当前位置:文档之家› 摄影的景深原理及计算方法

摄影的景深原理及计算方法

摄影的景深原理及计算方法
摄影的景深原理及计算方法

景深原理及计算

一、在线景深计算器https://www.doczj.com/doc/2f13975941.html,/tools/dofjs.html

二、景深原理及计算

1、焦点(focus)

平行光线射入凸透镜时,理想镜头将所有的光线聚集在一点,这个点,就叫做焦点,焦点和镜片光学中心的距离叫做焦距。过焦点后光线继续以锥状发散开来。

2、弥散圆(Circle of Cnfusion)

又译为:弥散圈、模糊圈等等

在焦点前后,光线从聚集到扩散,点的影象从圆到点(焦点),继而有扩散到圆,这个焦点前面和后面的圆就叫做弥散圆。

如果此圆形足够小,肉眼依然可被视为点的成像。这个可以被接受的最大直径被称为容许弥散圆直径δ (Permissible circle of confusion)。

观赏拍摄的影象是以某种方式来观察的,人的肉眼所感受到的影象与观看距离有很大的关系,如果弥散圆的直径小于人眼的鉴别能力,人眼将感觉是清晰的。这时的弥散圆的大小就称为容许弥散圆。

人眼在明视距离(眼睛正前方30厘米)能够分辨的最小的物体的尺寸大约为0.125mm。蔡斯公司制定的标准时,选用了常用尺寸7吋照片(175×125mm)为依据计算,要求弥散圆只能在0.125mm以内,按此计算得到是图像对角线长度的1/1730左右。所以蔡斯公司制定的标准就是弥散圆直径δ=1/1730 底片对角线长度。

不同的厂家、不同的底片面积都有不同的容许弥散圆直径的要求。各厂家对于35mm照相镜头的容许弥散圆的取值并不统一(前提是画面放大为5×7吋的大小,观察距离为25~30cm)一般取值范围是底片对角线长度的1/1000~1/1500左右。在这里可以看出:景深是相对的,不是绝对的,和弥散圆直径δ的取值大小有着直接的关系。同时我们也可看出:弥散圆直径δ 的取值的大小和镜头生产厂商的技术能力有关。

一般常用的数值是:

3、景深(Depth of field)

在对焦时,通过镜头将在焦平面上清晰成像,而对焦点的前景和后景也在焦平面成像,只要它们成像的弥散圆等于或小于容许弥散圆直径,我们将认为是清晰的,这样影像就有一个的清晰的区间,这就是景深(下图)。

从以上可知道,在焦点前后各有一个容许弥散圆,这两个弥散圆之间的距离我们称呼它叫焦深,它和景深是相对应的。所谓景深即:在被摄主体(对焦点)前后,其影像具有的一段清晰范围,这范围内的景物在焦平面上成像,都在容许弥散圆的限定范围内。

景深是随镜头的焦距、光圈值、对焦距离的不同而变化。一般来说:

1、焦距短,景深大,

2、对焦点离远,景深大,

3、光圈小,景深大。

以拍摄者为基准,从对焦点到近点的清晰范围叫前景深,从对焦点到远点的清晰范围叫后景深。

4、景深的计算

从公式中可以看出,后景深> 前景深。

由景深计算公式可以看出,景深与镜头使用光圈、镜头焦距、拍摄距离以及对像质的要求(表现为对容许弥散圆的大小)有关。这些因素对景深的影响如下:

(1)、镜头光圈:光圈越大,景深越小;光圈越小,景深越大;

(2)、镜头焦距:镜头焦距越长,景深越小;焦距越短,景深越大;

(3)、拍摄距离:距离越远,景深越大;距离越近,景深越小。

三、尼康D300S,85/1.4镜头的景深表:

镜头:85/f1.4

光圈F 距离(米) 前景深(cm) 后景深(cm) 总景深(cm)

1.4 0.8 0.22 0.22 0.44

0.9 0.29 0.29 0.58

1 0.36 0.36 0.72

1.5 0.83 0.84 1.67

2 1.49 1.51 3

2.5 2.34 2.39 4.73

3 3.38 3.46 6.84

3.5

4.62 4.74 9.36

4 6 6.2 12.2

4.5 7.6 7.9 1

5.5

5 9.4 9.8 19.2

6 13.6 14.2 27.8

7 18.9 19.5 38.4

8 24 25.6 49.6

9 30.4 32.5 62.9

10 37.4 40.4 77.8

20 145 169 314

50 820 12500 13320

100 28.1 64.2 92.3

200 0.878 7.201 8.079

240 116.2 3708.3 3824.5

250 123.6 无穷远

1.6 1 0.4 0.4 0.8

1.5 0.93 0.94 1.87

2 1.67 1.7 3.37

2.5 2.63 2.68 5.31

3 3.79 3.89 7.68

3.5 5.2 5.3 10.5

4 6.8 7 13.8

4.5 8.6 8.9 17.5

5 10.

6 11 21.6

6 15.2 16 31.2

7 0

8 0

9 0

10 41.7 45.6 87.3 20 0 50 0 100 0 200 0 240 0 250 0

1.8 1 0.45 0.45 0.9

1.5 1.04 1.05

2.09

2 1.87 1.91 3.78

2.5 2.94

3.01 5.95

3 4.25 4.38 8.63

3.5 5.8 6 11.8

4 7.6 7.9 15.5

4.5 9.6 10 19.6

5 11.8 12.4 24.2

6 1

7 1

8 35

7 0

8 0

9 0

10 46.6 51.4 98

20 0

50 0

100 0

200 0

240 0

250 0

2 1 0.5 0.51 1.01

1.5 1.17 1.18

2.35

2 2.1 2.14 4.24

2.5

3.3 3.39 6.69

3 4.76 4.92 9.68

3.5 6.5 6.7 13.2

4 8.

