3.光的折射和全反射问题的解题技巧

(1)在解决光的折射问题时,应根据题意分析光路,即画出光路图,找出入射角和折射角,然后应用公式来求解,找出临界光线往往是解题的关键.

(2)分析全反射问题时,先确定光是否由光密介质进入光疏介质、入射角是否大于临界角,若不符合全反射的条件,则再由折射定律和反射定律确定光的传播情况.

(3)在处理光的折射和全反射类型的题目时,根据折射定律及全反射的条件准确作出几何光路图是基础,利用几何关系、折射定律是关键.

课堂笔记

常考问题44 光的干涉、衍射、电磁波与机械波的组合

【例2】 (1)以下叙述正确的是________.

A .波速、波长和频率的关系式v =λf ,既适用于声波也适用于光波

B .麦克斯韦提出光是一种电磁波并通过实验证实了电磁波的存在

C .用单色光进行双缝干涉实验中,减小屏与双缝之间的距离,屏上干涉条纹的间距增大

D .医学上利用激光做“光刀”来切开皮肤,“焊接”剥落的视网膜,是利用激光平行度好的特点

图14-4

(2)一列简谐横波沿x 轴正方向传播,t =0时刻的波形如图14-4所示,经0.3 s 时间质点a 第一次到达波峰位置,则这列波的传播速度为________m/s ,质点b 第一次出现在波峰的时刻为________s.

(3)如图14-5甲所示,O 为振源,OP 之间的距离为x =4 m ,t =0时刻O 点由平衡位置开始振动,产生向右沿直线传播的简谐横波.图乙为从t =0时刻开始描绘的P 点的振动图象.求波源O 的起振方向和波长.

图14-5

解析 (1)麦克斯韦提出光是一种电磁波,通过实验证实了电磁波存在的是赫兹,B 错误;用单色光进行双缝干涉实验中,减小屏与双缝之间的距离L ,屏上干涉条纹的间距Δx =L d λ减小,C 错误;医学上利用激光做“光刀”来切开皮肤,“焊接”剥落的视网膜,是利用激光亮度高的特点,D 错误.

(2)因简谐横波沿x 轴正方向传播,所以质点a 第一次到达波峰位置需要的时间为34

T =0.3 s ,T =0.4 s ,从图象可看出波长λ=4 m ,根据v =λT

可得v =10 m/s ;质点b 第一次出现在波峰的时间为t ,则vt =5,t =0.5 s.

(3)由图乙可知,波自O 传播到P 的时间为2 s ,质点P 经2 s 后起振,起振方向为负方向,可知波源O 的起振方向为负方向.

波速为v =x t

=2 m/s ,

由图乙知:32

T =6 s ,解得周期T =4 s ;所以波长λ=vT =8 m. 答案 (1)A (2)10 0.5 (3)负方向 8 m

(1)在光的单缝衍射实验中可观察到清晰的亮暗相间的图样,如图14-6甲、乙两幅图中属

于光的单缝衍射图样的是________(填“甲”或“乙”);在电磁波发射技术中,使电磁波随各种信号而改变的技术叫调制,调制分调幅和调频两种,在丙、丁两幅图中表示调幅波的是________(填“丙”或“丁”).

图14-6

(2)以下说法正确的是( ).

A.按照麦克斯韦的电磁场理论,变化的电场周围产生磁场,变化的磁场周围产生电场

B.光的偏振现象说明光波是纵波

C.从地面上观察,在高速运行的飞船上,一切物理、化学过程和生命过程都变慢了

D.玻璃内气泡看起来特别明亮,是因为光线从气泡中射出的原因

(3)一列沿着x轴正方向传播的横波,在t=0时刻的波形如图14-7甲所示.图乙是图甲中某质点的振动图象.

①该波的波速为________m/s;图乙表示图甲中________(从K、L、M、N中选填)质点的振动图象.

②写出质点L做简谐运动的表达式.

图14-7,借题发挥

干涉现象和衍射现象的比较

单色光的衍射条纹与干涉条纹都是明暗相间分布的,但衍射条纹中间亮纹最宽,两侧条纹逐渐变窄变暗,干涉条纹则是等间距,亮度相同,白光的衍射条纹都是彩色的.

电磁波与机械波的区别

(1)电磁波可以在真空中传播,也可以在介质中传播.

(2)机械波的波速仅取决于介质,而电磁波的波速与介质及波的频率均有关系.

(3)机械波可以是横波也可以是纵波,电磁波只能是横波.

课堂笔记

A.X射线穿透物质的本领比γ射线更强

B.红光由空气进入水中,波长变长、颜色不变

C.狭义相对论认为物体的质量与其运动状态有关

D.观察者相对于频率一定的声源运动时,接收到声波的频率可能发生变化

(2)图14-8甲为一简谐横波在t=1.0 s时的图象,图乙为x=4 m处的质点P的振动图象.试求:

图14-8

①该波的波速.

②从图甲开始再经过3.5 s时,质点P的位移大小;在此3.5 s时间内质点P通过的路程.

图14-9

2.(2012·山东卷,37)(1)一列简谐横波沿x轴正方向传播,t=0时刻的波形如图14-9所示,介质中质点P、Q分别位于x=2 m、x=4 m处.从t=0时刻开始计时,当t=15 s时质点Q刚好第4次到达波峰.

①求波速.

②写出质点P做简谐运动的表达式(不要求推导过程).

图14-10

(2)如图14-10所示,一玻璃球体的半径为R,O为球心,AB为直径.来自B点的光线BM在M点射出,出射光线平行于AB,另一光线BN恰好在N点发生全反射.已知∠ABM=30°,求:

①玻璃的折射率.

②球心O到BN的距离.

图14-11

3.(1)如图14-11所示,一细束白光由空气斜射到横截面为矩形的玻璃砖abdc的ab边上(入射光的延长线沿Od方向),则入射光________.

