当前位置:文档之家› 人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习

人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习

人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习
人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习

人教版高中数学精品资料

高中数学 1.3.2函数的极值与导数练习 新人

教A 版选修2-2

一、选择题

1.(2015·吉林实验中学高二期中)已知函数y =f (x )在定义域内可导,则函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .非充分非必要条件 [答案] B

[解析] 根据导数的性质可知,若函数y =f (x )在这点处取得极值,则f ′(x )=0,即必要性成立;反之不一定成立,如函数f (x )=x 3

在R 上是增函数,f ′(x )=3x 2

,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立.

故函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的必要不充分条件,故选B.

2.函数y =14x 4-13x 3

的极值点的个数为( )

A .0

B .1

C .2

D .3

[答案] B

[解析] y ′=x 3

-x 2

=x 2

(x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表

3.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3

的极大值点坐标为(b ,c ),则

ad 等于( )

A .2

B .1

C .-1

D .-2

[答案] A

[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3

的极大值点, ∴c =3b -b 3

,且0=3-3b 2,

∴?

??

??

b =1,

c =2,或?

??

??

b =-1,

c =-2.∴a

d =2.

4.已知f (x )=x 3

+ax 2

+(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .-16 D .a <-1或a >2

[答案] C

[解析] f ′(x )=3x 2

+2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根,

∴Δ=4a 2

-12(a +6)>0,∴a <-3或a >6.

5.已知函数f (x )=x 3

-px 2

-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )

A.4

27

,0 B .0,4

27

C .-4

27,0

D .0,-4

27

[答案] A

[解析] f ′(x )=3x 2

-2px -q , 由f ′(1)=0,f (1)=0得,

?

??

??

3-2p -q =0,1-p -q =0,解得?

??

??

p =2,

q =-1,∴f (x )=x 3-2x 2

+x .

由f ′(x )=3x 2

-4x +1=0得x =13或x =1,

易得当x =13时f (x )取极大值4

27.

当x =1时f (x )取极小值0.

6.函数f (x )=-x

e x (a

A .f (a )=f (b )

B .f (a )

C .f (a )>f (b )

D .f (a ),f (b )的大小关系不能确定

[答案] C

[解析] f ′(x )=(-x e x )′=

-x

x

--x

x

x

2

x -1

e

x

.

当x <1时,f ′(x )<0,∴f (x )为减函数, ∵a f (b ). 二、填空题

7.(2014~2015·福建安溪一中、养正中学联考)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________________.

[答案] 4x -y -3=0

[解析] y ′|x =1=(3ln x +4)|x =1=4,∴切线方程为y -1=4(x -1),即4x -y -3=0. 8.(2014~2015·河北冀州中学期中)若函数f (x )=x +a sin x 在R 上递增,则实数a 的取值范围为________________.

[答案] [-1,1]

[解析] f ′(x )=1+a cos x ,由条件知f ′(x )≥0在R 上恒成立,∴1+a cos x ≥0,a =0时显然成立;a >0时,

∵-1a ≤cos x 恒成立,∴-1a ≤-1,∴a ≤1,∴0

a

≥cos x 恒成立,

∴-1

a

≥1,∴a ≥-1,即-1≤a <0,综上知-1≤a ≤1.

9.设x =1与x =2是函数f (x )=a ln x +bx 2

+x 的两个极值点,则常数a =______________.

[答案] -2

3

[解析] f ′(x )=a x

+2bx +1,

由题意得????

?

a +2

b +1=0,a

2

+4b +1=0.∴a =-2

3

.

三、解答题

10.已知f (x )=ax 3+bx 2

+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)试求常数a 、b 、c 的值;

(2)试判断x =±1时函数取得极小值还是极大值,并说明理由.

[解析] (1)由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32

.

(2)f (x )=12x 3-3

2

x ,

∴f ′(x )=32x 2-32=3

2

(x -1)(x +1).

当x <-1或x >1时,f ′(x )>0;当-1

∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上为减函数. ∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1. [点评] 若函数f (x )在x 0处取得极值,则一定有f ′(x 0)=0,因此我们可根据极值得到两个方程,再由f (1)=-1得到一个方程,解上述方程组成的方程组可求出参数.

