当前位置:文档之家› 含砷废水的处理方法

含砷废水的处理方法

含砷废水的处理方法
含砷废水的处理方法

砷和含砷废水

更新时间:09-1-5 13:59

砷在地壳中含量并不大,但是它在自然界中到处都有。砷在地壳中有时以游离状态存在,不过主要是以硫化物矿的形式存在如雌黄(As2S3)、雄黄(As2S2)和砷黄铁矿(FeAsS)。无论何种金属硫化物矿石中都含有一定量砷的硫化物。砷的硫化物矿自古以来被用作颜料和沙虫剂、灭鼠药。硫化合物具有强烈毒性,砷和它的可溶性化合物都有毒。砷作合金添加剂生产铅制弹丸、印刷合金、黄铜(冷凝器用)、蓄电池栅板、耐磨合金、高强结构钢及耐蚀钢等。黄铜中含有重量砷时可防止脱锌。高纯砷是制取化合物半导体砷化镓、砷化铟等的原料,也是半导体材料锗和硅的掺杂元素,这些材料广泛用作二极管、发光二极管、红外线发射器、激光器等。砷的化合物还用于制造农药、防腐剂、染料和医药等。用于制造硬质合金;黄铜中含有微量砷时可以防止脱锌;砷的化合物可用于杀虫及医疗。砷和它的可溶性化合物都有毒。

随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长4.4%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长4.2%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中砷的中毒事件。

含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为5.0时,溶液中砷主要以无机砷的形态存在,当pH为6.5时,有机砷为其主要存在形态。但由于含砷废水的来源并不单一,其成分也是复杂多变的。

含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。

砷污染及砷污染的来源

砷污染是指由砷或其化合物所引起的环境污染。砷和含砷金属的开采、冶炼,用砷或深化合物作原料的玻璃、颜料、原药、纸张的生产以及煤的燃烧等过程,都可产生含砷废水、废气和废渣,对环境造成污染。大气含砷污染除岩石风化、火山爆发等自然原因外,主要来自工业生产及含砷农药的使用、煤的燃烧。采矿、冶炼的废渣,冶金、化工、农药、染料和制革等的工业废水和地热发电厂的废水中均含砷,被砷污染的河水,会降低生化需氧量。含砷废水、农药及烟尘都会污染土壤。砷在土壤中累积病由此进入农作物组织中。砷对农作物产生毒害作用最低浓度为3mg/L,对水生生物的毒性亦很大。砷和砷化物一般可通过水、大气和食物等途径进入人体,造成危害。元素砷的毒性极低,砷化物均有毒性,三价砷化合物比其他砷化合物毒性更强。

我国规定居民区大气砷的日平均浓度为3μg/m3,饮用水中砷最高容许浓度为

0.04mg/L,地表水包括渔业用水为0.04mg/L。

在环境化学污染物中,砷是最常见、危害居民健康最严重的污染物之一。特别是随着现代工农业生产的发展,砷对环境的污染日趋严重。

砷污染的主要来源为:(1)砷化物的开采和冶炼。特别是在我国流传广泛的土法炼砷,常造成砷对环境的持续污染;(2)在某些有色金属的开发和冶炼中,常常有或多或少的砷化物排出,污染周围环境;(3)砷化物的广泛利用,如含砷农药的生产和使用,又如作为玻璃、木材、制革、纺织、化工、陶器、颜料、化肥等工业的原材料,均增加了环境中的砷污染量;(4)煤的燃烧,可致不同程度的砷污染。

砷污染事件

更新时间:09-4-8 09:41

砷污染中毒事件(急性砷中毒)或倒置的公害病(蔓性砷中毒)已屡见不鲜。如在英国曼彻斯特因啤酒中添加含砷的糖,造成6000人中毒和71人死亡。日本森永奶粉公司,因使用含砷中和剂,引起12100多人中毒,130人因脑麻痹而死亡。典型的慢性砷中毒在日本宫崎县吕久砷矿附近,因土壤中含砷量高达300~838mg/kg,致使该地区小学生慢性中毒。日本岛根县谷铜矿山居民也有慢性中毒患者。最近两年,国内的砷污染事件频发,已引起业内广大人士的极大重视。近两年国内比较严重的砷污染事件有:

1.06年湖南省岳阳县饮用水源遭到河流上游3家化工厂的工业污水“日常性排放”造成的砷污染,导致县城8万多居民饮水困难。

2.2007年年底贵州省独山县瑞丰矿业有限公司将1900吨含砷废水直接排入都柳江,造成下游群众饮水危机,17人出现不同程度的砷中毒。环保部门认定这起环境污染事件性质恶劣,相关负责人已被公安部门刑事拘留。