5 8.9 17.4

4.5 10.7 11.3 22

5 13.2 14 27.2

6 16 1

7 33

7 25.8 27.9 53.7

8 0

9 0

10 0 20 0 50 0 100 0 200 0 240 0

250 0 2.2 1 0

1.5 0

2 0

2.5 0

3 0

3.5 0

4 0

4.5 0

5 0

6 0

7 0

8 0

9 0

10 0

20 0

50 0

100 0

200 0

240 0

250 0 2.4 1 0

1.5 0

2 0

2.5 0

3 0

3.5 0

4 0

4.5 0

5 0

6 0

7 0

8 0

9 0

10 0 20 0 50 0 100 0 200 0

240 0

250 0 2.6 1 0

1.5 0

2 0

2.5 0

3 0

3.5 0

4 0

4.5 0

5 0

6 0

7 0

8 0

9 0

10 0

20 0

50 0

100 0

200 0

240 0

250 0 2.8 1 0.71 0.72 1.43

1.5 1.64 1.68 3.32

2 2.95 3.04 5.99

2.5 4.64 4.82 9.46

3 6.7 7 13.7

3.5 9.1 9.6 18.7

4 11.9 12.6 24.5

4.5 15 16.1 31.1

5 18.5 20 38.5

6 26.6 29.1 55.7

7 36 40.1 76.1

8 46.7 52.9 99.6

9 58.7 67.5 126.2

10 72 84.2 156.2 20 0

50 0 100 0

35mm 景深表

Nikon n D7000 Focal Length: 35mm f/1.4f/2f/2.8f/4f/5.6f/8f/11f/16f/22 Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Near Far Distance (meters) 0.250.250.250.250.250.250.250.250.250.250.260.240.260.240.260.240.260.230.27 0.50.490.510.490.510.490.510.490.520.480.520.470.530.460.550.450.570.430.60 0.750.740.760.730.770.730.780.720.790.700.800.690.830.660.860.630.920.591.02 10.981.020.971.030.961.050.941.070.921.100.891.140.851.220.801.340.741.55 1.51.451.551.431.581.401.611.371.661.321.731.261.851.18 2.061.082.430.97 3.27 21.912.101.882.141.832.201.772.291.692.441.592.691.473.141.324.111.167.30 2.52.372.652.312.722.242.822.152.982.04 3.241.893.691.72 4.591.527.021.3128.0 32.813.222.743.322.643.482.513.722.364.132.164.901.946.631.6913.31.43∞ 3.53.243.803.143.953.02 4.172.854.522.65 5.152.41 6.392.139.721.8436.91.54∞ 43.664.403.544.593.384.903.185.402.936.312.648.302.3114.91.96∞1.62∞ 4.54.08 5.023.935.273.735.673.48 6.353.19 7.662.8410.82.4725.72.08∞1.70∞ 54.495.654.305.974.076.493.787.403.439.233.0314.22.61602.18∞1.76∞ 5.54.88 6.294.676.694.39 7.364.05 8.553.6611.13.211 9.22.74∞2.27∞1.82∞ 65.276.965.027.454.708.284.329.833.8713.43.3727.22.85∞2.35∞1.87∞ 86.769.806.3510.85.8512.75.2616.74.6130.33.92∞3.24∞2.60∞2.03∞ 108.1313.07.5414.86.8518.56.0628.65.211264.34∞3.52∞2.78∞2.14∞1511.122.910.129.38.8748.67.596616.30∞5.08∞3.98∞3.06∞2.30∞2013.737.112.15710.42568.68∞7.03∞5.54∞4.27∞3.22∞2.39∞3017.79715.2139212.6∞10.1∞7.96∞6.11∞4.59∞3.40∞2.49∞5023.2∞19.0∞15.1∞11.7∞8.91∞6.64∞4.89∞3.56∞2.57∞∞43.3∞30.7∞21.7∞15.3∞10.9∞7.69∞5.45∞3.86∞2.74∞ 43.330.721.715.310.97.695.453.862.74 Hyperfocal Distance Circle of confusion: 0.02mm Cir

什么是相机景深

相机景深:当相机的镜头对着某一物体聚焦清晰时,在镜头中心所对的位置垂直镜头轴线的同一平面的点都可以在胶片或者接收器上相当清晰的图像,在这个平面沿着镜头轴线的前面和后面一定范围的点也可以结成眼睛可以接受的较清晰的像点,把这个平面的前面和后面的所有景物的距离叫做相机的景深。 通俗来讲,景深就是被摄主体背景或前景的清晰程度。景深对照片的视觉效果有重要的影响,了解其原理、掌握其规律,就可以在摄影活动中把景深作为一种创作元素加以利用,控制其成像特点以达到某种视觉上的预期效果。

1.利用光圈控制景深 光圈大小与景深有着密切的关系。同等摄距下,利用光圈调节景深具有比较明显的效果。需减少景深虚化背景时,应采用大光圈乃至镜头绝对口径即最大光圈:需增加景深时应选择小光圈乃至最小光圈。即

使在同样摄距,采用同样焦距拍摄同一对象,收小光圈后对景深的影响非常明显。如果在选择光圈的同时,注意结合利用变焦镜头做焦距和摄距变化等,对景深的利用则更为灵活和科学。 2.利用摄距控制景深

摄距越近景深越短,摄距越远景深越长。拍摄一般场景时,景深大都以米来计算;拍摄特写时,景深往往以厘米来计算:当用微距镜头或者用便携式数码相机的微距模式做近摄时,景深常常会以毫米计算。可见摄距越近,景深也越短。在利用长焦镜头和大光圈的前提下,如希望再缩短景深,应在不影响构图前提下缩短摄距,如以较短焦距配合小光圈做微距近摄仍然希望增加景深,可稍微退后延长摄距来增加景深。 3.利用主体与背景的距离控制景深

主体与背景的间距近,浅景深效果难以显示:当主体与背景都在无限远处,即使是长焦镜头配合大光圈也难以有效虚化背景。如条件允许,相机应尽可能靠近被摄主体,而被摄主体应尽可能远离背景,如此,虚化背景效果才更明显。有时被摄主体位于较近摄距,而背景处于无限远位置,即使用广角镜头配合大光圈拍摄,也可较有效地虚化背景。

教你一招:如何计算景深

景深的计算 先介绍几个概念: 1、焦点(focus) 与光轴平行的光线射入凸透镜时,理想的镜头应该是所有的光线聚集在一点后,再以锥状的扩散开来,这个聚集所有光线的一点,就叫做焦点。 2、弥散圆(circle of confusion) 在焦点前后,光线开始聚集和扩散,点的影象变成模糊的,形成一个扩大的圆,这个圆就叫做弥散圆。 在现实当中,观赏拍摄的影象是以某种方式(比如投影、放大成照片等等)来观察的,人的肉眼所感受到的影象与放大倍率、投影距离及观看距离有很大的关系,如果弥散圆的直径小于人眼的鉴别能力,在一定范围内实际影象产生的模糊是不能辨认的。这个不能辨认的弥散圆就称为容许弥散圆(permissible circle of confusion)。

不同的厂家、不同的胶片面积都有不同的容许弥散圆直径的数值定义。一般常用的是: 35mm照相镜头的容许弥散圆,大约是底片对角线长度的1/1000~1/1500左右。前提是画面放大为5x7英寸的照片,观察距离为25~30cm。 3、景深(depth of field) 在焦点前后各有一个容许弥散圆,这两个弥散圆之间的距离就叫景深,即:在被摄主体(对焦点)前后,其影像仍然有一段清晰范围的,就是景深。换言之,被摄体的前后纵深,呈现在底片面的影象模糊度,都在容许弥散圆的限定范围内。