一、选择题

11.(2014~2015·山东省德州市期中)已知函数f (x )=e x

(sin x -cos x ),x ∈(0,2013π),则函数f (x )的极大值之和为( )

A.e 2π

-e 2012π

e 2π

-1 B .e π

-e 2012π

1-e 2π

C.e

π-e 1006π1-e

D .

e π-e

1006π

1-e

π

[答案] B

[解析] f ′(x )=2e x

sin x ,令f ′(x )=0得sin x =0,∴x =k π,k ∈Z ,当2k π0,f (x )单调递增,当(2k -1)π

∴当x =(2k +1)π时,f (x )取到极大值,∵x ∈(0,2013π),∴0<(2k +1)π<2013π,∴0≤k <1006,k ∈Z .

∴f (x )的极大值之和为S =f (π)+f (3π)+f (5π)+…+f (2011π)=e π

+e 3π

+e 5π

+…+e

2011π

=e π[1-

2π1006

]1-e

e π

-e 2012π

1-e

,故选B.

12.(2015·海南文昌中学高二期中)对于三次函数f (x )=ax 3

+bx 2

+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g (x )=13x 3-12x 2+3x -512,则g (12015)+g (22015)+…+g (2014

2015

)=( )

A .2013

B .2014

C .2015

D .2016

[答案] B

[分析] 由题意对已知函数求两次导数可得图象关于点(1

2

,1)对称,即f (x )+f (1-x )

=2,即可得到结论.

[解析] 函数的导数g ′(x )=x 2

-x +3,

g ″(x )=2x -1,

由g ″(x 0)=0得2x 0-1=0,解得x 0=1

2,

而g (1

2

)=1,

故函数g (x )关于点(1

2,1)对称,

∴g (x )+g (1-x )=2,

故设g (12015)+g (22015)+…+g (2014

2015)=m ,

则g (20142015)+g (20132015)+…+g (1

2015)=m ,

两式相加得2×2014=2m , 则m =2014. 故选B.

[点评] 本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.求和的过程中使用了倒序相加法.

二、填空题

13.已知函数y =x 3

+ax 2

+bx +27在x =-1处有极大值,在x =3处有极小值,则a =______________,b =________________.

[答案] -3 -9

[解析] y ′=3x 2+2ax +b ,方程y ′=0有根-1及3,由韦达定理应有?????

-1+3=-2a

3,-3=b 3.

∴?

??

??

a =-3,

b =-9.

经检验a =-3,b =-9符合题意.

14.(2015·郑州市质量检测)已知偶函数y =f (x ),对于任意的x ∈?

?????0,π2满足

f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式中成立的有

________________.

①2f ? ????-π3f ? ????-π4

③f (0)<2f ? ????-π4 ④f ? ????π6<3f ? ??

??π3

[答案] ②③④ [解析] 令g (x )=f x cos x

,由已知得g ′(x )=f

x

x +f x x

cos 2x

>0,∴g (x )

f x cos x 在??????0,π2上单调递增,故得

g ? ????π3>g ? ????π4,g (0)

??π4,

即2f ? ????π3>f ? ????π4,f (0)<2f ? ??

??π4, ∴2f ? ????-π3>f ? ????π4,2f ? ????-π3>f ? ????-π4,①错误,②正确;③正确;又g ? ????π6

??

π3cos

π3

,∴f ? ????π6<3f ? ????π3,④正确. 三、解答题

15.已知函数f (x )=e x

(ax +b )-x 2

-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为

y =4x +4.

(1)求a ,b 的值;

(2)讨论f (x )的单调性,并求f (x )的极大值. [解析] (1)f ′(x )=e x

(ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.

(2)由(1)知,f (x )=4e x

(x +1)-x 2

-4x ,

f ′(x )=4e x (x +2)-2x -4=4(x +2)(e x -1

2

).

令f ′(x )=0得,x =-ln2或x =-2.

从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减. 当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2

). 16.(2015·北京文,19)设函数f (x )=x 2

2-k ln x ,k >0.

(1)求f (x )的单调区间和极值;

(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.

[分析] 本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数的零点等基础知识,考查学生分析问题解决问题的能力、转化能力、计算能力.第一问,先对f (x )求导,令f ′(x )=0解出x ,将函数的定义域分段,列表,分析函数的单调性,求极值;第二问,利用第一问的表求函数的最小值,如果函数有零点,只需最小

值≤0,从而解出k 的取值范围,后面再分情况分析函数有几个零点.

