当前位置:文档之家› 热传导方程求解-分离变量法

热传导方程求解-分离变量法

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

扩散方程的差分解法

扩散方程的差分解法 在研究热传导过程、扩散过程、边界层现象时,我们常常遇到抛物型方程,这类方程中最典型、最简单的就是热传导方程。热传导方程中的自变量中包括时间t ,它是描述一种随时间变化的物理过程,即所谓不定常现象。这类问题的基本定解问题应是初值问题,即在初始时刻(t=0)时给定定解条件,求解t>0时的解。 本文主要运用有限差分法对一维扩散方程进行求解,并对差分解的适定性、相容性、收敛性及稳定性进行分析,同时与解析解进行对比。 1.扩散方程 一维扩散方程为: 22u u t x α??=?? (1) 式中,u 为因知量,α为扩散系数,x 为坐标,t 为时间。 其定解条件如下: 初始条件: (,0)() 0x u x f x L =≤≤ (2) 边界条件: 12(0,)() , (,)()u t f t u L t f t == (3) 一般假定函数()f x ,1()f t ,2()f t 满足连接条件,即1(0)(0) f f =,2()(0) f L f =。 2.有限差分法 有限差分法是数值计算解微分方程古老的方法之一,也是系统化地、数值地求解数学物理方法的方程。其控制方程中的导数用离散点上函数值的差商代替。 差分格式可以分为显格式和隐格式。所谓显格式是指在任一结点上因变量在新是时间层上的值可以通过之前的时间层上相邻结点变量的值显式解出来。由于这些层的变量值是已知的,当时间向前推进时,空间点上的新的变量值就只需逐点计算就行了,因此显格式计算起来比较省事。隐格式则是指任一结点上变量在新的时间层的值,不能通过之前的时间层上相邻结点的值显式解出来,它不仅与之前的时间层上的已知值有关,而且也与新时间层的相邻结点的变量值有关。因而一个差分方程常常包括几个相邻结点上的未知数,未知数的个数取决于格式的构成形式。为了解出这些未知数需要联立新的方程,而每引进一个新的方程往往又同时引进了新的未知数。因此,隐格式总是伴随着求解巨大的代数方程组。隐格式的主要缺点是计算工作量大,因而不如显格式计算得快,但这只是就时间步长一样的情况而言的。隐格式的主要优点是时间步长可以比显格式能够采用的最大步长大很多。显格式的时间步长受到稳定性条件的限制,而隐格式则几乎不受限制。 3.方程的离散 3.1 显格式 采用时间前差及第n 时间层的空间中心差,得一维扩散方程的显格式解: 111 2 2()n n n n n j j j j j u u u u u t x α ++---+=?? (4) 即 111(2) n n n n n j j j j j u u r u u u ++-=+-+ (5)

热传导方程的初值问题

§2热传导方程的初值问题 一维热传导方程的初值问题(或Cauchy 问题) ?? ???+∞<<∞-=>+∞<<∞-=??-??x x x u t x t x f x u a t u ),()0,(0 ,),,(2 2 2? () 偏导数的多种记号xx x t u x u u x u u t u =??=??=??22,,. 问题也可记为 ?? ?+∞ <<∞-=>+∞<<∞-=-x x x u t x t x f u a u xx t ),()0,(0 ,,),(2?. Fourier 变换 我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上 可积,若积分 ? +∞ ∞ -dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。 将),(+∞-∞上绝对可积函数形成的集合记为),(1 +∞-∞L 或),(+∞-∞L , 即{ } ∞<=+∞-∞=+∞-∞? +∞ ∞ -dx x f f L L )(| ),(),(1 ,称为可积函数空间. 连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C , {}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。 定义 若),(+∞-∞∈L f ,那么积分 ),(?)(21 λπ λf dx e x f x i =? +∞ ∞ -- 有意义,称为Fourier 变换, )(? λf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ? +∞ ∞ --= =dx e x f f Ff x i λπ λλ)(21)(?)( 定理 (Fourier 积分定理)若),(),(1 +∞-∞?+∞-∞∈C L f ,那么我们有