景深随镜头的焦距、光圈值、拍摄距离而变化。对于固定焦距和拍摄距离,使用光圈越小,景深越大。 以持照相机拍摄者为基准,从焦点到近处容许弥散圆的的距离叫前景深,从焦点到远方容许弥散圆的距离叫后景深。 4、景深的计算 下面是景深的计算公式。其中: δ——容许弥散圆直径 f——镜头焦距

单反相机的原理和结构

一单反相机的原理和结构 銅峰电子刘根 数码单反相机的全称是数码单镜头反光相机(Digital single lens reflex),缩写为DSLR。数码单反相机专指使用单镜头取景方式对景物进行拍摄的一种照相机,拍摄者使用相机背后的光学取景框进行观察,通过观察安装在相机前段的镜头所提供的视觉角度的大小进行拍摄。 在单反相机的结构中,作为重要的是照相的反光镜和相机上端圆拱结构内安装的五面镜或五棱镜。拍摄者正是使用这种结构从取景器中直接观察到镜头的影像。由单镜头反光相机的构造图可以看到,光线透过镜头到达反光镜后,折射到上面的对焦屏,并结成影像,透过接目镜和五棱镜,拍摄者就可以在取景器中看到外面的景物。这个过程有点像人们透过窗户看到外面的世界,窗户的大小便是人们看到外面景物的范围。

当拍摄者看到自己满意的角度和拍摄内容的时候,既可以按动快门。按动快门的过程就是一个拍摄和成像的过程,术语称为曝光。不管是胶片单反相机还是数码单反相机,曝光原理是完全相同的。在按下快门的瞬间,反光镜向上弹起,胶片前面的快门幕帘同时打开,通过镜头的光线(影像)投射到感光部件上,使胶片或数码相机的感光元件曝光。在按下快门的这一瞬间,光学取景器中会出现黑屏的情况(黑屏的时间根据快门的快慢而不同),之后反光镜立即恢复原状,取景器中再次可以看到影像(此时已经完成了一次曝光)。

单反相机的这种构造,决定了镜头在相机的结构中占有相当重要的地位。使用这种相机的最大优势是摄影师在光学取景器中看到的取景范围和感光元件的影像实际拍摄范围基本一致。摄影师使用不同的镜头配置可以达到很好的拍摄效果,从具有冲击力的7.5mm鱼眼镜头到长达1600mm以上的超级远摄远镜头,都可以安装在同一台相机上,从而拍摄出效果迥异的图片。此外,单反相机在一定程度上消除了旁轴相机的取景视觉差异,使摄影师可以更精确地控制取景范围,选择最完美的拍摄角度。

摄影的景深原理及计算方法

景深原理及计算 一、在线景深计算器https://www.doczj.com/doc/2f13975941.html,/tools/dofjs.html 二、景深原理及计算 1、焦点(focus) 平行光线射入凸透镜时,理想镜头将所有的光线聚集在一点,这个点,就叫做焦点,焦点和镜片光学中心的距离叫做焦距。过焦点后光线继续以锥状发散开来。

2、弥散圆(Circle of Cnfusion) 又译为:弥散圈、模糊圈等等 在焦点前后,光线从聚集到扩散,点的影象从圆到点(焦点),继而有扩散到圆,这个焦点前面和后面的圆就叫做弥散圆。

如果此圆形足够小,肉眼依然可被视为点的成像。这个可以被接受的最大直径被称为容许弥散圆直径δ (Permissible circle of confusion)。 观赏拍摄的影象是以某种方式来观察的,人的肉眼所感受到的影象与观看距离有很大的关系,如果弥散圆的直径小于人眼的鉴别能力,人眼将感觉是清晰的。这时的弥散圆的大小就称为容许弥散圆。 人眼在明视距离(眼睛正前方30厘米)能够分辨的最小的物体的尺寸大约为0.125mm。蔡斯公司制定的标准时,选用了常用尺寸7吋照片(175×125mm)为依据计算,要求弥散圆只能在0.125mm以内,按此计算得到是图像对角线长度的1/1730左右。所以蔡斯公司制定的标准就是弥散圆直径δ=1/1730 底片对角线长度。 不同的厂家、不同的底片面积都有不同的容许弥散圆直径的要求。各厂家对于35mm照相镜头的容许弥散圆的取值并不统一(前提是画面放大为5×7吋的大小,观察距离为25~30cm)一般取值范围是底片对角线长度的1/1000~1/1500左右。在这里可以看出:景深是相对的,不是绝对的,和弥散圆直径δ的取值大小有着直接的关系。同时我们也可看出:弥散圆直径δ 的取值的大小和镜头生产厂商的技术能力有关。 一般常用的数值是:

镜头与景深关系及其计算

照相机镜头与景深关系及其计算 一、关于照相机镜头得常识 1、焦距 无限远处得景物在胶片感光平面上聚成最清晰得影像时,由感光平面到镜头后节点(通常就是镜头中心)得距离,就就是镜头得焦距。 焦距就是照相机镜头最重要得三个光学特性参数(焦距、相对孔径、视场角)之一。它直接影响到镜头得视角大小,镜头得焦距越长,拍到底片上得影像范围越小,景深越短;反之,镜头得焦距越短则在底片上得影像范围越大,景深越长,透视越明显。 照相机镜头按焦距得不同可分为:超广角镜头、广角镜头、标准镜头、中焦镜头、长焦镜头、超长焦镜头。 (1)超广角镜头视角大于直角(90°)得镜头称超广角镜头。这种镜头得视角比人眼得视角大1倍之多,拍摄范围广阔。由于视角大,改变了人眼平常得透视关系,所拍摄得照片会形成明显得夸张,可创造特殊得艺术效果。对于35㎜照相机,镜头得焦距在21㎜以下得便就是超广角镜头。 (2)广角镜头视角小于直角、大于60°得镜头称广角镜头。由于它得透视效果不像超广角那么夸张,被普遍用于拍摄近距离得大场面。对35㎜照相机而言,镜头焦距得范围在21~40㎜之间。 (3)标准镜头这种镜头得视角与人眼得视角相近,在46°左右。由于这种镜头得透视关系真实,就是照相机最基本得镜头。这种镜头得焦距与其所摄底片得对角线基本相等。35㎜照相机得镜头焦呀为40~70㎜。