A.不可能在ab界面发生全反射

B.可能射到bd面,并在bd界面发生全反射

C.一定能到达cd面,并可能在cd界面发生全反射

D.一定能到达cd面并从cd射出,射出的各种色光一定互相平行

E.光进入玻璃砖后的速度减小

图14-12

(2)一列简谐横波,在t=0时的波动图象如图14-12所示,此时波恰好传播到A点,再经过1.0 s,Q点正好完成第一次全振动.试求:

①波速v的大小;

②规范画出第1 s内质点P的振动图象(要求在坐标轴上标明有关的物理量、单位和数据).

4.(1)①现有毛玻璃屏A、双缝B、白光光源C、单缝D和透红光的滤光片E等光学元件,要把它们放在图14-13所示的光具座上组装成双缝干涉装置,用以测量红光的波长.

将白光光源C放在光具座最左端,依次放置其他光学元件,由左至右,表示各光学元件的字母排列顺序应为C、________、A.

图14-13

②本实验的步骤有:

a.取下遮光筒左侧的元件,调节光源高度,使光束能直接沿遮光筒轴线把屏照亮;

b.按合理顺序在光具座上放置各光学元件,并使各元件的中心位于遮光筒的轴线上;

c.用米尺测量双缝到屏的距离;

d.用测量头(其读数方法同螺旋测微器)测量数条亮纹间的距离.

在操作步骤b时还应注意____________________________________________________

________________________________________________________________________.

(2)如图14-14所示,实线为一列简谐波在t=0时刻的波形,a点振动方向沿y轴正向,经t=1 s 波形为图中虚线,求波的传播速度.

图14-14

5.(2012·青岛模考)(1)有一弹簧振子在水平方向上的BC 之间做简谐运动,已知BC 间的距离为20 cm ,

振子在2 s 内完成了10次全振动.若从某时刻振子经过平衡位置时开始计时(t =0),经过14

周期振子有正向最大加速度.

①求振子的振幅和周期;

②在图14-15甲中作出该振子的位移-时间图象;

③写出振子的振动方程.

(2)如图14-15乙所示是一透明的圆柱体的横截面,其半径R =10 3 cm ,折射率为 3,AB 是一条直径,今有一束平行光沿AB 方向射向圆柱体,求:

①光在圆柱体中的传播速度为________m/s ;

②距离直线AB 为________cm 的入射光线,折射后恰经过B 点.

甲 乙

图14-15

【常考问题】 预测1 解析 (1)①从题图乙中可以看出,t =1.0 s 时,P 点经过平衡位置向下振动,由题图甲可以判断出此波沿-x 方向传播.

②由题图甲知λ=4 m ,由题图乙知T =1.0 s ,所以波速v =λT

4.0 m/s.

③经3.5 s ,波传播的距离Δx =v Δt =14 m =? ??

??12+3λ,故此波再经3.5 s 时的波形只需将波形向-x 方向平移2 m 即可,如图所示.

④求路程:因为n =Δt T 2=3.512

=7, 所以路程s =2 An =2×0.2×7 m=2.8 m ,

求位移:由于波动的重复性,经历时间为周期的整数倍时,位移不变.所以只需考查从图示时刻P 质点经T 2时的位移即可,所以经3.5 s 质点P 的位移仍为零.

(2)①临界角sin C =1n =33

, 光射到AB 面上的入射角等于临界角时,光刚好发生全反射而不能从AB 面直接射出,此时该单色光到OB 的距离的x =R sin C =33

R , ②满足①问中的单色光在棱镜中入射时的路程

s 1=R cos C =R 1-sin 2C =63

R , 反射时的路程s 2=R sin C sin 2C

, 光在棱镜中的传播速度v =c n ,

故光在棱镜中的传播时间为t =s 1+s 2v =76nR 12c

. 答案 (1)①x 轴负方向 ②4.0 m/s ③如解析图所示

④2.8 m,0 (2)①答案见解析 ②76nR 12c

预测2 (1)乙 丙 (2)AC (3)①0.5 N

②y =-0.5 sin π2

t (m) 【随堂演练】

1.解析 (2)①由题图甲知λ=4 m.

由图乙知T =2 s ,v =λT

=2 m/s. ②n =t T =74

,再经过3.5 s 时,P 点到达负的最大位移处,位移大小为s 1=0.2 m ,路程为4nA =1.4 m. 答案 (1)CD (2)①2 m/s ②0.2 m ;1.4 m

2.解析 (1)根据Δx =L d λ,因红光波长较长,故相邻红光条纹间距大,A 错;雨后天空出现的彩虹是光的折射和色散综合的结果,B 错;水面油膜呈现彩色条纹是白光在油膜前后两表面的反射光相遇叠加的结果,属于干涉,故C 正确;医学上用光导纤维制成内窥镜,应用的是全反射现象,D 正确.

(2)设临界角为C ,则由sin C =1n =12

可得C =45°. (3)①依题意,周期T =2 s ,

波速v =λT =0.82

m/s =0.4 m/s. ②因为此列波周期为2 s ,所以单摆振动的周期也为2 s ,根据周期公式T =2πl g

,得单摆的摆长

l =gT 2

4π2=40

4π2m =100 cm. 答案 (1)CD (2)45° (3)①0.4 m/s ②100 cm 解析 (1)①设简谐横波的波速为v ,波长为λ,

周期为T ,由图象知,λ=4 m .由题意知t =3T +34

T ① v =λT

② 联立①②式,代入数据得v =1 m/s ③

②质点P 做简谐运动的表达式为y =0.2 sin(0.5 πt )m ④

(2)①设光线BM 在M 点的入射角为i ,折射角为r ,由几何知识可知,i =30°,r =60°,根据折射

定律得n =sin r sin i

⑤ 代入数据得n =3⑥

②光线BN 恰好在N 点发生全反射,则∠BNO 为临界角C

sin C =1n

⑦ 设球心到BN 的距离为d ,由几何知识可知

d =R sin C ⑧

联立⑥⑦⑧式得

d =33

R ⑨ 答案 (1)①1 m/s ②y =0.2 sin(0.5 πt )m (2)① 3 ②33

R 3.解析 (1)根据全反射的条件(光由光密介质进入光疏介质且入射角大于等于临界角),入射光不可能在ab 界面发生全反射;入射光进入玻璃砖后,折射光线向法线靠近,不可能射到bd 面上,一定射到cd 面上;由于其入射角小于临界角,所以不可能在cd 界面发生全反射,一定能从cd 面射出,射出的各种色光一定互相平行;光进入玻璃砖后的速度减小.