3-5 -可分离变量型方程及其解法

2.1 可分离变量型方程的解法 [教学内容] 1. 介绍导数、不定积分公式表及其意义; 2.介绍求导和求不定积分的法则; 3. 引入齐次方程的概念及其求解方法; 4. 介绍其他可分离变量型方程及其解法. [教学重难点] 重点是知道齐次方程如何引入新的因变量化为分离变量型方程,难点是如何根据方程的形式引入新的变量变换使得新方程为可分离变量型方程. [教学方法] 自学1、2;讲授3、4,5课堂练习 [考核目标] 1. 会熟记、记准导数公式和积分公式; 2. 知道求导法则和积分法则,并熟练、正确计算函数的导数和不定积分; 3. 知道齐次方程的形式 )x y f (dx dy =,并会用变换x y u =,将原方程化为 变量可分离型方程; 4. 知道探照灯形状设计问题及其求解步骤和方法; 5. 知道如何将函数 方程或积分方程求解问题化归为微分方程来求解. 1. 导数公式和积分表的意义 小学时大家熟记乘法口诀表,这是小学、中学数学乘、除运算的基础,要不然,买2斤苹果3斤梨子,都不知道该付给商贩多少钱。 大学时大家关心的是函数,其中求导和求积分是两个重要的运算,函数的不少性质需要求助于这两种运算的结果,比如单调性、凸凹性、曲线的长度等.(导数表参见《数学分析上》P101基本初等函数的导数公式,积分表参见《数学分析上》P180 列表) 练习17. (1) 合上书本,写出基本初等函数的导数公式和不定积分公式. (2)双曲正弦2e e sh x x x --=,双曲余弦2 e e ch x x x -+=,(有的教材用sinh x 和 cosh x 表 示). 证明:1x sh x ch ch x,(sh x)' sh x,(ch x)'2 2 =-==. 2. 求导法则和积分法则 碰到的函数成千上万,不可能记住所有这些函数的导数(积分)公式,但你要会将这些函数的导数(积分)转化为上面基本初等函数的导数(积分)来算,这就要知道求导(积分)法则. 对于一元函数f(x)y =而言,可导性和可微性是等价的, (x)' f dx dy =(x)dx ' f dy =?,导数也称为微商,原因是(x)' f 是y 的微分与x 微分的商. 下面就给出求导、求微分、求积分 法则. 设g(x) v f(x), u ==均可导,则 (x)' g (x)' f g(x))'(f(x)+=+, dv du v)d(u +=+; 相应(1)???+=+dv du v)d(u ; (x)' g )f(x (x)g(x)' f g(x))'(f(x)+=?, dv u du v v)d(u +=?;于是相应地有 (2) ???+=?dv u du v v)d(u ; (x)g' (g(x))' f (g(x)) (f dx d =,g(x) v dv, )v ('f d(f(g(x)))==;于是相应地有

【毕业设计(论文)】二维热传导方程有限差分法的MATLAB实现

第1章前言 1.1问题背景 在史策教授的《一维热传导方程有限差分法的MATLAB实现》和曹刚教授的《一维偏微分方程的基本解》中,对偏微分方程的解得MATLAB实现问题进行过研究,但只停留在一维中,而实际中二维和三维的应用更加广泛。诸如粒子扩散或神经细胞的动作电位。也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与Ornstein-uhlenbeck过程。热方程及其非线性的推广形式也被应用与影响分析。 在科学和技术发展过程中,科学的理论和科学的实验一直是两种重要的科学方法和手段。虽然这两种科学方法都有十分重要的作用,但是一些研究对象往往由于他们的特性(例如太大或太小,太快或太慢)不能精确的用理论描述或用实验手段来实现。自从计算机出现和发展以来,模拟那些不容易观察到的现象,得到实际应用所需要的数值结果,解释各种现象的规律和基本性质。 科学计算在各门自然科学和技术科学与工程科学中其越来越大的作用,在很多重要领域中成为不可缺少的重要工具。而科学与工程计算中最重要的内容就是求解科学研究和工程技术中出现的各种各样的偏微分方程或方程组。 解偏微分方程已经成为科学与工程计算的核心内容,包括一些大型的计算和很多已经成为常规的计算。为什么它在当代能发挥这样大的作用呢?第一是计算机本身有了很大的发展;第二是数值求解方程的计算法有了很大的发展,这两者对人们计算能力的发展都是十分重要的。 1.2问题现状 近三十年来,解偏微分方程的理论和方法有了很大的发展,而且在各个学科技术的领域中应用也愈来愈广泛,在我国,偏微分方程数值解法作为一门课程,不但在计算数学专业,而且也在其他理工科专业的研究生的大学生中开设。同时,求解热传导方程的数值算法也取得巨大进展,特别是有限差分法方面,此算法的特点是在内边界处设计不同于整体的格式,将全局的隐式计算化为局部的分段隐式计算。而且精度上更好。 目前,在欧美各国MATLAB的使用十分普及。在大学的数学、工程和科学系科,MATLAB