[解析] (1)由f (x )=x 2

2

-k ln x ,(k >0)得,

f ′(x )=x -k x =x 2-k

x

.

由f ′(x )=0解得x =k (负值舍去).

f (x )与f ′(x )在区间(0,+∞)上的情况如下:

k

-ln k

2

f (x )在x =k 处取得极小值f (k )=

k

-ln k

2

.

(2)由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k

-ln k

2

.

因为f (x )存在零点,所以

k

-ln k

2

≤0,从而k ≥e.

当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点. 当k >e 时,f (x )在区间(0,e)上单调递减, 且f (1)=12>0,f (e)=e -k

2<0,

所以f (x )在区间(1,e]上仅有一个零点.

综上可知,若f (x )存在零点,则f (x )在区间( 1,e]上仅有一个零点. 17.(2014~2015·山东省菏泽市期中)已知函数f (x )=12x 2

+a ln x .

(1)若a =-1,求函数f (x )的极值,并指出是极大值还是极小值;

(2)若a =1,求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3

的图象的

下方.

[解析] (1)由于函数f (x )的定义域为(0,+∞), 当a =-1时,f ′(x )=x -1x

x +

x -x

令f ′(x )=0得x =1或x =-1(舍去),

当x ∈(0,1)时,f ′(x )<0,因此函数f (x )在(0,1)上单调递减,

当x ∈(1,+∞)时,f ′(x )>0,因此函数f (x )在(1,+∞)上单调递增, 则x =1是f (x )的极小值点,

所以f (x )在x =1处取得极小值为f (1)=1

2.

(2)证明:设F (x )=f (x )-g (x )=12x 2+ln x -23x 3

则F ′(x )=x +1x -2x 2

=-2x 3

+x 2

+1x

-x -

x 2+x +

x

当x >1时,F ′(x )<0,

故f (x )在区间[1,+∞)上单调递减, 又F (1)=-1

6

<0,

∴在区间[1,+∞)上,F (x )<0恒成立, 即f (x )

因此,当a =1时,在区间[1,+∞)上,函数f (x )的图象在函数g (x )图象的下方.

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

导数与函数的极值、最值考点与题型归纳

导数与函数的极值、最值考点与题型归纳 考点一 利用导数研究函数的极值 考法(一) 已知函数的解析式求函数的极值点个数或极值 [例1] 已知函数f (x )=x -1+a e x (a ∈R ,e 为自然对数的底数),求函数 f (x )的极值. [解] 由f (x )=x -1+a e x ,得f ′(x )=1-a e x . ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a , 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值; 当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值. [例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由. [解] f ′(x )=1 x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1). 令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞). ①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤8 9时,Δ≤0,g (x )≥0,f ′(x )≥0, 函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >8 9 时,Δ>0, 设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高二数学函数的极值

高二数学函数的极值 1.32课题:函数的极值(1) 教学目的: 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号 教学过程: 一、复习引入: 1. 常见函数的导数公式:

;;;;;;; 2.法则1 法则2 ,法则33.复合函数的导数: (理科) 4. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内0,那么函数 y=f(x) 在为这个区间内的减函数 5.用导数求函数单调区间的步骤:①求函数f(x)的导数 f′(x). ②令f′(x)>0解不等式,得x的范围就是递增区间.③令f′(x)<0解不等式,得x的范围,就是递减区间 二、讲解新课: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点都有f(x)<f(x0),就说f(x0)是函数 f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对 x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数 f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: ()极值是一个局部概念由定义,极值只是某个点的函数值 与它附近点的函数值比较是最大或最小并不意味着它在函数

