当前位置:文档之家› 高二数学选修2-1 空间向量与立体几何 单元测试题

高二数学选修2-1 空间向量与立体几何 单元测试题

高二数学选修2-1 空间向量与立体几何 单元测试题
高二数学选修2-1 空间向量与立体几何 单元测试题

东升学校《空间向量与立体几何》单元测试题

一、选择题(本大题8小题,每小题5分,共40分)

1、若a ,b ,c

是空间任意三个向量, R λ∈,下列关系式中,不成立的是( )

A .a b b a +=+

B .()

a b a b λλλ+=+

C .()()

a b c a b c ++=++ D .b a λ=

2、给出下列命题

①已知a b ⊥

,则()()

a b c c b a b c ?++?-=? ;

②A 、B 、M 、N 为空间四点,若,,BA BM BN

不构成空间的一个基底,则A 、B 、

M 、N 共面;

③已知a b ⊥ ,则,a b

与任何向量不构成空间的一个基底;

④已知{}

,,a b c 是空间的一个基底,则基向量,a b

可以与向量m a c =+ 构成空

间另一个基底.

正确命题个数是( )

A .1

B .2

C .3

D .4

3、已知,a b

均为单位向量,它们的夹角为60?,那么3a b + 等于( )

A B C D .4

4、1,2,,a b c a b ===+ 且c a ⊥

,则向量a b 与的夹角为( )

A .30?

B .60?

C .120?

D .150?

5、已知()()3,2,5,1,,1,a b x =-=- 且2a b ?= ,则x 的值是( ) A .3 B .4 C .5 D .6

6、若直线l 的方向向量为a ,平面α的法向量为n

,则能使//l α的是( )

A .()()1,0,0,2,0,0a n ==-

B .()()1,3,5,1,0,1a n ==

C .()()0,2,1,1,0,1a n ==--

D .()()1,1,3,0,3,1a n =-=

7、在平面直角坐标系中, (2,3),(3,2)A B --,沿x 轴把平面直角坐标系折成120?

的二面角后,则线段AB 的长度为( )

A B . C . D .8、正方体ABCD-A 1B 1C 1D 1的棱长为1,E 是A 1B 1中点,则E 到平面ABC 1D 1的距离是( )

A .

2 B .2 C .12

D .3 二、填空题(本大题共6小题,每空5分,共30分) 9、已知123F i j k =++ ,223F i j k =-+- ,3345F i j k =-+ ,若123,,F F F

共同作用于一物体上,使物体从点M (1,-2,1)移动到N (3,1,2),则合力所作的功是 .

10、在平行六面体ABCD-A 1B 1C 1D 1中,已知∠BAD=∠A 1AB=∠

A 1AD=60?,AD=4,AB=3,AA 1=5, 1AC

= . 11、△ABC 和△DBC 所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=60?,则AD

与平面BCD 所成角的余弦值为 .

12、若直线l 的方向向量为(4,2,m),平面α的法向量为(2,1,-1),且l ⊥α,则m = .

13、已知A(-3,1,5),B(4,3,1),则线段AB 的中点M 的坐标为 . 三、解答题(本大题共6小题,共80分)

14、(本题满分12分)设空间两个不同的单位向量()()1122,,0,,,0a x y b x y ==

向量()1,1,1c =

的夹角都等于45?.

(1)求11x y +和11x y ?的值; (2)求,a b

的大小.

15、(本题满分12分)已知四棱锥P-ABCD 的底面是边长为a 的

正方形,侧棱PA ⊥底面ABCD,E 为PC 上的点且C E :CP=1:4, 则在线段AB 上是否存在点F 使EF//平面PAD?

17、(本题满分14分) 如图,四棱锥S-ABCD 的底面是矩形,AB=a,AD=2,SA=1,且SA

⊥底面ABCD,若边BC 上存在异于B,C 的一点P,使得PS PD ⊥

. (1)求a 的最大值;

(2)当a 取最大值时,求异面直线AP 与SD 所成角的大小;

(3)当a 取最大值时,求平面SCD 的一个单位法向量n

及点P 到平面SCD 的距离.

18、(本题满分14分)已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,

AB =AF=1,M 是线段EF 的中点.

(1)求证:AM//平面BDE ; (2)求证:AM ⊥平面BDF .