(4)中焦镜头视角在35°~20°之间得镜头称为中焦镜头。这种镜头视角比人眼得视角略小,变形不大,适用于拍摄人物特写,所以有些人喜欢把这种镜头称为人像镜头。35㎜照相机,其镜头焦距为70~100㎜。 (5)长焦镜头这种镜头得视角介于8°至20°之间,因镜头得焦距比较长,所以被称为长焦镜头。它得视角还不到人眼得一半,所以远处得东西经它拍摄后显得比较大。同等光圈下,镜头焦距越长,景深越小,因此,这种镜头利于突出主体,去除杂乱得背景,很适用于远距离抓拍,如体育活动等。对35㎜照相机而言,其镜头焦距为100~300㎜。 (6)超长焦镜头视角小于8°得镜头称为超长焦镜头。它得视角很小,可把远处得实物拍得很大,专用于望远摄影,如野生动物、朝阳落日特写、体育竞赛、人物特写等。这种镜头往往口径大、镜身长、造价高,多为专业人士使用。对35㎜照相机而言,其镜头焦距在300㎜以上。 2、相对孔径与光圈系数 镜头就是摄影光线得输入口,镜头上用来控制光束大小与形状得装置叫光阑。光阑能使像平面上获得适宜得照度并使成像质量得到改善。光阑按作用分,主要有孔径光阑、现场光阑、消杂光光阑。光圈就是光阑中得一种(孔径光阑),一般由一组光圈叶片组成,这组叶片组成一个光孔,与镜头轴线垂直,光孔中心在轴线上,并可以通过镜头上得光圈调节光孔直径得大小。 当光线通过镜头时,镜筒与光圈都会遮挡光线得通过。不同得镜头结构,即使在相同得光圈直径时,通光能力也并不一样,所以常常用镜头得有效孔径(实际通过镜头得光束直径,用D 表示)更能有效表述镜头得实际通光能力。 为了简明,便于刻制,目前世界各国采用如下经圆整得光圈系数: f1、f1、4、f2、f2、8、f4、f5、6、f8、f11、f16、f22、f32、f45、f64…… 二、景深得概念及其计算 介绍几个概念:

景深与景浅

景深就是对好焦的范围。它能决定是把背景模糊化来突出拍摄对象,还是拍出清晰的背景。 物体和背景同样清晰,称之为景深深 物体是清晰的,而背景很模糊,称之为景深浅。 调节景深最简单的方法就是改变光圈大小。把光圈弄大,景深会变浅,反之亦然。当然光圈变大,快门速度也相应变快,光圈便小,快门速度则变慢。这样在同一个曝光强度下,我们可以得到景深不同的照片。影响景深深度的不止是光圈一个因素。拍摄距离近,景深会变浅,拍摄距离远,则相反,焦距长(长焦),景深会变浅,焦距短(广角),则相反,所以使用广角镜头进行拍摄时,很容易对整幅图像对焦,而使用长焦镜头时,因为景深较浅,拍摄时需要注意。还有,以对好焦的点为基准,离它近的点比远的点景深深。光圈数,也叫F数。影像(在感光元件上的成像)的照度除了与景物本身的亮度和像的防大(或缩小)倍率有关系,还与镜头光圈的直径D的平方成正比;与镜头的焦距F成反比,D/F的值称之为镜头“相对通光孔径”,为方便把相对通光孔径的倒数F/D.该比值越小,则光圈越大,在单位时间内的通光量越大。 景深与光圈,焦距的关系可以归纳如下: 光圈与景深:光圈增大,景深就越小。例如,在同等光圈下,300mm的景深要比125mm的景深要浅。 焦距与景深:焦距增大,景深就越小。例如,同等焦距下,F1.0的光圈指数要大于F22。F1.0的景深要比F22的要浅。 物距与景深:物距增大,景深也怎大。 一张照片上,焦点处是最清楚的,离开焦点往前或着往后一段距离相对也是清楚的,这段距离就是景深了。以上三个应素都是综合作用的,如果你想获得最大的景深,那就用“超焦距”吧:在光圈和焦距一定的情况下,把焦点放到景深的近界上。比如景深的范围是A到B 焦点是C 相机到A点的距离是D,A离相机近,B离相机远。此时焦距和光圈不变,把焦点放到A点上,那景深就扩大成D/2到B 。 回答:2006-06-12 23:14 提问者对答案的评价: 感谢。

关于景深的基础知识

关于景深的基础知识 景深,是摄影艺术中最奇妙的东西之一,也是初学摄影的朋友最难以掌握的。我们曾经发表过多篇介绍景深的文章,本文图文并茂,深入浅出,是初学者的好教材,对于资深影友,也是很好的复习。 一、景深的概念 摄影时,必须对好焦点,景物才能结成清晰的影像。但是,在有些情况下,例如拍摄位于不同距离上的多种景物时,片样选择调焦目标,焦点对在哪,哪才能把全部景物拍清楚,就是一个颇费斟酌的问题。动体摄影,主体的位置不断移动,调整尤为困难。遇到这种情形,片样才能不失时机而又有把握地拍出清晰的照片呢?这些都是需要应用景深的理论与方法来解决的实际问题。 首先让我们做一个小小的实验。把一架装有后部磨砂玻璃调焦设备的照相机,或具有景深预测装置的单镜头反光镜箱放在三角架上,以45°左右的角度对向一排成行的白杨树,从中选择一棵距离适中的作为调焦目标目标然后一边转动光圈环,一边仔细观察。这时就会发现,随着光圈的开大和缩小,景物的清晰范围也在不断地变化。光圈放大时,景物的清晰区就缩小;光圈收小时,景物的清晰区就扩大。这个清晰范围在摄影上就叫做景深。不论我们向任何物体调焦,在该

物体的前后都会形成一个或大或小的清晰区,因此景深又称为区域对光,凡是位于这个区域内的所有景物,皆能结成清晰的实像,其它景物则留下一片模糊的虚影。 根据镜头成像的理论,焦点只有一个,即唯有调焦目标才能在感光片上结成清晰的影像,在调焦目标前后会出现一个清晰区--即景深。 二、制定景深的标准 什么叫清晰,什么叫模糊,这些字眼相当含混,各人的理解也有所不同。因此,必须对景物的清晰度定出一个客观的标准,作为衡量景深的依据。这个标准规定: 第一,物体分散圈的直径在四分之一毫米以内。 第二,观看照片的距离为25厘米(明视距离)。 例如,有一幅照片,在明视距离上观看,影像清晰的部分,说明其分散圈的细度合乎标准,没有超过规定的四分之一毫米时,在眼睛看来几乎是一个“点”,并不感到是一个斑,也就是说其清晰度是符合要求的。照片上影像模糊的部分,就说明分散圈超过了规定的限度。根据这个标准,摄影时凡是位于景深范围以内的景物像的清晰度都能达到要求,看起来不会有模糊的感觉。 分散圈与镜头焦距有关;各种镜头的焦距长短不一,对分散圈直径的要求也有所不同。对长焦距镜头的焦距长短不一,对分散圈直径的要求也有所不同。对长焦距镜头可以放宽一些,对短焦距镜头就严格一些。一般规定,分散圈直径都限制在镜头焦距的千分之一以内。按照这个标准,一只250毫米的镜头,其分散圈直径为250毫米/1000,也就是1/4毫米。用这种镜头拍摄的照片在明视距离上观看,像的清晰度是够标准的。如果镜头焦距为500毫米,分散圈直径则为1/2毫米,比规定的大了一倍,看起来就成为模糊的了。问题不是500毫米镜头的清晰度不够标准,而是观看照片的距离没有相应地拉开。由于焦距增加到原来的两倍,所以观看照片的距离也必须增加到原来的两倍,即放在500毫米处观看,则分散圈就不是一个圈而是与“点”无异,影像仍然是清晰的。观看照片应以焦距作为观看的距离,因此以明视距离作为标准,就只能以250毫米镜头拍的原版照片为限。如果镜头焦距小于250毫米,比如是50毫米,分散圈直径为1/20毫米,把照片放大五倍,观看距离也增加五倍,分散圈直径还是够标准的。