(2)①由图象可知,波长λ=4 m ,

对于周期有5T 4

=1.0 s , 解得T =0.8 s ,

由于波速v =λT

联立解得v =5 m/s.

②如图所示

答案 (1)ADE (2)①5 m/s ②见解析

4.解析 (1)①滤光片E 是从白光中选出单色红光,单缝屏是获取线光源,双缝屏是获得相干光源,最后成像在毛玻璃屏.所以排列顺序为:C 、E 、D 、B 、A .

②在操作步骤b 时应注意的事项有:放置单缝、双缝时,必须使缝平行;单缝、双缝间距离大约为5~10 cm ;要保证光源、滤光片、单缝、双缝和光屏的中心在同一轴线上.

(2)由于a 点振动方向为沿y 轴正向,故波的传播方向为沿x 轴负向

0~1 s 时间段内波向x 轴负向传播的距离为s =()4n +3m(其中n =0、1、2…)

故波的传播速度为v =s t =

4n +31

=(4n +3)m/s(其中n =0、1、2…),方向为沿x 轴负向 答案 (1)①E 、D 、B

②放置单缝、双缝时,必须使缝平行;单缝、双缝间距离大约为5~10 cm ;要保证光源、滤光片、单缝、双缝和光屏的中心在同一轴线上

(2)(4n +3)m/s(n =0、1、2…) 方向沿x 轴负向

5.解析 (1)①振子的振幅A =10 cm ,振子的周期T =0.2 s

②位移-时间图象如图a 所示.

③y =-A sin ωt =-0.1 sin 10πt (m)

(2)①由n =c v 可知光在圆柱体中的传播速度为:v =c n =3×108 m/s ,②如图b 所示α=2β,sin αsin β

=n ,而d =R sin α ,

由以上三式可求得:d =15 cm.

答案 (1)①10 cm 0.2 s ②见解析

③y =-0.1 sin 10πt (m) (2)①3×108

②15

大学物理-机械振动习题-含答案

大学物理-机械振动习题-含答案

t (s ) v (m.s -1) 12m v m v o 1.3题图 第三章 机械振动 一、选择题 1. 质点作简谐振动,距平衡位置2。0cm 时, 加速度a=4.0cm 2 /s ,则该质点从一端运动到另一端的时间为( C ) A:1.2s B: 2.4s C:2.2s D:4.4s 解: s T t T x a x a 2.2422,2 222,22===∴== ===ππ ω πωω 2.一个弹簧振子振幅为2 210m -?, 当0t =时振子在2 1.010m x -=?处,且向 正方向运动,则振子的振动方 程是:[ A ] A :2 210cos()m 3 x t πω-=?-; B :2 210cos()m 6x t π ω-=?-; C :2 210cos()m 3 x t π ω-=?+ ; D : 2210cos()m 6 x t π ω-=?+; 解:由旋转矢量可以得出振动的出现初相为:3 π- 3.用余弦函数描述一简 谐振动,若其速度与时间(v —t )关系曲线 如图示,则振动的初相位为:[ A ] 1.2题图 x y o

A :6π; B :3π; C :2 π ; D :23π; E :56π 解:振动速度为:max sin()v v t ω?=-+ 0t =时,01sin 2?=,所以06π?=或0 56 π ?= 由知1.3图,0t =时,速度的大小 是在增加,由旋转矢量图知,旋转矢量在第一象限内,对应质点的运动是由正最大位移向平衡位置运动,速度是逐渐增加的,旋转矢量在第二象限内,对应质点的运动是由平衡位置向负最大位移运动,速度是逐渐减小的,所以只有0 6 π?=是符合条件的。 4.某人欲测钟摆摆长,将钟摆摆锤上移1毫米,测得此钟每分快0。1秒,则此钟摆的摆长为( B ) A:15cm B:30cm C:45cm D:60cm 解:单摆周期 ,2g l T π=两侧分别对T , 和l 求导,有: cm mm T dT dl l l dl T dT 3060) 1.0(21 21,21=-?-==∴= 二、填空题 1.有一放置在水平面上的弹簧振子。振幅 A = 2.0×10-2m 周期 T = 0.50s , 3 4 6 5 2 1 x /1 2题图 x y

高中物理机械振动知识点总结

一. 教案内容: 第十一章机械振动 本章知识复习归纳 二. 重点、难点解读 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-kx,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。 1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在圆弧切线 方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表

高二物理第九章机械振动-单摆知识点总结练习题

核心出品 必属精品 免费下载 三、单摆 1、单摆:在细线的一端拴一小球,另一端固定在悬点上,如果悬挂小球的细线 的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置就叫做单摆 2、单摆是实际摆的理想化模型 3摆长:摆球重心到摆动圆弧圆心的距离 L=L0+R 4偏角:摆球摆到最高点时,细线与竖直方向的夹角(偏角一般小于5°) 2、单摆的回复力:平衡位置是最低点 ,kx F -=回 回复力是重力沿切线方向的分力,大小为mg sin θ,方向沿切线指向平衡位置 单摆的周期只与重力加速度g 以及摆长L 有关。所以,同一个单摆具有等时性