19、(本题满分14分)如图所示,矩形ABCD 的边AB=a,BC=2,PA ⊥平面ABCD,PA=2,现有数据:

①2

a =

②1a =;③a =④2a =;⑤4a =; (1)当在BC 边上存在点Q,使PQ ⊥QD 时,a 可能取所给数据中的哪些值?请说明理由; (2)在满足(1)的条件下,a 取所给数据中的最大值时,求直线PQ 与平面ADP 所成角的正切

值;

(3)记满足(1)的条件下的Q 点为Q n (n=1,2,3,…),若a 取所给数据的最小值时,这样的点

Q n 有几个?试求二面角Q n -PA-Q n+1的大小;

20、(本题满分14分)如图所示,在底面是菱形的四棱锥P-ABCD 中,∠

ABC=60?,PA=AC=a,

,点E 在PD 上,且P E :ED=2:1.

(1)证明:PA ⊥平面ABCD ;

(2)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小;

(3)棱PC 上是否存在一点F,使BF ∥平面AEC?证明你的结论.

参考答案:

三、解答题

15、解:(1)依题意,

2222

111111

11

11

11

1

4

x y x y x y

x y x y

?

?+=?

+=+=

?

???

??

??

?

=+=

??=

???

(2)∵单位向量()()

1122

,,0,,,0

a x y

b x y

==

与向量()

1,1,1

c=

的夹角都等于45?.

∴由

11

11

1111

1

4

x x

x y

x y y y

??

?

==

+=??

????

?

???

???

==

=

???

???

,

∴,

4444

a b

????

==

? ?

? ?

????

由1212

1 cos,

44442

x x y y

a b

a b

+

==+=

?

∴,.

3

a b

π

=

16、解:建立如图所示的空间直角坐标系,设PA=b,

则A(0,0,0),B(a,0,0),C(a,a,0),D(0,a,0),P(0,0,b),

则()

,,

CP a a b

=--

,

∵E为PC上的点且C E:CP=1:3,

∴()11,,,,44444a a b CE CP a a b ??=?=?--=-- ???

∴由33,,444a a b CE AE AC AE CE AC ??

=-?=+= ???

,

设点F 的坐标为(x,0,0,) (0≤x ≤a),

则33,,444a a b EF x ??=--- ??

? ,

又平面PAD 的一个法向量为(),0,0AB a =

,

依题意, 33044a a

EF AB x a x ??⊥?-?=?= ??

? ,

∴在线段AB 上存在点F,满足条件,点F 在线段AB 的

34

处.

17、解:建立如图所示的空间直角坐标系,则各点坐标分别为:

A(0,,0,0),B(a,0,0),C(a,2,0),D(0,2,0),S(0,0,1),设P(a,x,0). (0

(1) ∵(),,1,PS a x =-- (),2,0PD a x =--

∴由PS PD ⊥

得: 2(2)0a x x --=

即: 2(2)(02)a x x x =-<<

∴当且仅当x=1时,a 有最大值为1.此时P 为BC 中点;

(2) 由(1)知: (1,1,0),(0,2,1),AP SD ==-

∴cos ,5AP SD AP SD AP SD ==

=?

∴异面直线AP 与SD

所成角的大小为arc (3)

设()1,,n x y z =

是平面

SCD 的一个法向量,∵

(1,0,0),(0,2,1),SD ==-

DC

∴由11110002010

21x x n DC n DC y z y n SD n SD z y ==????⊥=????

??-=?=????

⊥=??????==??

取得1(0,1,2),n = ∴平面SCD

的一个单位法向量(

)1

10,1,2),55n n n ===

又(0,1,0),=- CP 在 n

方向上的投影为51n n

-?== CP ∴点P 到平面SCD

的距离为

5

18、解:建立如图的直角坐标系,则各点的坐标分别为: O(0,0,0),A(0,1,0),B(-1,0,0),C(0,-1,0,),D(1,0,0,),

E(0,-1,1),F(0,1,1),M(0,0,1).

(1) ∵(0,1,1),(0,1,1)AM OE =-=-

∴AM OE =

,即AM//OE,

又∵AM ?平面BDE, OE ?平面BDE, ∴AM//平面BDE; (2) ∵

(2,0,0),(1,1,1),BD DF ==- ∴0,0AM BD AM DF ?=?=

,

∴AM ⊥BD,AM ⊥DF, ∴AM ⊥平面BDF.