高数可分离变量的微分方程教案

§7. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212 =, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ) ,(),(y x P y x Q dy dx -=.

可分离变量的微分方程: 如果一个一阶微分方程能写成 g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.

【文献综述】热传导方程差分格式的收敛性和稳定性

文献综述 信息与计算科学 热传导方程差分格式的收敛性和稳定性在实际研究物理问题过程中, 往往能给出问题相应的数学表达式, 但是由于实际物理问题的复杂性, 它的解却一般不容易求出. 由此计算物理应运而生, 计算物理是以计算机为工具, 应用数学的方法解决物理问题的一门应用性学科, 是物理、数学和计算机三者结合的交叉性学科. 它产生于二战期间美国对核武器的研究, 伴随着计算机的发展而发展. 计算物理的目的不仅仅是计算, 而是要通过计算来解释和发现新的物理规律. 这一点它与传统的实验物理和理论物理并无差别, 所不同的只是使用的工具和方法. 计算物理早已与实验物理和理论物理形成三足鼎立之势, 甚至有人提出它将成为现代物理大厦的“栋梁”. 在一个物理问题中一个数值解往往比一个式子更直观, 更有价值. 在实际求解方程时, 除了一些特殊的情况下可以方便地求得其精确解外, 在一般情况下, 当方程或定解条件具有比较复杂的形式, 或求解区域具有比较复杂的形状时, 往往求不到, 或不易求到其精确解. 这就需要我们去寻找方程的近似解, 特别是数值近似解, 简称数值解. 这里主要研究的是热传导方程. 有限差分法是微分方程和积分微分方程数值解的方法. 其基本思想是把连续的定解区域用有限个离散点构成的网格来代替, 这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似, 积分用积分和来近似, 于是原微分方程和定解条件就近似地代之以代数方程组, 即有限差分方程组, 解此方程组就可以得到原问题在离散点上的近似解. 然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解. 热传导的差分法是求解热传导方程的重要方法之一. 对于差分格式的的求解, 我们首先要关注差分格式的收敛性和稳定性. 对于一个微分方程建立的各种差分格式, 为了有实用意义, 一个基本要求是它们能够任意逼近微分方程, 即相容性要求. 一个差分格式是否有用, 就要看差分方程的精确解能否任意逼近微分方程的解, 即收敛性的概念. 此外, 还有一个重要的概念必须考虑, 即差分格式的稳定性. 因为差分格式的计

导热方程求解matlab

使用差分方法求解下面的热传导方程 2 (,)4(,) 0100.2t xx T x t T x t x t =<<<< 初值条件:2(,0)44T x x x =- 边值条件:(0,)0(1,)0 T t T t == 使用差分公式 1,,1,2 2 2 (,)2(,)(,) 2(,)()i j i j i j i j i j i j xx i j T x h t T x t T x h t T T T T x t O h h h -+--++-+= +≈ ,1,(,)(,) (,)()i j i j i j i j t i j T x t k T x t T T T x t O k k k ++--= +≈ 上面两式带入原热传导方程 ,1,1,,1,2 2i j i j i j i j i j T T T T T k h +-+--+= 令2 24k r h =,化简上式的 ,1,1,1,(12)()i j i j i j i j T r T r T T +-+=-++ i x j t j