景深实验报告

班级:广告0901 姓名:学号: 经过一年的摄影学习,既有理论知识的学习,同时又加上实际的操作训练.基本上已经对 基础的摄影有了一定的掌握,经过多次实际操作,针对一些实际问题总结了一些经验.主要涵 盖六个方面,以下是我这一年的学习心得: 一.影棚所需的设备,工具: 相机 (1)数码单反相机 1. 小型135型相机 2. 中型120单反相机 (2)大型技术相机------可拍摄的胶片规格: 1. 4英寸×5英寸(9cm×12cm) 2. 5 英寸×7英寸(13cm×18cm) 3. 8英寸× 10英寸(18cm×24cm)镜头(定焦镜头,变焦 镜头) 各种照明的灯具,静物台,柔光棚,柔光箱,柔光板,反光板光纤灯,同步线,遥控器, 触发器,专业背景纸架子,灵活调校角度的臂架各类背景: 铝塑板,地转,壁纸,a4纸,美国背景纸,蜡染背景布,防火板,木板,瓦楼板,窗帘, 各种颜色的复印纸各种小工具,小道具: 进口黏蜡,卷尺,直尺,放大镜,金属气球及小毛刷,双面胶,注射器,手电,剪刀, 激光指示笔,喷雾器,绳子,粮食,床,电话机,马灯,石头,铁丝,沙子,酒瓶,假冰块, 杯子,假雪,假烟,水珠,小夹子,竹镊子 二.吸光体拍摄实验 一. 实验设备:佳能550d相机,18—200mm镜头,静物台,金鹰闪光灯等,书包,毛绒 娃娃,线团,竹篓子。二. 实验目的:通过拍摄各种不同的吸光体,半吸光体,掌握用光和 构图,很好地表现吸光体的结构和质感,能够拍摄一些商业产品。 三. 作品分析图片一:背包 数据:光圈:f/11 感光度:100 快门速度:1/200秒 创意:这是给网点老板拍的照片,主要目的就是为了表现产品的外形和质感,所以选择 了最普通的拍摄方法。 作品分析:这张图片从左前侧方打光,用侧光照明,左侧亮,右侧暗,很好地实现了亮 暗的过渡,很好地表现了书包的造型,纹理和质感。图片二:玩具店内的小熊 作品分析:这张图片完全是利用自然光和室内光拍摄的,太阳光从小熊的右后方照过来, 小熊的右侧较亮,轮廓清晰,同时室内的照明灯照在小熊的眼睛上,小熊的眼炯炯有神。 侧逆光很 好地表现出小熊毛料的质感。 数据:光圈:f/5 快门速度:1/30秒感光度:3200 创意:其实这是在商店偷拍 的一张照片,当时觉得这只完全由毛线构成的小熊很有意思,于是就以其他熊作为背景拍了 这张照片。 布光图 图片三:首饰盒—海枯石烂篇二:《人物风光摄影》实验报告 江西科技师范学院 实验报告 课程人物风光摄影 院系教育学院 班级 2009教育技术学 学号 20092299 姓名李进辉

【CN110009674A】基于无监督深度学习的单目图像景深实时计算方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910256117.9 (22)申请日 2019.04.01 (71)申请人 厦门大学 地址 361102 福建省厦门市翔安区厦门大 学翔安校区航空航天学院 申请人 厦门万久科技股份有限公司 (72)发明人 仲训昱 杨德龙 殷昕 彭侠夫  邹朝圣  (74)专利代理机构 桂林市持衡专利商标事务所 有限公司 45107 代理人 陈跃琳 (51)Int.Cl. G06T 7/593(2017.01) (54)发明名称 基于无监督深度学习的单目图像景深实时 计算方法 (57)摘要 本发明公开一种基于无监督深度学习的单 目图像景深实时计算方法,利用双目序列图像之 间的几何约束关系构造监督信号,取代传统的人 工标记数据集,完成了无监督算法设计;在 Depth -CNN网络中的,损失函数除了考虑图像之 间的几何约束,还设计了针对左右图像的景深估 计结果一致性约束项,提高算法精确度;以 Depth -CNN的输出作为Pose -CNN输入的一部分, 构造整体的目标函数,同时使用双目图像之间的 几何关系和序列图像之间的几何关系构造监督 信号, 进一步提高的算法的精确度以及鲁棒性。权利要求书2页 说明书10页 附图3页CN 110009674 A 2019.07.12 C N 110009674 A

1.基于无监督深度学习的单目图像景深实时计算方法,其特征是,包括步骤如下: 步骤1、使用无人驾驶数据集KITTI中的双目序列图像作为输入数据,并通过数据预处理将双目序列图像分类为两种类型,即用于景深估计卷积神经网络的立体图像对和用于相机姿态估计卷积神经网络的序列图像; 步骤2、基于残差网络建立景深估计卷积神经网络,构造一个端到端系统,以立体图像对作为输入,输出对应的景深估计图像,设计景深估计卷积神经网络对应的损失函数用于反馈传播; 步骤3、基于卷积神经网络模块建立相机姿态估计卷积神经网络,构造一个端到端系统,以序列图像和景深估计图像作为输入,输出序列图像之间的姿态变化矩阵,设计相机姿态估计卷积神经网络对应的损失函数用于反馈传播; 步骤4、基于步骤2所设计的景深估计卷积神经网络对应的损失函数和步骤3所设计的相机姿态估计卷积神经网络对应的损失函数,构造目标函数; 步骤5、基于步骤2的景深估计卷积神经网络和步骤3的相机姿态估计卷积神经网络完成深度神经网络的搭建,并基于步骤4完成目标函数的设计后,利用步骤1所得无人驾驶数据集KITTI中全部数据对深度神经网络中的景深估计卷积神经网络和相机姿态估计卷积神经网络进行同时训练,以固定深度神经网络的网络参数值和网络结构,得到最终的计算模型; 步骤6、将摄像头实际所得到的单目图像输入到步骤5所得到的计算模型中,则计算模型的输出即为图像对应的场景景深图像。 2.根据权利要求1所述的基于无监督深度学习的单目图像景深实时计算方法,其特征是,步骤4中,所构造的目标函数为: Loss final =λ1 depth_loss+λ2 pose_loss 权 利 要 求 书1/2页2CN 110009674 A