重力加速度g:由单摆所在的空间位置决定。 纬度越低,高度越高,g 值就越小。不同星球上g 值也不同。 单摆作简谐运动时的动能和重力势能在发生相互转化,但机械能的总量保持不变,即机械能守恒。 小球摆动到最高点时的重力势能最大,动能最小;平衡位置时的动能最大,重力势能最小。 若取最低点为零势能点,小球摆动的机械能等于最高点时的重力势能,也等于平衡位置时的动能。 例一:用下列哪些材料能做成单摆( AF ) 悬线:细、长、伸缩可以忽略摆球:小而重(即密度大) A.长为1米的细线 B 长为1米的细铁丝 C.长为0.2米的细丝线 D.长为1米的麻绳 E.直径为5厘米的泡沫塑料球 F.直径为1厘米的钢球 G.直径为1厘米的塑料球 H.直径为5厘米的钢球 例2.一摆长为L 的单摆,在悬点正下方5L/9处有一钉子,则这个单摆的周期是多少? 例3、有人利用安装在气球载人舱内的单摆来确定气球的高度。已知该单摆在海平面处的周期是T 0,当气 球停在某一高度时,测得该单摆周期为T 。求该气球此时离海平面的高度h 。把地球看作质量均匀分布的 g L T π 35=

高中物理选修3-4全套教案(人教版)

高二物理选修3-4教案 郑伟文 11.1简谐运动 教学目的 (1)了解什么是机械振动、简谐运动 (2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力 教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律 教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化 课型:启发式的讲授课 教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源 教学过程(教学方法) 教学内容 [引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。 1.机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动? [讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征? [演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)] {提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? {归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。 2.简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。

高中物理选修-4知识点机械振动与机械波解析

机械振动与机械波 简谐振动 一、学习目标 1.了解什么是机械振动、简谐运动 2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 二、知识点说明 1.弹簧振子(简谐振子): (1)平衡位置:小球偏离原来静止的位置; (2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械 运动,这样的系统叫做弹簧振子。 (3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。 2.弹簧振子的位移—时间图像 弹簧振子的s—t图像是一条正弦曲线,如图所示。 3.简谐运动及其图像。 (1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 (2)应用:心电图仪、地震仪中绘制地震曲线装置等。 三、典型例题

例1:简谐运动属于下列哪种运动( ) A.匀速运动 B.匀变速运动 C.非匀变速运动 D.机械振动 解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。故A、B错,C正确。简谐运动是最简单的、最基本的机械振动,D正确。 答案:CD 简谐运动的描述 一、学习目标 1.知道简谐运动的振幅、周期和频率的含义。 2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。 二、知识点说明 1.描述简谐振动的物理量,如图所示: (1)振幅:振动物体离开平衡位置的最大距离,。 (2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。 (3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。 (4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。 (5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。 (6)相位:用来描述周期性运动在各个时刻所处的不同状态。 2.简谐运动的表达式:。

大学物理习题_机械振动机械波

机械振动机械波 一、选择题 1.对一个作简谐振动的物体,下面哪种说法是正确的 (A )物体处在运动正方向的端点时,速度和加速度都达到最大值; (B )物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C )物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D )物体处在负方向的端点时,速度最大,加速度为零。 2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为 (A )φωsin A v -=; (B )φωsin A v =; (C )φωcos A v -=; (D )φωcos A v =。 3.一物体作简谐振动,振动方程为??? ? ? +=4cos πωt A x 。在4T t =(T 为周期)时刻,物 体的加速度为 (A )2221ωA - ; (B )2221 ωA ; (C )232 1 ωA - ; (D )2321ωA 。 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相 (A )落后2π; (B )超前2π ; (C )落后π; (D )超前π。 5.一质点沿x 轴作简谐振动,振动方程为?? ? ?? +?=-ππ312cos 10 42 t x (SI )。从0=t 时刻 起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 第题图

(A )s 8/1; (B )s 4/1; (C )s 2/1; (D )s 3/1。 6.一个质点作简谐振动,振幅为 A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运 动,代表此简谐振动的旋转矢量图为 7.一个简谐振动的振动曲线如图所示。此振动的周期为 (A )s 12; (B )s 10; (C )s 14; (D )s 11。 8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是 (A )动能为零,势能最大; (B )动能为零,机械能为零; (C )动能最大,势能最大; (D )动能最大,势能为零。 9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J 。当振子处于最大位移的1/4时,此时的动能大小为 (A )250J ; (B )750J ; (C )1500J ; (D ) 1000J 。 10.当质点以频率ν作简谐振动时,它的动能的变化频率为 (A )ν; (B )ν2 ; (C )ν4; (D ) 2 ν。 11.一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是 (A )T /4; (B )T/2; (C )T ; (D )2T 。 x (A ) (B )(C ) (D ) )s 2 1 -

高中物理:《简谐运动》教学设计

高中物理-《简谐运动》教学设计 一、设计思路 人教版老教材从动力学特征的角度定义简谐运动,不符合学生用运动学特征对质点运动进行分类的认知习惯。人教版新教材把“位移与时间的关系遵从正弦函数规律的振动”称为简谐运动,尊重学生的认知规律,有利于简谐运动的教学。正因为如此,通过科学探究,让学生认识弹簧振子的振动图象是一条正弦曲线,是本节课教学的关键所在。 本节课的教学以“探究弹簧振子的振动图象”为线索而展开,将学生的认知过程和探究过程合理链接,实现了物理知识和科学方法、定性探究和定量探究、实验探究和理论探究的有机融合,让学生在学习物理知识的同时应用物理思想方法,体验科学探究的一般过程:“提出问题→制定方案→收集数据→处理数据→猜想结论→分析论证→得出结论→误差分析”。 本节课的实验探究和理论探究都是教师引导下的学生探究,主要引导方式:问题链。两个探究实验分别是水摆和模拟频闪照片。设计水摆实验的目的是:(1)定性验证学生对振动图像图样的猜想;(2)让学生理解振动图象“时间轴”的展开过程。设计模拟频闪照片实验的目的是:(1)让学生体验利用图象处理数据的方法;(2)让学生经历利用假设法定量论证振动图象函数性质的过程。水摆是用饮料瓶制作而成的,实验中利用毛笔书法水写布代替照相机的底片。模拟频闪照片的实验原理也很简单,就是利用视频播放软件获得弹簧振子振动视频的每一帧照片,根据照片记录不同时刻振子的位移并绘制振动图像。从实验结果上看,这两个实验都没有利用位移传感器精确,但这样做可以让学生建立一种观点:科学探究并不是遥不可及的,它不一定要借助很先进的工具和仪器,最简单易行的方法也是好方法。 二、教学目标 1.知识与技能 (1)知道弹簧振子理想模型和简谐运动的运动学定义; (2)知道弹簧振子的振动图象是一条正弦曲线,并理解振动图象的物理意义; (3)理解振动图象“时间轴”的展开过程,会将底片的位移转换成振动时间。2.过程与方法 (1)引导学生经历探究“弹簧振子振动图象”的过程,发展学生“猜想假设”、“设计实验”、“处理数据”、“分析论证”和“误差分析”的能力,培养学生思维的灵活性和