3.08年10月3日,河池市金城江区东江镇加辽社区下伦屯、江叶屯部分村民出现疑似砷中毒症状。初步断定,这起砷污染事件是柳州华锡集团金海冶金化工分公司排放的废

水砷含量超标、污染村民饮用水所致。广西河池砷污染事件累计致450人尿砷超标,4人轻度中毒,5名领导干部被免职。

4.08年9月20日,相关工作人员乘船考察阳宗海水质情况。云南“九大高原湖泊”之一、连续6年水质保持优良的阳宗海近日出现砷含量超标,水体严重污染已经降为劣五类水质。2008年6月,环保部门监测到阳宗海水体砷浓度出现异常波动,经初步确定,阳宗海水体砷污染主要来源是云南澄江锦业工贸有限公司。据了解,该公司违反国家有关规定,未建生产废水处理设施,大量含砷废水在厂内循环,由于没有进行防渗处理,多年积累的砷污染物逐步渗漏释放,污染地下水,导致阳宗海水体严重污染。目前云南省已经采取积极措施处理该事件,但阳宗海水质要恢复到Ⅲ类至少需要三年时间。

含砷废水处理的方法

目前含砷废水的处理技术主要分为化学法、物化法和生化法三大类。化学法包括化学沉淀法、絮凝沉淀法等;物化法包括:离子交换法、膜法、电渗析法、光催化氧化法、吸附法等;生化法包括:微生物胞外转化法、植物吸收法、微生物胞内转化法、微生物死细胞吸附法等。

传统的方法处理处理含砷废水主要用化学沉淀法,根据具体的情况又可分为砷酸钙法和硫化砷法。砷酸钙法是用石灰、铁盐、高分子絮凝剂使砷与这些物质作用发生中和脱砷、吸附等反应,并发生架桥、共沉淀效应,使砷从废水中去除。

有关的反应式主要有:

3Ca(OH)2 + 2H3AsO3 =Ca3(AsO3)2 + 6H2O

3Ca(OH)2 + 2H3AsO4 =Ca3(AsO4)2 + 6H2O

此法简单廉价,得到了广泛的应用,目前国内大多数企业采用预氧化—石灰—铁盐混凝除砷法,产生的含砷化合物无法利用,长期堆存很容易对环境造成二次污染。硫化砷法是往含砷废水中加入可溶性硫化物,使砷与硫离子结合生成沉淀。但传统的含砷废水的处理方法往往有这样那样的缺点,随着废水来源的复杂化和多样化以及厂家更高的要求,含砷废水的处理方法也日趋多样化。

化学法处理含砷废水

处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。

中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准。

絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等。

铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣。赵宗升曾从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。

马伟等报道,采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。

化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。

物化法处理含砷废水

更新时间:09-1-5 15:14

物化法一般都是采用离子交换、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。

陈红等曾利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。

胡天觉等报道,合成制备了一种对As(III)离子高效选择性吸附的螯合离子交换树脂,用该离子交换柱脱砷:含As(III)5 g/L的溶液脱砷率高于99.99%,脱砷溶液中砷含量完全达标,而且离子交换柱用2mol/L的氢氧化钠(含5% 硫氢化钠)作洗脱液洗涤,可完全回收As(III)并使树脂再生循环利用。

刘瑞霞等也曾制备了一种新型离子交换纤维,该离子交换纤维对砷酸根离子具有较高的吸附容量和较快的吸附速度。实验表明该纤维具有较好的动态吸附特性,30mL 0.5mol/L 氢氧化钠溶液可定量将96.0 mg/g吸附量的砷从纤维上洗脱。

另外,还有不少人作了用钢渣、选矿尾渣、高炉冶炼矿渣等废渣处理含砷废水的研究,取得了不错的成果。但由于物化法只能处理浓度较低,处理量不大,组成单纯且有较高回收价值的废水,而工业废水的成分较复杂,所以物化法的工程化程度较低。

离子交换法处理含砷废水

更新时间:09-1-5 15:46

离子交换法是通过离子交换剂上的离子与水中离子交换以去除水中阴离子的方法。

离子交换法(ion exchange process)是液相中的离子和固相中离子间所进行的的一种可逆性化学反应,当液相中的某些离子较为离子交换固体所喜好时,便会被离子交换固体

吸附,为维持水溶液的电中性,所以离子交换固体必须释出等价离子回溶液中。其原理如下图所示(钠离子与氢离子交换、氯离子与氢氧根离子交换):