19、解:建立如图所示的空间直角坐标系,则各点坐标分别为:

A(0,0,0,),B(a,0,0),C(a,2,0),D(0,2,0),P(0,0,2),设Q(a,x,0).(0≤x ≤2)

(1) ∵()(),,2,,2,0,PQ a x QD a x =-=--

∴由PQ ⊥QD 得 22(2)0(2)PQ QD a x x a x x ⊥?-+-=?=-

∵[](]20,2,(2)0,1x a x x ∈=-∈

∴在所给数据中,a

可取2

a =

1a =两个值. (2) 由(1)知1a =,此时x=1,即Q 为BC 中点, ∴点Q 的坐标为(1,1,0)

从而()1,1,2,PQ =- 又()1,0,0AB =

为平面ADP 的一个法向量,

∴cos ,PQ AB PQ AB PQ AB

?==

=?

∴直线PQ 与平面ADP

(3) 由(1)

知a =

此时13

,22

x x ==或,即满足条件的点Q 有两个,

其坐标为1213,0,022Q Q ??

????????

和 ∵PA ⊥平面ABCD,∴PA ⊥AQ 1,PA ⊥AQ 2,

∴∠Q 1AQ 2就是二面角Q 1-PA-Q 2的平面角.

由12121233cos ,AQ AQ AQ AQ AQ AQ +?===? 得∠Q 1AQ 2

=30?, ∴二面角Q 1-PA-Q 2的大小为30?.

20、解:(1)∵PA=AC=a ,

∴222222,,PA AB PB PA AD PD +=+=

∴PA ⊥AB 且PA ⊥AD ,

∴PA ⊥平面ABCD ,

(2)∵底面ABCD 是菱形,∴AC ⊥BD ,设AC ∩BD=O ,

∴以O 为原点,建立如图所示的空间直角坐标系,则各点坐标分别为:

0,,0,2a A ??- ??

?,0,0,2B ?? ? ???0,,0,2a C ??

??

?,0,0,2D ??- ? ???0,,,2a P a ??- ??

? ∵ 点E 在PD 上,且P E :ED=2:1. ∴3DP DE =

,即:()

3DP OE OD =-

,,63a a OE ??=- ? ??? ,即点E

的坐标为,,63a a E ??- ? ???

又平面DAC 的一个法向量为()10,0,1n =

设平面EAC 的一个法向量为()2,,,n x y z = 0,,02a OC ??

= ???

,,63a a OE ??=- ? ??

?

由22220

210003630a

y x n OC n OC a a ax y z y n OE n OE z ??=???=??⊥=???

???--+=?=????⊥=??????=????

取x=1

得(21,,3,

n =

∴12121212cos ,,122

6n n n n n n n n π?==

=?=??

∴由图可知二面角E-AC-D 的大小为

.6

π

(3)设在CP 上存在点F ,满足题设条件,

由(01)CF CP λλ=≤≤ ,得120,,2OF OC CP a a λλλ-??

=+= ???

∴12120,,,0,0,,2222BF a a a a a λλλλ????--??=-=- ? ? ? ? ??????? 依题意,则有2BF n ⊥

∴12,,22a a a λλ??-- ? ??

?

(0=

1

02a λ?=?= ∴点F 为PC 中点时,满足题设条件.

一.选择题:(10小题共40分)

1.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O,下列条件中能确定点M 与点A 、B 、

C 一 定共

( ) A.++= B.--=2

C.31

21++

= D.3

1

3131++=

2.直三棱柱ABC —A 1B 1C 1中,若====A CC 11,,,则

( ) A.c b a -+ B.c b a +- C.c b a ++-

D.c b a -+-

3.

若向

λ

μλμλ且向量和垂直向量R b a n b a m ∈+=,(,、

)0≠μ ( )

A.n m //

B.n m ⊥

C.n m n m 也不垂直于不平行于,

D.以上三种情况都

可能 4.

以下

,

( ) A.若OB OA OP

3

1

21+=

,则P 、A、B三点共线 B.设向量},,{c b a 是空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底

C.

?=?(

D.△ABC 是直角三角形的充要条件是0=? 5.对空间任意两个向量//),(,≠的充要条件是

( )

A.b a =

B.b a -=

C.a b λ=

D.b a λ=

6.已知向量b a b a 与则),2,1,1(),1,2,0(--==的夹角为

( )

A.0°

B.45°

C.90°

D.180°

7.在平行六面体1111D C B A A B C D -中,M 为AC 与BD 的交点,若

A D A

B A ===11111,,,

B 1相等的是

( ) A.212121++- B.212121++ C.+-2121 D.-+-2

1

21 8.