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

(完整word版)函数的极值与导数导学案

§1.3.2函数的极值与导数 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.复习与思考 已知函数 3 2 ()267f x x x =-+ (1)求f(x)的单调区间,并画出其图象; (2)函数f(x)在x=0和x=2处的函数值与这两点附近的函数值有什么关系? 二.新课讲授 1、极值点与极值 (1)极小值点与极小值: 若函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )= ,而且在点x =a 附近的左侧 ,右侧 ,就把 叫做函数y =f (x )的极小值点, 叫做函数y =f (x )的极小值. (2)极大值点与极大值: 若函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )= , 而且在点x =b 附近的左侧 ,右侧 ,就把 叫做函数y =f (x )的极大值点, 叫做函数y =f (x )的极大值. (3)极大值点、极小值点统称为 ;极大值、极小值统称为 2.关于极值概念的几点说明 (1)极值是一个局部概念,反映了函数在某一点附近的大小情况; (2)极值点是自变量的值,极值指的是函数值 (3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值; (4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。 (5)函数y=f(x)在一点的导数为0是函数在这点取极值的 条件。 3.函数的极值与单调性有什么联系? 【提示】 极值点两侧单调性必须相反,欲研究函数的极值,需先研究函数的单调性. 函数极值的求法 解方程f ′(x )=0,当f ′(x 0)=0时: (1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 求下列函数的极值. (1)3 1()443 f x x x =-+

函数的极值与导数-复习课导学案(可编辑修改word版)

f(a) O a x y f ( b) O b x 【学习目标】: 函数的极值与导数(复习学案) 1.回顾函数极值的概念. 2.总结掌握函数极值的四种类型题型. 3.培养分析问题、解决问题的能力. 【温故知新】: 极值的概念: 一般地,设函数f(x)在点x0附近有意义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的,其中x0叫作函数的. 如果对x0附近的所有的点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个,其中x0叫作函数的. 【类型1】:函数y=f(x)的图象与函数极值 【针对训练1】 1.图3 中的极大值点有;极小值点有. 2.观察函数在X2 与X6 的极值,能发现什么? 【类型2】导数y=f(x)的图象与函数极值 1.由图3 分析极值与导数的关系

x0是函数f(x)的极值点f(x0) =0 f(x0) =0 x0是函数f(x)的极值点 总结:f(x0)=0 是函数取得极值的条件. 2.利用导数判别函数的极大(小)值: 一般地,当函数f(x)在点x0处连续时,且f ' (x0)=0,判别f(x0)是极大(小)值的方法是: (1)如果在x0附近的左侧f '(x)>0,右侧f '(x)<0,那么,f(x0)是; ⑵如果在x0附近的左侧f '(x)<0,右侧f '(x)>0,那么,f(x0)是;【针对训练2】 导函数y=f’(x)的图像如图,试找出函数y=f(x)的极值点, 并指出那些是极大值点,那些是极小值点? 【针对训练3】 导函数y=f’(x)的图像如图,在标记的点中哪一点处 (1)导函数y=f’(x)有极大值? (2)导函数y=f’(x)有极小值? (3)函数y=f(x)有极大值? (4)函数y=f(x)有极小值? 【类型3】求函数y=f(x)的极值 求函数极值(极大值,极小值)的一般步骤: (1) (2) (3) (4) (5)

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

函数的极值与导数(教案

1.3.2 函数的极值与导数(教案) 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单调性的关系是什么?

(提高学生回答) 2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数 ()h t =-4.9t 2 +6.5t+10的图象,回答 以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: a o h t

导数与函数的极值专题

导数与函数的极值专题 1.函数的极值 (1)函数的极小值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极小值点, 叫作函数y=f (x )的极小值. (2)函数的极大值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极大值点, 叫作函数y=f (x )的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2、利用导数求函数极值的一般步骤: (1) 求导函数f /(x); (2) 求解方程f /(x)=0; (3)检查f /(x)在方程f /(x)=0的根的左右的符号,并根据符号确定极大值与极小值 题型1:极值与导数的关系: 1、已知定义在R 的函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 2、已知定义在R 的可导函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 3、已知函数f (x )=2e f '(e)ln x e x -(e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .e 1- C .1 D .2ln 2 4、设f (x )=12x 2-x+cos(1-x ),则函数f (x ) ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值

《函数的极值与导数》教学设计

3.3.2 函数的极值与导数教学设计 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单 调性的关系是什么? (提问学生回答)

2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: (1)函数y=f(x)在a.b 点的函数值与这些点附近的函数值有什么关系? (2) 函数y=f(x)在a.b.点的导数值是多少? (3)在a.b 点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢? a o h t

函数极值与导数练习(基础)

函数极值与导数(基础) 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、函数3()13f x x x =+-有( ) A .极小值-1,极大值1 B .极小值-2,极大值3 C .极小值-2,极大值2 D .极小值-1,极大值3 4、如果函数()y f x =的导函数的图象如图所示,给出下列判断: ①函数()y f x =在区间13,2?? -- ?? ?内单调递增; ②函数()y f x =在区间1,32?? - ??? 内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当4x =时,函数()y f x =有极小值; ⑤当12 x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 5、函数3223y x x a =-+的极大值是6,那么实数a 等于_______ 6、函数x x x f ln 1 )(+= 的极小值等于_______. 7、求下列函数的极值: (1).x x x f 12)(3-=;(2).2()x f x x e =;(3)..21 2)(2-+= x x x f 8、已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f . (1).试求常数a 、b 、c 的值; (2).试判断1±=x 是函数的极小值还是极大值,并说明理由. 9、已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是.