离子交换技术是树脂上相同电荷的离子与废水中的离子进行交换,从而达到去除污染物的目的。该技术的优势在于处理装置简单、使用方便、处理量大。与其他重金属污染水体有所区别的是:砷在水体中以阴离子形式存在,处理砷污染水体多用阴离子交换树脂。阴离子交换树脂对含砷废水进行处理,对原水质量要求较高,主要适用于处理离子成分单一而又对出水水质要求较高的工业用水或者饮用水。如果原水中大量含有硫酸根、磷酸根、硝酸根等阴离子时,树脂很快就会失效[17]。因此,用目前的离子交换技术处理多种污染离子共存的水体就显得不经济。

膜技术处理含砷废水

更新时间:09-1-5 15:57

膜是具有选择性分离功能的材料。利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子范围内进行分离,并且这过程是一种物理过程,不需发生相的变化和添加助剂。膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量),可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜,根据材料的不同,可分为无机膜和有机膜,无机膜主要还只有微滤级别的膜,主要是陶瓷膜和金属膜。有机膜是由高分子材料做成的,如醋酸纤维素、芳香族聚酰胺、聚醚砜、聚氟聚合物等等。

膜技术是利用膜的选择透过性,根据污染物质粒径与水分子不同借助较高的外压达到分离污染物的目的。该技术理论上可以使粒径大于膜孔径的所有污染物质都去除。根据膜孔径的大小,可分为:微滤膜、超滤膜、纳滤膜、反渗透膜。超滤膜技术既可除去水中病菌、病毒、热源、胶体、COD等有害物质,又可透析对人体有益的无机盐,已广泛应用于牛奶脱脂、果汁浓缩、黄酒纯化、白酒陈化、啤酒除菌、味精提纯、蔗糠脱色、氨基酸浓缩、酱油除菌等生产中,而且还广泛应用于医疗针剂水、输液水、洗瓶水、外科手术洗洁水的制备。因其克服了蒸馏水中含有细菌尸体的缺点,且具有生物活性,所以更有利于病人恢复健康而备受医学界推崇。富氧膜以其分离气体的特殊功能,产生富氧空气,目前广泛应用于医院、养鱼场、工业发酵与氧化等场所,尤其在高山缺氧地区特别需要。该技术对设备、膜、操作条件的要求都很苛刻,而且目前的研究表明,阻挡层带负电荷的膜对于As(Ⅴ)的去除有效,而对以电中性形态存在于水体中的As(Ⅲ)的去除效果并不理想,还需要对原水进行预氧化处理,无疑成本很高。该技术主要用于需求量相对较少、对水质要求特别高的纯水以及超纯水的制备。所以目前运用该技术大规模治理水体砷污染的时机还不成熟。

电渗析法处理含砷废水

更新时间:09-1-5 16:06

电渗析:利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。利用电渗析进行提纯和分离物质的技术称为电渗析法,它是20世纪50年代发展起来的一种新技术,最初用于海水淡化,现在广泛用于化工、轻工、冶金、造纸、医药工业,尤以制备纯水和在环境保护中处理三废最受重视,例如用于酸碱回收、电镀废液处理以及从工业废水中回收有用物质等。电渗析法的特点为:

①可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用;

②可以用于蔗糖等非电解质的提纯,以除去其中的电解质;,

③在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极上的氧化还原效率高。

电渗析技术是将含砷废水置于两张半透膜之间,并在两张半透膜外各插入一支不同性电极,通入直流电,废水中阴阳离子在电场力作用下向两极移动,两张半透膜只允许阴离子或者阳离子中一种通过,这样就达到了净化水体的目的。该技术要消耗大量的电能、处理周期长、对设备腐蚀性大、处理量小,目前很不经济。该技术主要运用于物质的纯化,用水体砷污染的治理目前处于实验室探索阶段。

光催化氧化法处理含砷废水

更新时间:09-1-5 16:21

光催化氧化法是近20年才出现的水处理技术,在足够的反应时间内通常可以将有机物完全矿化为CO2和H2O等简单无机物,避免了二次污染,简单高效而有发展前途。所谓光催化反应,就是在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,然后会发生化学反应生成新的物质,或者变成引发热反应的中间化学产物。光化学反应的活化能来源于光子的能量,在太阳能的利用中光电转化以及光化学转化一直是十分活跃的研究领域。

光降解通常是指有机物在光的作用下,逐步氧化成低分子中间产物最终生成CO2、H2O及其他的离子如NO3-、PO43-、Cl-等。有机物的光降解可分为直接光降解、间接光降解。前者是指有机物分子吸收光能后进一步发生的化学反应。后者是周围环境存在的某些物质吸收光能成激发态,再诱导一系列有机污染的反应。间接光降解对环境中难生物降解的有机污染物更为重要。