景深表与景深计算公式

景深表与景深计算公式 The Standardization Office was revised on the afternoon of December 13, 2020

景深表与景深计算公式 在拍摄实践中,当需要了解具体的景深范围时,可以查看相机上或书本上的景深表,也可自行计算出你实际拍摄时的景深范围。 一、相机上的景深表 大部分相机上都有简易的景深表可供查看景深范围。相机上景深表的位置有的在镜头筒上、位于镜头上光圈刻度与距离刻度之间,采用对称的光圈系数如“16、11…11、16”指出每一光圈在某种摄距时的景深。 如用f16拍摄,这种景深表上两个对称的f16标记所指向的距离刻度,一个指景深的远界限,另一个指景深的近界限。相机上的景深表有的位于相机的聚焦钮上,通常采用一组“U”字型的线条,用“U”字的两端在距离刻度上指出景深范围。 相机上的这种景深表只能作为了解景深范围的一种参考,这是因为除了在相机上无法作出精确标度的客观原因外;厂家制定这种景深表的清晰度标准也有一定的随意性;更重要的还在于厂家并不了解你对不同照片的清晰度要求,也不了解你准备放大为多大尺寸的照片。 因此,当你要求高清晰度影像时,或要高倍率放大时,就应该比实际使用的光圈大一、二档来掌握景深范围。如拍摄时用用f11,就按f8或的景深掌握,

反过来,当你需要相机上f11所指示的景深范围时,就用f16或f22拍摄。这样才能在高倍率放大的照片上达到预期的景深效果,或者说能提高你的景深范围内的影像清晰度。 二、表格式的景深表 在摄影书籍上常常可以找到一种表格式的景深表,它们是列出一些镜头焦距与相应光圈、摄距的景深范围。这种书本上的景深表所指示的景深范围比相机上景深表的准确性要高。但是,不如相机上景深表使用方便。而且,在镜头焦距多样化的现代摄影中,这种表格式景深表的局限性就显得更大了。 使用这种表格式景深表时,要注意它也是以某种模糊圈为标准的,当你需要更小的模糊圈时,也应按照比实际使用的光圈大一、二档来掌握景深范围。三、景深计算公式 景深计算公式可以帮助你了解各种镜头焦距、各种光圈、各种摄距的景深范围。这种计算公式又是针对你所要求的模糊圈的,因而计算出的景深范围更准确、更可靠,当然它比相机上的景深表与书本上的景深表麻烦得多。 1.景深计算公式如下: H×D 景深近界限=————— H+D-F H×D

摄影理论与技术

摄影:用摄影机(俗称照相机,简称相机)摄取景物影像的过程称为摄影。 照相机的基本控制与调整功能:准确取景与构图;精确聚焦;控制曝光量;安全装卸胶片;(最好能具备)测光表。 相机的作用:使被摄物体在感光材料上构成光学影像。 相机的基本组成:镜头,光圈,快门,取景器,调焦系统。 镜头的作用:会聚被摄物体反射或发射的光线,使之在像平面清晰成像。 光圈:光圈的大小由光圈系数表示,从小到大以μ为公比成几何级数。光圈系数小时,孔径大,镜头的使用面积较大,单位时间进入像面的光量多,所需曝光时间少。 作用:1.通过调节镜头的使用面积,从而控制进入镜头光线的多少,使胶片得到最佳曝光量。2.限制镜头边缘部分使用,提高成像清晰度。3.调节景深。 快门:中心快门(镜间快门)特点:摄影时胶片各部分同时感光,对运动物体摄影不会产生影像变形。光效系数较低,一般在60%-80%之间。焦面快门(幕帘快门)特点:可随时更换镜头,提高快门速度。光效系数高达90%-95%。闪光摄影不易同步,对运动物体摄影时会出现变形。作用:调节胶片所受曝光时间的长短。曝光方式:手动曝光;电子控制自动曝光{光圈优先式 (“A”式曝光),快门优先式 (“S”式曝光),程序快门。 取景器:基本功能:获得准确的构图,充分利用胶片的画面。与调焦装置综合在一起,检查构像是否清晰。分类:光学直看式取景器(框式取景器多用于135相机)单镜头反光式取景器(所拍摄的景物范围与取景时看到的完全一致。)双镜头反光式取景器(俯视取景。取景调焦在一块毛玻璃上完成)毛玻璃机背式取景器(在毛玻璃上所看到的影像尺寸与将来要形成在胶片上的影像尺寸完全相等。) 调焦系统:基本功能:保证不同物距的被摄景物成像清晰。分类:磨沙玻璃式(毛玻璃);重影式;调焦光楔式;微棱镜式;综合式。 从镜头的物方主点到物方焦点 的距离叫做物方焦距。从镜头的像方主点到像方焦点的距离叫做像方焦距。 节点特征:所有向前节点投射的光线必然经过后节点射出,并且与相应的投射光线平行。如果系统的物方和像方处于同一均匀介质中,则主点和节点相重合。 焦距对比例尺的影响:当a 一定时,即在物距相等的条件下,f 长,比例尺就大;f 短,比例尺就小。 为得到比例尺较大的影象,可以采用长焦距镜头摄影。 镜头的类型:按像幅对角线长度与镜头焦距的比值 d / f 分为:标准镜头:135相机111-=f a m H f m =1

景深的一点常识

所谓景深,就是对焦时对准某一点时,其前后都仍可清晰的范围。 这张中间的清晰前边后边的都模糊了这个清晰的范围就是景深 它能决定是把背景模糊化来突出拍摄对象,还是拍出清晰的背景。我们经常能够看到拍摄花、昆虫等的照片中,将背景拍得很模糊(称之为小景深)(长焦大光圈镜头或者镜头与被摄物体近,被摄物体与背景远)。 但是在拍摄纪念照或集体照,风景等的照片一般会把背景拍摄得和拍摄对象一样清晰(称之为大景深。使用小光圈以获得大景深)。 就像人眼,看近的东西时旁边都是模糊的。看远的东西时远处的东西又都是很清晰的。 相机的对焦也就相当于人眼的聚焦。 景深三要素 光圈、镜头焦距、及拍摄物的距离是影响景深的重要因素: 1、光圈越大(比如f1.4 f2)景深越浅,适合拍人物花鸟,光圈越小(比如f8 f16)景 深越深,适合拍风景集体照,。(这也就是为何大多数都喜欢用光圈优先档的原因,能够随时自由的调整光圈以控制景深)