高中物理机械振动机械波习题含答案解析

机械振动、机械波 第一部分五年高考题荟萃 2009年高考新题 一、选择题 1.(09·全国Ⅰ·20)一列简谐横波在某一时刻的波形图如图1所示,图中P、Q两质点的横坐标分别为x=1.5m 和x=4.5m。P点的振动图像如图2所示。 在下列四幅图中,Q点的振动图像可能是(BC ) 解析:本题考查波的传播.该波的波长为4m.,PQ两点间的距离为3m..当波沿x轴正方向传播时当P在平衡位置向上振动时而Q点此时应处于波峰,B正确.当沿x轴负方向传播时,P点处于向上振动时Q点应处于波谷,C对。 2.(09·全国卷Ⅱ·14)下列关于简谐振动和简谐波的说法,正确的是(AD ) A.媒质中质点振动的周期一定和相应的波的周期相等 B.媒质中质点振动的速度一定和相应的波的波速相等 C.波的传播方向一定和媒质中质点振动的方向一致 D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍 解析:本题考查机械波和机械振动.介质中的质点的振动周期和相应的波传播周期一致A正确.而各质点做简谐

运动速度随时间作周期性的变化,但波在介质中是匀速向前传播的,所以不相等,B错.对于横波而言传播方向和振动方向是垂直的,C错.根据波的特点D正确。 3.(09·北京·15)类比是一种有效的学习方法,通过归类和比较,有助于掌握新知识,提高学习效率。在类比过程中,既要找出共同之处,又要抓住不同之处。某同学对机械波和电磁波进行类比,总结出下列内容,其中的是( D ) 不正确 ... A.机械波的频率、波长和波速三者满足的关系,对电磁波也适用 B.机械波和电磁波都能产生干涉和衍射现象 C.机械波的传播依赖于介质,而电磁波可以在真空中传播 D.机械波既有横波又有纵波,而电磁波只有纵波 解析:波长、波速、频率的关系对任何波都是成立的,对电磁波当然成立,故A选项正确;干涉和衍射是波的特性,机械波、电磁波都是波,这些特性都具有,故B项正确;机械波是机械振动在介质中传播形成的,所以机械波的传播需要介质而电磁波是交替变化的电场和磁场由近及远的传播形成的,所以电磁波传播不需要介质,故C项正确;机械波既有横波又有纵波,但是电磁波只能是横波,其证据就是电磁波能够发生偏振现象,而偏振现象是横波才有的,D项错误。故正确答案应为D。 4.(09·北京·17)一简谐机械波沿x轴正方向传播,周期为T,波长为 。若在x=0处质点的振动图像如右图所示,则该波在t=T/2时刻的波形曲线为( A ) 解析:从振动图上可以看出x=0处的质点在t=T/2时刻处于平衡位置,且正在向下振动,四个选项中只有A图符合要求,故A项正确。 5.(09·上海物理·4)做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的( C )A.频率、振幅都不变B.频率、振幅都改变 C.频率不变、振幅改变D.频率改变、振幅不变

大学物理(第四版)课后习题及答案机械振动

13 机械振动解答 13-1 有一弹簧振子,振幅A=2.0×10-2 m ,周期T=1.0s ,初相?=3π/4。试写出它的运动方程,并做出x--t 图、v--t 图和a--t 图。 13-1 分析 弹簧振子的振动是简谐运动。振幅A 、初相?、角频率ω是简谐运动方程 ()?ω+=t A x cos 的三个特征量。求运动方程就 要设法确定这三个物理量。题中除A 、?已知外, ω可通过关系式T π ω2= 确定。振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同。 解 因T π ω2=,则运动方程 ()?? ? ??+=+=?π?ωt T t A t A x 2cos cos 根据题中给出的数据得 ]75.0)2cos[()100.2(12ππ+?=--t s m x 振子的速度和加速度分别为 ]75.0)2sin[()104(/112πππ+??-==---t s s m dt dx v πππ75.0)2cos[()108(/112222+??-==---t s s m dt x d a x-t 、v-t 及a-t 图如图13-l 所示 13-2 若简谐运动方程为?? ???? +=-4)20(cos )01.0(1ππt s m x ,求:(1)振幅、频率、角频率、周期和 初相;(2)t=2s 时的位移、速度和加速度。 13-2 分析 可采用比较法求解。 将已知的简谐运动方程与简谐运动方程的一般形式()?ω+=t A x cos 作比较,即可求得各特征量。 运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果。 解 (l )将]25.0)20cos[()10.0(1ππ+=-t s m x 与()?ω+=t A x cos 比较后可得:振幅A= 0.10 m ,角频率120-=s πω,初相π?25.0=,则周期 s T 1.0/2==ωπ,频率Hz T 10/1==ν。 (2)t= 2s 时的位移、速度、加速度分别为 m m x 21007.7)25.040cos()10.0(-?=+=ππ )25.040sin()2(/1πππ+?-==-s m dt dx v