编程MA TLAB 程序,运行结果如下 1 x t T function mypdesolution c=1; xspan=[0 1]; tspan=[0 0.2]; ngrid=[100 10]; f=@(x)4*x-4*x.^2; g1=@(t)0; g2=@(t)0; [T,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid); [x,t]=meshgrid(x,t); mesh(x,t,T); xlabel('x') ylabel('t') zlabel('T') function [U,x,t]=rechuandao(c,f,g1,g2,xspan,tspan,ngrid) % 热传导方程:

一维导热方程 有限差分法 matlab实现

第五次作业(前三题写在作业纸上) 一、用有限差分方法求解一维非定常热传导方程,初始条件和边界条件见说明.pdf 文件,热扩散系数α=const , 22T T t x α??=?? 1. 用Tylaor 展开法推导出FTCS 格式的差分方程 2. 讨论该方程的相容性和稳定性,并说明稳定性要求对求解差分方程的影响。 3. 说明该方程的类型和定解条件,如何在程序中实现这些定解条件。 4. 编写M 文件求解上述方程,并用适当的文字对程序做出说明。(部分由网络搜索得到,添加,修改后得到。) function rechuandaopde %以下所用数据,除了t 的范围我根据题目要求取到了20000,其余均从pdf 中得来 a=0.00001;%a 的取值 xspan=[0 1];%x 的取值范围 tspan=[0 20000];%t 的取值范围 ngrid=[100 10];%分割的份数,前面的是t 轴的,后面的是x 轴的 f=@(x)0;%初值 g1=@(t)100;%边界条件一 g2=@(t)100;%边界条件二 [T,x,t]=pdesolution(a,f,g1,g2,xspan,tspan,ngrid);%计算所调用的函数 [x,t]=meshgrid(x,t); mesh(x,t,T);%画图,并且把坐标轴名称改为x ,t ,T xlabel('x') ylabel('t') zlabel('T') T%输出温度矩阵 dt=tspan(2)/ngrid(1);%t 步长 h3000=3000/dt;

h9000=9000/dt; h15000=15000/dt;%3000,9000,15000下,温度分别在T矩阵的哪些行T3000=T(h3000,:) T9000=T(h9000,:) T15000=T(h15000,:)%输出三个时间下的温度分布 %不再对三个时间下的温度-长度曲线画图,其图像就是三维图的截面 %稳定性讨论,傅里叶级数法 dx=xspan(2)/ngrid(2);%x步长 sta=4*a*dt/(dx^2)*(sin(pi/2))^2; if sta>0,sta<2 fprintf('\n%s\n','有稳定性') else fprintf('\n%s\n','没有稳定性') error end %真实值计算 [xe,te,Te]=truesolution(a,f,g1,g2,xspan,tspan,ngrid); [xe,te]=meshgrid(xe,te); mesh(xe,te,Te);%画图,并且把坐标轴名称改为xe,te,Te xlabel('xe') ylabel('te') zlabel('Te') Te%输出温度矩阵 %误差计算 jmax=1/dx+1;%网格点数 [rms]=wuchajisuan(T,Te,jmax) rms%输出误差

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。

在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系: 圆柱坐标系: 球坐标系: 其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维)

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

热传导方程的求解

应用物理软件训练 前言 MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其

他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。 本部分主要介绍如何根据所学热传导方程的理论知识进行MATLAB数值实现可视化。

题目:热传导方程的求解 目录 一、参数说明 (1) 二、基本原理 (1) 三、MATLAB程序流程图 (3) 四、源程序 (3) 五、程序调试情况 (6) 六、仿真中遇到的问题 (9) 七、结束语 (9) 八、参考文献 (10)

一、参数说明 U=zeros(21,101) 返回一个21*101的零矩阵 x=linspace(0,1,100);将变量设成列向量 meshz(u)绘制矩阵打的三维图 axis([0 21 0 1]);横坐标从0到21,纵坐标从0到1 eps是MATLAB默认的最小浮点数精度 [X,Y]=pol2cart(R,TH);效果和上一句相同 waterfall(RR,TT,wn)瀑布图 二、基本原理 1、一维热传导问题 (1)无限长细杆的热传导定解问题 利用傅里叶变换求得问题的解是: 取得初始温度分布如下 这是在区间0到1之间的高度为1的一个矩形脉冲,于是得 (2)有限长细杆的热传导定解问题