2、镜头焦距越长景深越浅、反之景深越深。 3、主体越近,景深越浅,主体越远,景深越深。 所以,焦距越长,光圈越大的镜头越容易获得浅景深,就是追求背景的虚化。关系 1,光圈越大景深越小,光圈越小景深越大。 2,镜头焦距越长景深越小、反之景深越大。 3,主体越近,景深越小,主体越远,景深越大。

浅景深图片,可见花枝后面的一切都被模糊了 如何控制景深?光圈方面(距离不变) 光圈越大(f值越小),景深越浅(前景/背景看上去就像化掉一样),光圈越小(f值越大),景深越深(就是前景/背景看上去比较清楚) 大光圈f/2.4,浅景深小光圈f/16,深景深

F1.8 留意后面绿色的棋子,旗盘上的洞以及右上方的白布,景深范围比较浅/窄,只是在中间的白色棋子上 F4 将光圈慢慢收细后,远景也开始慢慢清楚 F22 将光圈调到最细,后面的背景也清楚了,此为深景深

第九章 电子光学基础

第九章电子光学基础 第一节电子显微镜的发展 材料电子显微分析技术这门课程研究的内容是与电子显微镜有关的科学和技术。所以我们首先要搞清楚什么是电子显微镜?它是怎样发展起来的?为什么要发展这样一种仪器?它有哪些优缺点?电子显微镜的发展过程及其最新进展如何? 1.1 什么是显微镜 显微镜是用于放大微小物体成为人的肉眼所能看到的仪器。 显微镜是一种借助物理方法产生物体放大影象的仪器 单式显微镜(只有一个透镜):如放大镜等; 复式显微镜(有物镜和目镜):如我们现在比较熟悉的显微镜。 a)第一台复式显微镜;b)列文.虎克显微镜;c)十九世纪的显微镜;d)现在的显微镜 问题:大家用过的光学显微镜中,最大可以放大到多少倍? 1.从理论上来讲,只要我们愿意,我们可以通过增加透镜等方法使光学显微镜的放大倍数达到 无穷大,这在工艺上没有任何问题,但为什么不这样做? 2.涉及到一个重要的概念: 3.光学仪器的分辨本领和分辨率

衍射圆斑中以第一暗环为周界的中央亮斑的光强度约占通过透镜总光强的百分之八十以上,这个中央亮斑被称之为埃里斑。 圆孔的夫琅禾费衍射示意图(a)和衍射圆斑(b) 1.2 显微镜的最小分辨率 显微镜的最小分辨距离由瑞利公式给出: 其中: Δr0:最小可分辨距离; λ:光源的波长; n:物点和透镜之间的折射率;

α:孔径半角,即透镜对物点的张角的一半;nsinα称为数值孔径,用N.A表示。 从上面的公式可以看出,显微镜的分辨本领与人的眼睛和其它记录装置没有任何关系。而仅仅取决于公式中的三个参数,对于光学显微镜而言,孔径半角一般最大可以做到70~75,n的值也不可能很大,因此有的书上将分辨率写成不成超过所用光源波长的二分之一。光学显微镜中,可见光的波长在390~760nm之间,因此我们认为普通光学显微镜的分辨率不会超过200nm(0.2μm)。 正常人眼的分辨能力接近0.1mm,但真正要能清楚地区分两个点,到0.2mm足够了。因此普通的光学显微镜有1000倍就差不多了,但考虑到人与人之间的差别,一般光学显微镜的最大放大倍数在1500~2000倍。紫外显微镜和油浸显微镜的最大放大倍数要大于这个值。 既然是光源的波长限制了显微镜的放大倍数,那么要造出放大倍数更大的显微镜,首先应该选择合适的光源,而电子波正是这样一种理想的光源。 常用的TEM电子波长与加速电压的关系 100 120 200 300 400 加速电压/kV 电子波长/ 0.037 0.0335 0.0251 0.0197 0.0164 第二节电磁透镜 2.1 电磁透镜与光学透镜的比较 无论是光学透镜还是电磁透镜,只要它们能够将光波(无论是可见光还是电子波)会聚或者发散,就可以做成透镜。而且无论是何种透镜它们的几何光学成像原理都是相同的(如上图所示),所以对于透射电子显微成像的光路,我们可以象分析可见光一样来处理。

计算公式

内容简介 一、面阵相机和镜头选型 (2) 二、针对速度和曝光时间的影响,产品是否有拖影 (2) 三、线阵相机和镜头选型 (2) 四、图像采集卡、相机接口、PCI、PCI-E插槽的选型 (3) 五、线阵相机、镜头、光源的选型详解 (4) 六、图像采集卡的选型详解 (9) 七、线阵摄像机与面阵摄像机的区别 (14) 八、图像采集卡选型详解 (18)

一、面阵相机和镜头选型 已知:被检测物体大小为A*B,要求能够分辨小于C,工作距离为D 解答: 1.计算短边对应的像素数E=B/C,相机长边和短边的像素数都要大于E。 2.像元尺寸=产品短边尺寸B/所选相机的短边像素数 3.放大倍率=所选相机芯片短边尺寸/相机短边的视野范围 4.可分辨的产品精度=像元尺寸/放大倍率(判断是否小于C) 5.物镜的焦距=工作距离/(1+1/放大倍率)单位:mm 6.像面的分辨率要大于1/(2*0.1*放大倍率)单位:lp/mm 以上只针对镜头的主要参数进行计算选择,其他如畸变、景深、环境等,可根据实际要求进行选择。 二、针对速度和曝光时间的影响,产品是否有拖影 已知:确定每一次检测的范围为80mm*60mm,200万像素CCD相机(1600*1200),相机或产品运动速度为12m/min = 200mm/s。 曝光时间计算: 曝光时间<长边视野范围/(长边像素值*产品运动速度) 曝光时间< 80mm/(1600*250mm/s) 曝光时间< 0.00025s = 1/4000 s 总结:故曝光时间要小于1/4000 s ,图像才不会产生拖影。 三、线阵相机和镜头选型 相机选型: 已知:幅宽为1600mm、检测精度1mm/pixel、运动速度22000mm/s、物距1300mm 相机像素数=幅宽/检测精度=1600mm /1mm/pixel = 1600pixel 最少2000个像素,选定为2k相机 实际检测精度=幅宽/实际像素=1600mm/2048pixel=0.8mm/pixel 扫描行频=运动速度/实际检测精度=22000mm/0.8mm=27.5KHz 应选定相机为2048像素28kHz相机,像元尺寸10um 选用一个VT-FAGL2015线阵相机或两个103k-1k线阵相机拼接 镜头选型: sensor长度=像素宽度×像素数=0.01mm×2048=20.48mm 镜头焦距=sensor长度×物距/幅宽=20.48×1300/1600=16mm