大学物理 机械振动与机械波

大学物理单元测试 (机械振动与机械波) 姓名: 班级: 学号: 一、选择题 (25分) 1 一质点作周期为T 的简谐运动,质点由平衡位置正方向运动到最大位移一半处所需的最短时间为( D ) (A )T/2 (B )T/4 (C)T/8 (D )T/12 2 一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的( E ) (A )7/16 (B )9/16 (C )11/16 (D )13/16 (E )15/16 3 一质点作简谐运动,其振动方程为 )3 2cos( 24.0π π + =t x m, 试用旋转矢量法求出质点由初始状态运动到 x =-0.12 m,v <0的状态所经过的最短时间。 (C ) (A )0.24s (B ) 3 1 (C )3 2 (D )2 1 4 一平面简谐波的波动方程为:)(2cos λνπx t A y - =,在ν 1 = t 时刻,4 31λ= x 与 4 2λ = x 两处质点速度之比:( B ) (A )1 (B )-1 (C )3 (D )1/3 5 一平面简谐机械波在弹性介质中传播,下述各结论哪个正确?( D ) (A)介质质元的振动动能增大时,其弹性势能减小,总机械能守恒. (B)介质质元的振动动能和弹性势能都作周期性变化,但两者相位不相同 (C)介质质元的振动动能和弹性势能的相位在任一时刻都相同,但两者数值不同. (D)介质质元在其平衡位置处弹性势能最大. 二、填空题(25分) 1 一弹簧振子,弹簧的劲度系数为0.3 2 N/m ,重物的质量为0.02 kg ,则这个系统的固有频率为____0.64 Hz ____,相应的振动周期为___0.5π s______. 2 两个简谐振动曲线如图所示,两个简谐振动的频率之比 ν1:ν2 = _2:1__ __,加速度最大值之比a 1m :a 2m = __4:1____,初始速率之比 v 10 :v 20 = _2:1__ ___.

人教版高中物理选修3教案 简谐运动

简谐运动 教学目的 (1)了解什么是机械振动、简谐运动 (2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括能力 教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律 教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变化 课型:启发式的讲授课 教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源 教学过程(教学方法) 教学内容 [引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。 1.机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动? [讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征? [演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)]

{提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? {归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。 2.简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。 (1)弹簧振子 演示实验:气垫弹簧振子的振动 [讨论] a.滑块的运动是平动,可以看作质点 b.弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子 c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力的理想条件下弹簧振子的运动。 (2)弹簧振子为什么会振动? 物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。 回复力可以是弹力,或其它的力,或几个力的合力,或某个力的分力。 在O点,回复力是零,叫振动的平衡位置。 (3)简谐运动的特征 弹簧振子在振动过程中,回复力的大小和方向与振子偏离平衡位置的位移有直接关系。在研究机械振动时,我们把偏离平衡位置的位移简称为位移。 3、简谐运动的位移图象——振动图象 简谐运动的振动图象是一条什么形状的图线呢?简谐运动的位移指的是什么位移?(相对平衡位置的位移)

高二物理机械振动练习题

《机械振动》练习题 1.图甲是利用沙摆演示简谐运动图象的装置.当盛沙的漏斗下面的薄木板被水平匀速拉出时,做简谐运动的漏斗漏出的沙在板上形成的曲线显示出沙摆的振动位移随时间的变化关系.已知木板被水平拉动的速度为 0.20m/s ,图乙所示的一段木板的长度为 0.60m ,则这次实验沙摆的摆长为(取g = π2)(A ) A .0.56m B .0.65m C .1.00m D .2.25m 2.如图所示,在质量为m 0的无下底的木箱顶部用一轻弹簧悬挂质量为m (m 0>m )的A 、B 两物体,箱子放在水平地面上,平衡后剪断A 、B 间的连线,A 将做简谐运动,当A 运动到最高点时,木箱对地面的压力为(A ) A .m 0g B .(m 0 - m )g C .(m 0 + m )g D .(m 0 + 2m )g 3.如图所示为一个竖直放置的弹簧振子物体沿竖直方向在A 、B 之间做简谐运动,O 点为平衡位置,A 点位置恰好为弹簧的原长。物体由C 点运动到D 点(C 、D 两点未在图上标出)的过程中,弹簧的弹性势能增加了3.0J ,重力势能减少了2.0J 。对于这段过程有如下说法: ①物体的动能增加1.0J ②C 点的位置可能在平衡位置以上 ③D 点的位置可能在平衡位置以上 ④物体经过D 点时的运动方向可能指向平衡位置 以上说法正确的是(A ) A .②和④ B .②和③ C .①和③ D .只有④ 4.⑴在用单摆测定重力加速度的实验中,下列措施中必要的或做法正确的是______.(选填下列措施前的序号) A .为了便于计时观察,单摆的摆角应尽量大些 B .摆线长应远远大于摆球直径 C .摆球应选择密度较大的实心金属小球 D .用停表测量周期时,应测量单摆20~30次全振动的时间,然后计算周期,而不能把只测一次全振动时间当作周期 E .将摆球和摆线平放在桌面上,拉直后用米尺测出摆球球心到摆线某点O 间的长度作为摆长,然后将O 点作为悬点 ⑵某同学在一次用单摆测重力加 速度的实验中,测量5种不同摆长与单摆的振动周期的对应情况,并将记 录的结果描绘在如图所示的坐标系中.图中各坐标点的标号分别对应实验中 5种不同摆长的情况.在处理数据时,该同学实验中的第_____数据点应当m B A m 甲 乙 /m 0000

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

高中物理选修3-4全套精品教案

高中物理选修3-4全套精品教案 11.1简谐运动 教学目的 (1)了解什么是机械振动、简谐运动 (2)正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。 2.能力培养通过观察演示实验,概括出机械振动的特征,培养学生的观察、概括 能力 教学重点:使学生掌握简谐运动的回复力特征及相关物理量的变化规律 教学难点:偏离平衡位置的位移与位移的概念容易混淆;在一次全振动中速度的变 化 课型:启发式的讲授课 教具:钢板尺、铁架台、单摆、竖直弹簧振子、皮筋球、气垫弹簧振子、微型气源 教学过程(教学方法) 教学内容 [引入]我们学习机械运动的规律,是从简单到复杂:匀速运动、匀变速直线运动、平 抛运动、匀速圆周运动,今天学习一种更复杂的运动——简谐运动。 1.机械振动 振动是自然界中普遍存在的一种运动形式,请举例说明什么样的运动就是振动? [讲授]微风中树枝的颤动、心脏的跳动、钟摆的摆动、声带的振动……这些物体的运 动都是振动。请同学们观察几个振动的实验,注意边看边想:物体振动时有什么特征? [演示实验](1)一端固定的钢板尺[见图1(a)](2)单摆[见图1(b)] (3)弹簧振子[见图1(c)(d)] (4)穿在橡皮绳上的塑料球[见图1(e)]