值分别

与则若μλμλλ,//),2,12,6(),2,0,1(-=+= ( )

A.2

1

,

51 B.5,2

C.2

1,51--

D.-5,-2

9.已知的数量积等于与则b a k j i b k j i a 35,2,23+-=-+=

( )

A.-15

B.-5

C.-3

D.-1

10.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM

与CN

所成角的余弦值是 ( )

A.5

2-

B.

5

2 C.

5

3 D.

10

10 二.填空题: (4小题共16分)

11.若A(m+1,n-1,3),B(2m,n,m-2n),c(m+3,n-3,9)三点共线,则m+n= .

12.已知A (0,2,3),B (-2,1,6),C (1,-1,5),若a AC a AB a a 则向量且,,,3||⊥⊥=

的坐标为 .

13.已知b a ,是空间二向量,若b a b a b a 与则,7||,2||,3||=

-==的夹角

为 .

14.已知点G 是△ABC 的重心,O 是空间任一点,若的值

则λλ,OG OC OB OA =++为 .

三.解答题:(10+8+12+14=44分)

15.如图:ABCD 为矩形,PA ⊥平面ABCD ,PA=AD ,M 、N 分别是PC 、AB 中点, (1)求证:MN ⊥平面PCD ;(2)求NM 与平面ABCD 所成的角的大小.

16.一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300

,求这条线段与这个二面角的棱所成的角的大小.

17.正四棱锥S —ABCD 中,所有棱长都是2,P 为SA 的中点,如图.

(1)求二面角B —SC —D 的大小;(2)求DP 与SC 所成的角的大小.

18.如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA=CB=1,∠BCA=90°,棱AA 1=2,M 、N

分别是A 1B 1,A 1A 的中点; (1)求;

(2)求;,cos 11的值>

(4)求CB 1与平面A 1ABB 1所成的角的余弦值.

高中数学选修2-1测试题(10)—空间向量(1)参考答案

DDBB DCDA AB 11.0 12.(1,1,1) 13.600

14.3 15.(1)略 (2)450

16.450

17.(1) 1

3

-

(2) π

10略 (4)10

18.如图,建立空间直角坐标系O —xyz.(1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=

3)01()10()01(222=-+-+-.

(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2)

∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,

|1CB |=

5∴cos<1BA ,1CB 3010

1

|

|||1111=

?CB BA CB BA .

(3)证明:依题意,得C 1(0,0,2)、M (

21,21,2)

,B A 1={-1,1,2},M C 1={2

1

,21,0}.∴B A 1·M C 1=-

2

1

21 +0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M. 评述:本题主要考查空间向量的概念及运算的基本知识.考查空间两向量垂直的充要条件.

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

高中数学-空间向量及向量的应用

高中数学 - 空间向量及向量的应用 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设 , , 空间向量的直角坐标运算: 空间两点间距离: ; 1:利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 1 )异面直线所成角 设 分别为异面直线 的方向向量,则 则: 空间线段 的中点 M (x ,y ,z )的坐标:

2 )线面角 设 是直线 l 的方向向量, n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 分别为平面 的法向量,则 与 互补或相等, 操作方法: 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos ( S 为原斜面面积 , S 为射影面积 , 为斜面与射影所成二面 角的平面角 )这个公式对于斜面为三角 形 , 任意多边形都成立 . 是求二面角的好方法 .当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式 ,求出二面角的大小。 2.空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3.空间向量的应用 (1)用法向量求异面直线间的距离 2)直线与平面所成的角的范围是 [0, ] 。射影转化法 2 方法 3)二面角的范围一般是指 (0, ],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 1)异面直线所成的角的范围 是 b F

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

高中数学的空间向量知识

高中数学的空间向量知识 基本内容 空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。 如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。 以下用向量法求解的简单常识: 1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同) 2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面. 3、利用向量证a‖b,就是分别在a,b上取向量(k∈R). 4、利用向量证在线a⊥b,就是分别在a,b上取向量. 5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题. 6、利用向量求距离就是转化成求向量的模问题:. 7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标. 首先该图形能建坐标系 如果能建 则先要会求面的法向量 求面的法向量的方法是 1。尽量在空中找到与面垂直的向量 2。如果找不到,那么就设n=(x,y,z) 然后因为法向量垂直于面 所以n垂直于面内两相交直线