用分离变量法解常微分方程

用分离变量法解常微分方程 . 1 直接可分离变量的微分方程 1.1形如 dx dy = ()x f ()y ? (1.1) 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将(1.1)改写成 ) (y dy ?= ()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:? )(x dy ?=? dx x f )( + c. (1.2) 其中,c 表示该常数,? )(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证(1.2)有意义.使()0=y ?的0y y =是方程(1.1)的解. 例1 求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: ), ,(11112 2 <<-- =-y x x dx y dy (2)两边积分: c x dx y dy +-=-? ? 2 2 11 , 得

c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题. 例2 曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点 ),(y x P 的法线的斜率. 解:由题意得 y ' - =1法κ. 从而法线PQ 的方程为 )(1 x X y y Y -' - =-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(1 2x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 y x =+2 2 2 其中c 为任意正数,如图1.

热传导方程傅里解

热传导方程傅里解

————————————————————————————————作者:————————————————————————————————日期:

热传导在三维的等方向均匀介质里的传播可用以下方程表达: 其中: ?u =u(t, x, y, z) 表温度,它是时间变量t 与空间变量(x,y,z) 的函数。 ?/是空间中一点的温度对时间的变化率。 ?, 与温度对三个空间座标轴的二次导数。 ?k决定于材料的热传导率、密度与热容。 热方程是傅里叶冷却律的一个推论(详见条目热传导)。 如果考虑的介质不是整个空间,则为了得到方程的唯一解,必须指定u 的边界条件。如果介质是整个空间,为了得到唯一性,必须假定解的增长速度有个指数型的上界,此假定吻合实验结果。 热方程的解具有将初始温度平滑化的特质,这代表热从高温处向低温处传播。一般而言,许多不同的初始状态会趋向同一个稳态(热平衡)。因此我们很难从现存的热分布反解初始状态,即使对极短的时间间隔也一样。 热方程也是抛物线偏微分方程最简单的例子。 利用拉普拉斯算子,热方程可推广为下述形式

其中的是对空间变量的拉普拉斯算子。 热方程支配热传导及其它扩散过程,诸如粒子扩散或神经细胞的动作电位。热方程也可以作为某些金融现象的模型,诸如布莱克-斯科尔斯模型与 Ornstein-Uhlenbeck 过程。热方程及其非线性的推广型式也被应用于影像分析。量子力学中的薛定谔方程虽然有类似热方程的数学式(但时间参数为纯虚数),本质却不是扩散问题,解的定性行为也完全不同。 就技术上来说,热方程违背狭义相对论,因为它的解表达了一个扰动可以在瞬间传播至空间各处。扰动在前方光锥外的影响通常可忽略不计,但是若要为热传导推出一个合理的速度,则须转而考虑一个双曲线型偏微分方程。 以傅里叶级数解热方程[编辑] 以下解法首先由约瑟夫·傅里叶在他于1822年出版的著作Théorie analytique de la chaleur(中译:解析热学)给出。先考虑只有一个空间变量的热方程,这可以当作棍子的热传导之模型。方程如下: 其中u = u(t, x) 是t和x的双变量函数。 ?x是空间变量,所以x∈[0,L],其中L表示棍子长度。

可分离变量的微分方程

可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212=, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ),(),(y x P y x Q dy dx -=. 可分离变量的微分方程: 如果一个一阶微分方程能写成