高中数学函数的极值典型例题

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

高中数学讲义微专题17 函数的极值

微专题17 函数的极值 一、基础知识: 1、函数极值的概念: (1)极大值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有 ()()0f x f x <,就说()0f x 是函数()f x 的一个极大值,记作()0y f x =极大值,其中0x 是极大值点 (2)极小值:一般地,设函数()f x 在点0x 及其附近有定义,如果对0x 附近的所有的点都有 ()()0f x f x >,就说()0f x 是函数()f x 的一个极小值,记作()0y f x =极小值,其中0x 是极小值点 极大值与极小值统称为极值 2、在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (1)极值是一个局部概念:由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小 (2)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 (3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 3、极值点的作用: (1)极值点为单调区间的分界点 (2)极值点是函数最值点的候选点

4、费马引理:()f x 在0x x =处可导,那么0x x =为()f x 的一个极值点?()0'0f x = 说明:①前提条件:()f x 在0x x =处可导 ②单向箭头:在可导的前提下,极值点?导数0=,但是导数0=不能推出0x x =为 ()f x 的一个极值点,例如:3y x =在()0,0处导数值为0,但0x =不是极值点 ③费马引理告诉我们,判断极值点可以通过导数来进行,但是极值点的定义与导数无关(例如:y x =在()0,0处不可导,但是0x =为函数的极小值点) 5、求极值点的步骤: (1)筛选: 令()' 0f x =求出()'f x 的零点(此时求出的点有可能是极值点) (2)精选:判断函数通过()' f x 的零点时,其单调性是否发生变化,若发生变化,则该点为 极值点,否则不是极值点 (3)定性: 通过函数单调性判断出是极大值点还是极小值点:先增后减→极大值点,先减后增→极小值点 6、在综合题分析一个函数时,可致力于求出函数的单调区间,当求出单调区间时,极值点作为单调区间的分界点也自然体现出来,并且可根据单调性判断是极大值点还是极小指点,换言之,求极值的过程实质就是求函数单调区间的过程。 7、对于在定义域中处处可导的函数,极值点是导函数的一些零点,所以涉及到极值点个数或所在区间的问题可转化成导函数的零点问题。但要注意检验零点能否成为极值点。 8、极值点与函数奇偶性的联系: (1)若()f x 为奇函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极小(极大)值点 (2)若()f x 为偶函数,则当0x x =是()f x 的极大(极小)值点时,0x x =-为()f x 的极大(极小)值点 二、典型例题: 例1:求函数()x f x xe -=的极值. 解:()()' 1x x x f x e xe x e ---=-=- 令()'0f x >解得:1x < ()f x ∴的单调区间为:

高中数学导数与函数的极值、最值考点及经典例题题型讲解

导数与函数的极值、最值 考纲解读 1.以基本初等函数为背景,求函数的极值或极值点;2.求基本初等函数在闭区间上的最值;3.利用极值、最值、研究不等关系或求参数范围. [基础梳理] 1.函数的极值与导数的关系 (1)函数的极小值与极小值点: 若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫作函数的极小值点,f (a )叫作函数的极小值. (2)函数的极大值与极大值点: 若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫作函数的极大值点,f (b )叫作函数的极大值. 2.函数的最值与导数的关系 (1)函数f (x )在[a ,b ]上有最值的条件: 如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值. (2)求y =f (x )在[a ,b ]上的最大(小)值的步骤: ①求函数y =f (x )在(a ,b )内的极值. ②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. [三基自测] 1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( ) A .1个 B .2个 C .3个 D .4个 答案:A 2.函数f (x )=x 33+x 2 -3x -4在[0,2]上的最小值是( ) A .-173 B .-103

相关主题
文本预览
相关文档 最新文档