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 设血勺乃召),氓叫?乃w ), AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂) 空间向量的直角坐标运算: 设Q = 2],砌,色3 $ =1鹉毎妇则; ① 口+ b= P],曲,电 宀|俎,给禺 ?=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,? ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並: ⑤ 口0Fe 鱼二 空三生=左或。『舌寻口[三碣‘ - 冊节 处二赵; 对? $ ⑥ 7丄匸q 口血十口曲十m 禺=0 ; 空间两点间距离:丄“ 「 1 :利用空间向量证明空间位置关系(同平面向量) 2:利用空间向量求线线角、线面角 (1)异面直线所成角Z ? gw 设Q”分别为异面直线讥的方向向量,则 则: 空间线段 的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则: 规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应

(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则 3 :利用空间向量求二面角 其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等, - ? ? . m * n |( csfl i = | A>| = I 忘I * I 云I 操作方法: 1 ?空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 ①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法: 斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面 角的平面角)这个公式对于斜面为三角形 ,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时 如果能找得斜面面积的射影面积 ,可直接应用公式,求岀二面角的大小。 2 ?空间的距离 点线距,点面距,线线距,线面距,面面距都是对应图形上两点间的最短距离 3 ?空间向量的应用 (1 )用法向量求异面直线间的距离 CQS P rris-:欧 * b (1)异面直线所成的角的范围是 (2 )直线与平面所成的角的范围是 [0,—]。射影转 化法 2 方法 (3 )二面角的范围一般是指 (0,],解题时要注意图形的位置和题目的要求。作二面角的平面角常有三种 b F

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

数学高二-选修2-1测评7 空间向量的运算

学业分层测评(七) (建议用时:45分钟) [学业达标] 一、选择题 1.(2016·广州高二检测)若a ,b 均为非零向量,则a·b =|a ||b |是a 与b 共线的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【解析】 由a·b =|a ||b |cos θ=|a||b|可知cos θ=1,由此可得a 与b 共线;反过来,若a ,b 共线,则cos θ=±1,a·b =±|a ||b |.故a·b =|a ||b |是a ,b 共线的充分不必要条件. 【答案】 A 2.如图2-2-7所示,已知三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,点G 在线段MN 上,且MG =2GN .设OG →=xOA →+yOB →+zOC → ,则x ,y ,z 的值分别为( ) 图2-2-7 A .x =13,y =13,z =1 3 B .x =13,y =13,z =1 6 C .x =13,y =16,z =1 3 D .x =16,y =13,z =1 3

【解析】 OG →=OM →+MG →=12OA →+23MN → =12OA →+23(ON →-OM →)=12OA →-23OM →+23ON → =? ????12-13OA →+23×12(OB →+OC →) =16OA →+13OB →+13OC →, ∴x =16,y =13,z =13. 【答案】 D 3.已知e 1、e 2互相垂直,|e 1|=2,|e 2|=2,a =λe 1+e 2,b =e 1-2e 2,且a 、b 互相垂直,则实数λ的值为( ) A.12 B .14 C .1 D .2 【解析】 ∵a ⊥b ,∴(λe 1+e 2)·(e 1-2e 2)=0. 又e 1⊥e 2,∴e 1·e 2=0. ∴λe 21-2e 22=0.又∵|e 1|=2,|e 2|=2, ∴4λ-8=0,∴λ=2. 【答案】 D 4.设向量a ,b 满足|a |=|b |=1,a·b =-12,则|a +2b |=( ) 【导学号:32550026】 A. 2 B . 3 C. 5 D .7 【解析】 依题意得|a +2b |2=a 2+4b 2+4a·b =5+4×? ????-12=3,则|a +2b | = 3. 【答案】 B