g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 解 此方程为可分离变量方程, 分离变量后得

3热传导方程的初边值问题

例4 周期初始温度分布 求解热传导方程t xx u u =,(,0)x t -∞<<+∞>给定初始温度分布 (,0)1cos 2,()u x x x =+-∞<<+∞。 解 4(,)1cos2t u x t e x -=+. 初始高斯温度分布 例 5求解定解问题22 22 0,(,0) (,0),()kx u u a x t t x u x e x -???-=-∞<<+∞>?????=-∞<<+∞? , 其中常数0k >. 解 22()4(,)()x s a t u x t s e ds ?-- +∞ -∞ = ? 22 2()4x s ks a t e e ds -- +∞ --∞ = ? 222 2(41)24ka t s xs x a t e ds +-+- +∞ -∞ = ? 222 22224(41)()41414x ka t ka t s x ka t ka t a t e ds +- +++- +∞ -∞ = ? 22 2 222(41)()41 441 k ka t x x s ka t a t ka t e e ds +---+∞ ++-∞ = ? 2241 k x ka t e - += 2241 k x ka t - += . §3初边值问题 设长度为l ,侧表面绝热的均匀细杆,初始温度与细杆两端的温度已知,则杆上的温度分布 ),(t x u 满足以下初边值问题 ?? ? ??≤<==≤≤=<<<<=-T t t g t l u t g t u l x x x u T t l x t x f u a u xx t 0),(),(),(),0(,0), ()0,(0,0),,(212? 对于这样的问题,可以用分离变量法来求解. 将边值齐次化

最新21变量分离方程及可化为变量分离方程的方程求解汇总

21变量分离方程及可化为变量分离方程的 方程求解

第二章、一阶微分方程的初等解法 [教学目标] 1. 理解变量分离方程以及可化为变量分离方程的类型(齐次方程),熟练掌握变量分离 方程的解法。 2. 理解一阶线性微分方程的类型,熟练掌握常数变易法及伯努力方程的求解。 3. 理解恰当方程的类型,掌握恰当方程的解法及简单积分因子的求法。 4. 理解一阶隐式方程的可积类型,掌握隐式方程的参数解法。 [教学重难点] 重点是一阶微分方程的各类初等解法,难点是积分因子的求法以及隐式方程的解法。 [教学方法] 讲授,实践。 [教学时间] 14学时 [教学内容] 变量分离方程,齐次方程以及可化为变量分离方程类型,一阶线性微分方程及其常数变易法,伯努利方程,恰当方程及其积分因子法,隐式方程。 [考核目标] 1.一阶微分方程的初等解法:变量分离法、一阶线性微分方程的常数变易法、恰当方程与积分因子法、一阶隐方程的参数解法。 2.会建立一阶微分方程并能求解。 §2.1 变量分离方程与变量变换 1、变量分离方程 1) 变量分离方程 形如 ?Skip Record If...? (或?Skip Record If...?) (2.1)

的方程,称为变量分离方程,其中函数?Skip Record If...?和?Skip Record If...?分别是?Skip Record If...?的连续函数. 2) 求解方法 如果?Skip Record If...?,方程(2.1)可化为, ?Skip Record If...? 这样变量就分离开了,两边积分,得到 ?Skip Record If...?(2.2) 把?Skip Record If...?分别理解为?Skip Record If...?的某一个原函数. 容易验证由(2.2)所确定的隐函数?Skip Record If...?满足方程(2.1).因而(2.2)是(2.1)的通解. 如果存在?Skip Record If...?使?Skip Record If...?,可知?Skip Record If...?也是(2.1)的解.可能它不包含在方程的通解(2.2)中,必须予以补上. 3) 例题 例1 求解方程?Skip Record If...? 解将变量分离,得到 ?Skip Record If...? 两边积分,即得 ?Skip Record If...? 因而,通解为 ?Skip Record If...?这里的?Skip Record If...?是任意的正常数. 或解出显式形式 ?Skip Record If...? 例2 解方程 ?Skip Record If...? 并求满足初始条件:当?Skip Record If...?时.?Skip Record If...?的特解.

有限差分法解偏微分方程

有限差分法解偏微分方程综述 绪论 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 从差分的空间形式来考虑,可分为中心格式和逆风格式。 考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式, 目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限差分法求解偏微分方程 在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。有限差分法求解偏微分方程的步骤如下: 1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格; 2、近似替代,即采用有限差分公式替代每一个格点的导数; 3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程 有限差分法的应用 抛物型方程的差分方法 1. 简单差分法

相关主题
文本预览
相关文档 最新文档