光催化氧化技术是利用光催化剂吸收光能然后在一定的条件下以特定的波长释放,使水中溶解氧离子化,进而使As(Ⅲ)得到氧化。该技术的优势在于光催化剂加入处理体系后,催化反应可以较快进行,光催化剂理论上可永久使用。该技术只是对砷污染水体进行预处理,还需要配合其他技术才能达到去除砷的目的。目前的研究多局限于光催化剂吸收紫外光然后放出能量实现As(Ⅲ)的催化氧化,对于吸收可见光并释放能量氧化As(Ⅲ)的效果并不理想。

活性污泥法处理含砷废水

更新时间:09-1-5 15:25

国内外诸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金属离子,尤其是重金属离子,他们与ECP的络合更为稳定。关于吸附机制,在ECP的复杂成分中吸附重金属离子的似乎是糖类。Brown和Lester(1979)指出ECP中的中性糖和阴离子多糖有着吸附不同金属离子的结合点位,不同价态或不同电荷的金属离子可以在不同的点位与ECP结合,如中性糖的羟基、阴离子多聚物的羟基都可能是金属的结合位。表面吸附是指活性污泥微生物的胞外多聚物(甲壳素、壳聚糖等)含有配位基团—OH,—COOH,—NH2,PO43-和—HS等,他们与金属离子进行沉淀、络合、离子交换和吸附,其特点是快速、可逆和不需要外加能量,与代谢无关;胞外吸收通过金属离子和胞内的透膜酶、水解酶相结合而实现,速度较慢需要能量,而且与代谢有关。

此外,Ralinske指出:好氧生物能大量富集各种重金属离子,这些离子积累于细胞外多聚物中,并在厌氧条件下释放回液相中。这就有利于我们在二沉池中分离和沉降重金属离子。

在活性污泥法处理含砷废水的实验中,存在许多影响因素,主要影响因素如下:

(1)不同价态的砷对活性污泥的毒性不同。

实验表明,As(III)对脱氢酶的毒性比As(V)平均大53倍。As(III)对蛋白酶活性的毒性约为As(V)的75倍。还有,As(III)对活性污泥脲酶活性的毒害作用是As(V)的35倍。所以处理含砷废水时有必要将As(III)氧化成As(V)。实验还表明,活性污泥对低浓度砷的去除率高于对高浓度砷的去除率,这是由于污泥的吸附能力有限所造成的。此外,重金属离子浓度小于5mg?L-1时,活性污泥法对污水中有机物的处理效果不受重金属影响,当重金属离子浓度大于30mg?L-1时,活性污泥法污水中有机物的处理效果则大大受到影响。

(2)有机负荷

有机负荷对活性污泥去除五价砷也有较大的影响,有机负荷高,去除率也高。主要有两方面的原因:一是污水中的有机物本身可和五价砷相结合,降低了污水中砷的浓度;二是有机物浓度高有利微生物生长繁殖,这进一步提高活性污泥对五价砷的去除率。此外,有机负荷高还可以防止污泥膨胀。因为在高有机负荷环境中絮状菌比大多数丝状菌有更强的吸附和存贮营养物能力,能够充分利用高浓度的底物迅速增殖,具有较高的比生长速率,抑制了丝状菌的生长。在低负荷下混合液中底物浓度长时间都低,由于缺少足够的营养底物,絮状菌的生长受到抑制,而丝状菌具有较大的比表面积,当环境不利于微生物的生长时,丝状菌会从菌胶团中伸展出来以增加其摄取营养物质的表面积。一方面,伸出絮体之外的丝状菌更易吸收底物和营养,其生长速率高于絮状菌,从而成为活性污泥中的优势菌种;另一方面,丝状菌越多,其菌丝越长,活性污泥越不易沉降,SVI越高,导致了污泥膨胀。

(3)pH

pH 对金属去除影响很大,因为pH不仅影响金属的沉降状态,而且影响吸附点的电荷。一般pH 升高有利于污泥对阳离子金属的吸附。直至产生氢氧化物沉淀,反之则有利于对呈

负电荷状态存在的金属的吸附。但是,过高或过低的pH对微生物生长繁殖不利,具体表现在以下几个方面:①pH过低(pH=1.5),会引起微生物体表面由带负电变为带正电,进而影响微生物对营养物的吸收。②过高或过低的PH还可影响培养基中有机化合物的离子化作用,从而间接影响微生物。③酶只有在最适宜的pH时才能发挥其最大活性,极端的pH 使酶的活性降低,进而影响微生物细胞内的生物化学过程,甚至直接破坏微生物细胞。④过高或过低的pH均降低微生物对高温的抵抗能力。