{提问}这些物体的运动各不相同:运动轨迹是直线的、曲线的;运动方向水平的、竖直的;物体各部分运动情况相同的、不同的……它们的运动有什么共同特征? {归纳}物体振动时有一中心位置,物体(或物体的一部分)在中心位置两侧做往复运动,振动是机械振动的简称。 2.简谐运动 简谐运动是一种最简单、最基本的振动,我们以弹簧振子为例学习简谐运动。 (1)弹簧振子 演示实验:气垫弹簧振子的振动 [讨论] a.滑块的运动是平动,可以看作质点 b.弹簧的质量远远小于滑动的质量,可以忽略不计,一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子 c.没有气垫时,阻力太大,振子不振动;有了气垫时,阻力很小,振子振动。我们研究在没有阻力的理想条件下弹簧振子的运动。 (2)弹簧振子为什么会振动? 物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力,回复力是根据力的效果命名的,对于弹簧振子,它是弹力。

高二物理最新教案-机械振动教案全章 精品

第九章机械振动 一、简谐运动 【教学目标】 基础目标 1、回复力、平衡位置、机械振动 2、知道什么是简谐运动及物体做简谐运动的条件。 3、理解简谐运动在一次全振动过程中位移、回复力、加速度、速度的变化情况。 4、理解简谐运动的对称性及运动过程中能量的变化。 拔高目标 1、简谐运动的证明(竖直方向弹簧振子,水面上木块)。 2、简谐运动与力学的综合题型。 3、简谐运动周期公式。 【重难点】 重点:简谐运动的特征及相关物理量的变化规律。 难点:偏离平衡位置位移的概念及一次全振动中各量的变化。 【教学过程】 一.新课引入 知识目标:引入新的运动——机械振动 前面已学过的运动: 按运动轨迹分:直线运动按速度特点分:匀变速 曲线运动非匀变速 自然界中还有一种更常见的运动:机械振动 二.机械振动 在自然界中,经常观察到一些物体来回往复的运动,如吊灯的来回摆动,树枝在微风中的摆动,下面我们就来研究一下这些运动具有什么特点。 这些运动都有一个明显的中心位置,物体或物体的一部分都在这个中心位置两侧往复运动。这样的运动称为机械振动。 当物体不再往复运动时,都停在这个位置,我们把这一位置称为平衡位置。(标出平衡位置) 平衡位置是指运动过程中一个明显的分界点,一般是振动停止时静止的位置,并不是所有往复运动的中点都是平衡位置。存在平衡位置是机械运动的必要条件,有很多运动,尽管也是往复运动,但并不存在明显的平衡位置,所以并非机械振动。 如:拍皮球、人来回走动 注意:在运动过程中,平衡位置受力并非一定平衡!如:小球的摆动 总结:机械振动的充要条件:1、有平衡位置2、在平衡位置两侧往复运动。 自然界中还有哪些机械振动? 钟摆、心脏、活塞、昆虫翅膀的振动、浮标上下浮动、钢尺的振动 三.回复力 1)回复力 机械振动的物体,为何总是在平衡位置两侧往复运动? 结论:受到一个总是指向平衡位置的力 观察:振子在平衡位置右侧时,有一个向左的力,在平衡位置左侧时,有一个向右的力,这个力总是促使物体回到平衡位置。

高中物理第十一章机械振动第1节简谐运动教学案人教版4

第1节简谐运动 1.平衡位置是振子原来静止的位置,振子在其附近 所做的往复运动,是一种机械振动,简称振动。 2.如果质点的位移与时间的关系遵从正弦函数的 规律,即它的振动图像(x-t图像)是一条正弦曲线, 这样的振动叫做简谐运动,它是一种最简单、最基 本的振动,是一种周期性运动。 3.简谐运动的位移一时间图像表示质点离开平衡 位置的位移随时间变化的关系,而非质点的运动轨 迹。由该图像可以确定质点在任意时刻偏离平衡位 置的位移和运动情况。 一、弹簧振子 1.弹簧振子 图11-1-1 如图11-1-1所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。 2.平衡位重 振子原来静止时的位置。 3.机械振动 振子在平衡位置附近所做的往复运动,简称振动。 二、弹簧振子的位移—时间图像 1.振动位移 从平衡位置指向振子某时刻所在位置的有向线段。 2.建立坐标系的方法 以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。一般规定小球在平衡位置右边

(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。 3.图像绘制 用频闪照相的方法来显示振子在不同时刻的位置。 三、简谐运动及其图像 1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。 2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。弹簧振子的运动就是简谐运动。 3.简谐运动的图像 (1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。 (2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。 1.自主思考——判一判 (1)平衡位置即速度为零时的位置。(×) (2)平衡位置为振子能静止的位置。(√) (3)振子的位移-5 cm小于1 cm。(×) (4)简谐运动的轨迹是一条正弦(或余弦)曲线。(×) (5)简谐运动是一种匀变速直线运动。(×) 2.合作探究——议一议 (1)简谐运动与我们熟悉的匀速运动比较,速度有何不同的特点?如何判断一个物体的运动是不是简谐运动? 提示:简谐运动与匀速运动的区别在于其速度大小、方向都不断变化,只要质点的位移随时间按正弦规律变化,则这个质点的运动就是简谐运动。 (2)如图11-1-2所示为振子的位移—时间图像,振子的位移—时间图像就是振子的运动轨迹吗? 图11-1-2