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学 空间向量及其运算 教案

空间向量及其运算 【高考导航】 本节内容是高中教材新增加的内容,在近两年的高考考查中多作为解题的方法进行考查,主要是解题的方法上因引入向量得以扩展.例如2001上海5分,2002上海5分. 【学法点拨】 本节共有4个知识点:空间向量及其线性运算、共线向量与共面向量、空间向量的分解定理、两个向量的数量积.这一节是空间向量的重点,在学习本节内容时要与平面向量的知识结合起来,认识到研究的范围已由平面扩大到空间.一个向量是空间的一个平移,两个不平行向量确定的是一个平行平面集,在此基础上,把平行向量基本定理和平面向量基本定理推广到空间,得出空间直线与平面的表达式,有了这两个表达式,我们可以很方便地解决空间的共线和共面问题.空间向量基本定理是空间几何研究代数化的基础,有了这个定理,整个空间被3个不共面的基向量所确定,空间一个点或一个向量和实数组(x ,y ,z )建立起一一对应关系,空间向量的数量积一节中,由于空间任一向量都可以转化为共面向量,所以空间两个向量的夹角的定义、取值范围、两个向量垂直的定义和表示符号及向量的模的概念和表示符号等,都与平面向量相同. 【基础知识必备】 一、必记知识精选 1.空间向量的定义 (1)向量:在空间中具有大小和方向的量叫作向量,同向且等长的有向线段表示同一向量或相等向量. (2)向量的表示有三种形式:a ,AB ,有向线段. 2.空间向量的加法、减法及数乘运算. (1)空间向量的加法.满足三角形法则和平行四边形法则,可简记为:首尾相连,由首到尾.求空间若干个向量之和时,可通过平移将它们转化为首尾相接的向量.首尾相接的若干个向量若构成一个封闭图形,则它们的和为0,即21A A +32A A +…1A A n =0. (2)空间向量的减法.减法满足三角形法则,让减数向量与被减数向量的起点相同,差向量由减数向量的终点指向被减数向量的终点,可简记为“起点相同,指向一定”,另外要注意 -=的逆应用. (3)空间向量的数量积.注意其结果仍为一向量. 3.共线向量与共面向量的定义. (1)如果表示空间向量的有向线段在直线互相平行或重合,那么这些向量叫做共线向量或平行向量.对于空间任意两个向量a,b(b≠0),a∥b ?a=λb ,若A 、B 、P 三点共线,则对空间任意一点O ,存在实数t,使得OP =(1-t)OA +t OB ,当t=2 1 时,P 是线段AB 的中点,则中点公式为OP = 2 1 (OA +). (2)如果向量a 所在直线O A 平行于平面α或a 在α内,则记为a ∥α,平行于同一个平面的

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高二数学空间向量与立体几何单元测试卷一

A A 1 D C B B 1 C 1 图 高二(2)部数学《空间向量与立体几何》单元测试卷一 班级____姓名_____ 一、选择题:(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB = 2BB 1,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .105° D .75° 2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4 1 1B A ,则BE 1 与DF 1所成角的余弦值是 ( ) A . 1715 B .2 1 C . 17 8 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别 是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 21 C .1530 D .10 15 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离 ( ) A . 5 15 B . 5 5 C . 5 5 2 D . 10 5 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离 ( ) A . a 42 B .a 82 C .a 423 D .a 2 2 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( ) A . 6 3 B . 3 3 C . 3 3 2 D . 2 3 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC = 2 1 PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( ) A . 6 21 B . 3 3 8 C . 60210 D . 30 210 图 图

高中空间向量试题

高二数学单元试题 1.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2 a -b 互相垂直,则k 的值是( ) A . 1 B . 51 C . 53 D . 5 7 2.已知与则35,2,23+-=-+=( )A .-15 B .-5 C .-3 D .-1 3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) A .OM ++= B .OM --=2 C .3121++ =D .3 1 3131++= 4.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为 ( ) A . 0° B . 45° C . 90° D .180° 5.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为 A .2 B .3 C .4 D .5 6.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =xa +yb +zc .其中正确命题的个数为( )A . 0 B .1 C . 2 D .3 7.已知空间四边形ABCD ,M 、G 分别是BC 、CD 的中点,连结AM 、AG 、MG ,则?→ ?AB +1 ()2 BD BC +等于( ) A .?→ ?AG B . ?→ ?CG C . ?→ ?BC D .21?→? BC 8.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A . +-a b c B .-+a b c C . -++a b c D . -+-a b c 9.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 10.已知点A (4,1,3),B (2,-5,1),C 为线段AB 上一点,且3||||AC AB =,则点的坐标是 ( ) A .715(,,)222- B . 3(,3,2)8- C . 107(,1,)33- D .573(,,)222 - 11.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=?=?=?,则△BCD 是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定 12.(理科)已知正方形ABCD 的边长为4, E 、 F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,则点B 到平面 EFG 的距离为( ) A . 1010 B . 11112 C . 5 3 D . 1 二.填空题(本大题4小题,每小题4分,共16分) 13.已知向量a =(λ+1,0,2λ),b =(6,2μ-1,2),若a ∥b,则λ与μ的值分别是 . 14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b -c ,则m ,n 的夹角为 . 15.已知向量a 和c 不共线,向量b ≠0,且()()??=??a b c b c a ,d =a +c ,则,??d b = .

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

相关主题
文本预览
相关文档 最新文档