景深表与景深计算公式

景深表与景深计算公式 在拍摄实践中,当需要了解具体的景深范围时,可以查看相机上或书本上的景深表,也可自行计算出你实际拍摄时的景深范围。 一、相机上的景深表 大部分相机上都有简易的景深表可供查看景深范围。相机上景深表的位置有的在镜头筒上、位于镜头上光圈刻度与距离刻度之间,采用对称的光圈系数如“16、11…11、16”指出每一光圈在某种摄距时的景深。 如用f16拍摄,这种景深表上两个对称的f16标记所指向的距离刻度,一个指景深的远界限,另一个指景深的近界限。相机上的景深表有的位于相机的聚焦钮上,通常采用一组“U”字型的线条,用“U”字的两端在距离刻度上指出景深范围。 相机上的这种景深表只能作为了解景深范围的一种参考,这是因为除了在相机上无法作出精确标度的客观原因外;厂家制定这种景深表的清晰度标准也有一定的随意性;更重要的还在于厂家并不了解你对不同照片的清晰度要求,也不了解你准备放大为多大尺寸的照片。 因此,当你要求高清晰度影像时,或要高倍率放大时,就应该比实际使用的光圈大一、二档来掌握景深范围。如拍摄时用用f11,就按f8或f5.6的景深掌握,反过来,当你需要相机上f11所指示的景深范围时,就用f16或f22拍摄。这样才能在高倍率放大的照片上达到预期的景深效果,或者说能提高你的景深范围内的影像清晰度。 二、表格式的景深表 在摄影书籍上常常可以找到一种表格式的景深表,它们是列出一些镜头焦距与相应光圈、摄距的景深范围。这种书本上的景深表所指示的景深范围比相机上景深表的准确性要高。但是,不如相机上景深表使用方便。而且,在镜头焦距多样化的现代摄影中,这种表格式景深表的局限性就显得更大了。 使用这种表格式景深表时,要注意它也是以某种模糊圈为标准的,当你需要更小的模糊圈时,也应按照比实际使用的光圈大一、二档来掌握景深范围。 三、景深计算公式 景深计算公式可以帮助你了解各种镜头焦距、各种光圈、各种摄距的景深范围。这种计算公式又是针对你所要求的模糊圈的,因而计算出的景深范围更准确、更可靠,当然它比相机上的景深表与书本上的景深表麻烦得多。 1.景深计算公式如下:

景深概念及计算

景深概念与计算 Xitek编 2001^t6g 5e? QHN?绍几个概念: 10 q&p1(focus) N QI轴平行的光线射入凸透镜时,理想的镜头应该是所有的光线聚集在一点后,再以锥状的扩散开来,这个聚集所有光线的一点,就叫做焦点。 20 _%ec圆(circle of confusion) W(q&p1RMT ? QI线开始聚集和扩散,点的影象变成模糊的,形成一个扩大的圆,这个圆就叫做弥散圆。 在现实当中,观赏拍摄的影象是以某种方式(k?Y?b?_q0 e>Y'b qgrG{I{I)ge观察的,人的肉眼所感受到的影象与放大倍率、距离及观看距离有很大的关系,如果弥散圆的直径小于人眼的鉴别能力,在一定范围内实际影象产生的模糊是不能辨认的。这个不能辨认的弥散圆就称为容许弥散圆(permissible circle of confusion)0

不同的厂家、不同的胶片面积都有不同的容许弥散圆直径的数值定义。一般常用的是: 画幅24mm x 36mm6cm x 9cm4" x 5" _%ec圆直径0.035mm0.0817mm0.146mm 35mmqgv?镜头的容许弥散圆,大约是底片对角线长度的1/1000~1/1500]?Só0 RMcDf/u;—be>Y'为5x7??[?v…qgrG? 观离为25~30cm0 30 fom?(depth of field) W(q&p1RMT T g N N*[1许弥散圆,这两个弥散圆之间的距离就叫景深,即:在被摄主体(对焦点)RMT ? Qv_qP?N 围的,就是景深。换言之,被摄体的前后纵深,呈现在底片面的影象模糊度,都在容许弥散圆的限定范围内。

AF原理与实现方式

AF原理与實現方式 一、鏡頭的焦距及對焦原理 1、焦距:從鏡頭的主點到焦點的距離。 2、對焦的原理 由光學原理可知,當景物在無窮遠時,影像處於鏡頭的焦平面上;當景物處於有限距離時,影像位於(1+M)f處,如圖所示。 這裡M是放大率(像距/物距)的絕對值。 由于照相機的底片平面位置是固定不變的,因此,為了近景(有限距離的景物)清晰,必須使鏡頭遠離底片面Mf,這就是對焦。 3、景深 凡是在底片面上能夠形成清晰的影像,所對應的最大景物空間拍攝距離稱為景深。 前景深:a=δFL2/(f2+δFL) 后景深:b=δFL2/(f2-δFL) 景深:Δl=a+b≒2δFL2/f2 其中:δ:模糊圓直徑,一般取d/1000~d/2000; d:底片畫面對角線長度; F:光圈數; L:攝影距離(物距); f:焦距 由上面公式可以看到:焦距和光圈數對景深都有影響。后景深大於前景深。 超焦點距離(后景深=∞所對應的攝影距離)H= f2/δF 4、單焦距鏡頭的解像力

單焦距鏡頭,其焦距固定,只有一個最清晰點。理論上,通過改變對焦值,在每一攝影距離都能利用其最清晰點進行拍攝,從而獲得最佳攝影效果。 而要實現這一點,對于中低檔自動相機來說,系統會變得非常複雜。 二、自動對焦(AF)概述 1、從某種意義上講,自動對焦比自動曝光更為重要,因為曝光不足或者曝 光過度可以由底片的寬容度提供一定的誤差補償,或者在沖印過程通過 化學處理加以修正,而由于對焦不正確所造成的“先天性”影像模糊就 難以不久了。 三、AF的實現方式 1、被動式:對於亮度比較低的景物以及在對比度較低的情況下都不能很好 對焦,或者說對焦誤差大。 2、主動式 3、傳統自動相機以紅外主動式為主。 四、自動對焦(AF)對解像力曲線的影響 以兩段式AF為例說明。

相关主题
文本预览
相关文档 最新文档