大学物理教案--机械振动与机械波

教学目标 1.掌握简谐振动的定义、表达方式、简谐振动的合成方法;了解自由、阻尼、强 迫等各类简谐振动的特点和规律。 2.掌握振动和波的关系、波的相干条件、叠加原理、驻波的形成条件、驻波的振 幅、相位和能量的空间分布,半波损失。 3.学会建立波动方程。 教学难点 多自由体系的小振动 第十一章 机械振动 振动是指物体或系统在其平衡位置附近的往复运动。(例子:物体位置、电流强度、电压、电场强度、磁场强度等)。 物体或系统质点数是无穷的,自由度数也是无穷的,因此存在空间分布和时间分布,需要用偏微分方程描述 (如果一个微分方程中出现多元函数的偏导数,或未知函数与几个变量有关,而且未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。例如弦包含很多的质点,不能用质点力学的定律研究,但是可以将其细分成若干个极小的小段,每小段可以抽象成一个质点,用微分的方法研究质点的位移,其是这点所在的位置和时间变量的函数,根据张力,就可以建立起弦振动的偏微分方程) 。 一、简谐振动(单自由度体系无阻尼自由小振动) 虽然多质点的振动要用偏微分方程描述,但是我们可以简化或只考虑细分成的每一小段,那么就成为单质点单自由度(只需一个坐标变量)的振动。 2222 22222,,0 cos():0i i t F k k F kx a x m m m d x d x a x a x dt dt x A t Ae e i ,令特征方程特征根:?ωωωωω?λωλω =-= =-==-=∴+==+=+==±A (振幅)、?(初相位)都是积分常数,k 为倔强系数。 在微分方程中所出现的未知函数的导数的最高阶数称为这个方程的阶。 形如 ()()dx P t x Q x dt +=的方程为线性方程,其特点是它关于未知函数x 及其导数dx dt 都是一次的。若()0Q x =,则()0dx P t x dt +=称为齐次的线性方程。 二阶常系数齐次线性微分方程的解法: ()() 1 2 121212121,212cos sin t t t t x c e c e x c c t e i x e c t c t λλλαλλλλλαβββ≠=+==+=±=+ 由cos()sin()x A t v A t ω?ωω?=+?=-+ 按周期定义, ()()cos()cos sin()sin A t A t T A t A t T ω?ω?ωω?ωω?+=++???? -+=-++???? ,同时满足以上两方程的T 的 最小值应为 2p w ,所以2T p w =,于是1,2T n w pn ==,w 称为圆频率或角频率。不像A 、

清华大学《大学物理》习题库试题及答案--04-机械振动习题

一、选择题: 1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 θ ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单 摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ 2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x 1 = A cos(ωt + α)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为: (A) )π21cos(2++=αωt A x (B) ) π21 cos(2-+=αωt A x (C) ) π23 cos(2-+=αωt A x (D) )cos(2π++=αωt A x 3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是 (A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 (B) 4.3396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。将它们拿到月球上去,相应的周期分别为1T '和2T '。则有 (A) 11T T >'且22T T >' (B) 11T T <'且22T T <' (C) 11T T ='且22T T =' (D) 11T T ='且22T T >' 6.5178:一质点沿x 轴作简谐振动,振动方程为 ) 31 2cos(1042π+π?=-t x (SI)。从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为 (A) s 81 (B) s 61 (C) s 41 (D) s 31 (E) s 21 7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为: (A) )21/(cos π+=t m k A x (B) ) 21/cos(π-=t m k A x (C) ) π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = 8.5312:一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取 v 2 1

人教版高中物理选修3教案 《机械振动》整合与评价

课时11.6《机械振动》整合与评价 1.通过观察和分析,理解简谐运动的特征。能用公式和图象描述简谐运动的特征。 2.通过实验,探究单摆的周期与摆长的关系。知道单摆周期与摆长、重力加速度的关系。会用单摆测定重力加速度。 3.通过实验,认识受迫振动的特点。了解产生共振的条件,以及共振在技术上的应用。 重点难点:简谐运动的公式、振动图象和单摆周期公式。 教学建议:机械振动是质点运动的一种形式,通过本章的学习,要对质点运动的认识更加全面和深入。要掌握简谐运动的概念,理解简谐运动过程中各量的变化规律,并能用图象表达。掌握单摆的周期公式,并能应用其处理实际问题。

主题1:简谐运动的图象 问题:简谐运动的图象遵从正弦或余弦函数的规律,并包含着简谐运动的规律。综合本章所学知识,跟同学交流讨论从图象可以获取哪些信息。 解答:(1)从一个振动的图象形式上便可快速判断它是不是简谐运动。 (2)从图象上可直接读出振幅A和周期T;可看出任一时刻的速度方向、加速度方向、回复力方向、位移大小和方向。 (3)可以判定任一时刻速度的变化趋势,加速度和回复力大小的变化趋势,位移大小的变化趋势,等等。 (4)可以比较不同时刻位移的大小和方向、加速度和回复力的大小和方向、速度的大小和方向。 知识链接:简谐运动的图象通常称为振动图象,反映了某个质点振动位移随时间的变化规律,好像对某个质点进行“录像”一样。 主题2:简谐运动的表达式 问题:简谐运动的对称性体现在哪些方面?请跟同学们交流合作,总结出答案。 解答:(1)速率的对称性:系统在关于平衡位置对称的两位置具有相等的速率。 (2)时间的对称性:系统在通过关于平衡位置对称的两段位移的时间相等。在振动过程中通过任意两点A、B的时间与逆向通过这两点的时间相等。 (3)加速度的对称性:系统在关于平衡位置对称的两位置具有等大反向的加速度。 知识链接:对称性是简谐运动的重要规律,要注意理解和运用,掌握对称性可提高大家的思维能力,包括思维的多向性和严密性。 拓展一:简谐运动的图象 简谐运动的图象是周期性的正弦或余弦曲线。简谐运动的特点具有简单的周期性、重复性、对称性。对简谐运动图象进行分析,可求振幅A,周期T,任一时刻振动质点的位移、加速度的方向、速度的方向和某段时间内位移、回复力、加速度、速度、动能、势能等物理量的变化情况。

相关主题
相关文档 最新文档