(4)生物固体停留时间(Qc)

Qc对阳离子金属去除有较大影响,因为活性污泥表面常被难溶性或微溶性的多聚物所包围(如多糖),这些多聚物表面的电荷可使金属迅速地得以去除。已经证实,细菌多聚物产生和细菌生长相有关,稳定相和内源呼吸阶段多聚物产量最大,而Qc增大,污泥中细菌处于稳定相和内源呼吸阶段,有利于对金属的去除。

(5)污泥浓度

污泥浓度高,吸附点也随着增加,从而有利于金属的去除。从去除金属的角度出发,高有机负荷,高污泥浓度的运行方式最为理想。活性污泥法处理含砷废水,不论在处理费用,还是二次污染,或者工程化方面,都比传统处理方法具有相当突出的优势。虽然在理论研究方面还不是十分完善,但是在处理机制和影响因素方面都已达成一定的共识。如果在处理工艺上再进行一定的改进,如往污泥中投加优势菌种,可以改善污水的处理效果;此外,还可以引进生活污水进行混合处理并进行曝气,这样不仅降低了砷的浓度以及砷对污泥的毒害作用,同时还解决了活性污泥的营养源问题,为活性污泥法处理含砷废水的工程化应用开辟了一片新天地。

菌藻共生体处理含砷废水

更新时间:09-1-5 15:28

国外研究表明,生物迁移转化作为一种新的微生物法处理重金属废水,与传统方法相比,具有更高效,费用更低等优点。用小球藻的生物迁移转化处理重金属废水的工艺,有一些已投入工程运作。

菌藻共生体对砷的去除机理可认为是藻类和细菌的共同作用。许多研究表明,在去除金属过程中,微生物的表面起着重要作用。菌藻共生体中,藻类和细菌表面存在许多功能键,

如羟基、氨基、羧基、硫基等。这些功能键可与水中砷共价结合,砷先与藻类和细菌表面上亲和力最强的键结合,然后与较弱的键结合,吸附在细胞表面的砷再慢慢渗入细胞内原生质中。因而在藻类和细胞吸附砷中,可能经过快吸附过程和较慢吸附两过程后,吸附作用才趋于平衡。

廖敏等人曾研究了菌藻共生体对废水中砷的去除效果。研究发现:培养分离所得菌藻共生体中以小球藻为主,此时菌藻共生体积累砷达7.47 g/kg干重。在引入菌藻共生体并培养16h后,其对无营养源的含As(III),As(V)的废水除砷率达80%以上,并趋于平衡,含营养源的As(III)、As(V)的废水中,菌藻共生体对As(V)的去除率大于As(III),对As(V)去除率超过70%,但对As(III)的去除率也在50%以上,在除砷过程中同时出现砷的解吸现象。在无营养源条件下,对As(III)、As(V)混合废水的除砷率超过80%。

菌藻共生体是一种易培养获得的材料。其对废水中的砷具有较强的去除力,并能同时去除废水中的营养物,因此其在含砷废水的处理运用中有着广阔的前景。

投菌活性污泥法处理含砷废水

更新时间:09-1-5 15:34

投菌活性污泥法是将具有强活力的细菌投入到曝气池里去,使曝气池混合液内的各种细菌处于最佳活性状态,这样不仅投入了吸气池内所缺少的细菌,在流入污水水质不变的条件下,微生物氧化作用显著,而且,当污水水质改变,环境变异的情况下,微生物仍能适应,保持活性,其氧化代谢过程依然充分,投入菌液后使曝气池耐冲击负荷,提高污水处理厂的处理效果,改善了出水水质。

投菌活性污泥法(LLMO)是出之一种新的概念,它是根据在同一环境里,最适宜的细菌能自然繁殖,同样,污水处理厂曝气池混合液内的细菌也会自然繁殖到一定数目,自然界无处不可找到细茵,然而,在同一环境里并非可以找到一切细菌这一原则,作为理论指导,从自然界土壤内筛选出污水厂中的有用细菌制成液态的或固态的产品。液态菌液微生物成活率高;固态菌使用前需先用水溶成液态,细菌的成活率较液态菌液低,使用时按一定比例将液态菌液投入曝气池内或投到需用处,投菌活性污泥法(LLMO)在国外已收到良好的应用效果。

因此,我们可望通过向活性污泥中投加对砷具有高耐受力,对砷具有特殊处理效果的混合菌种,达到对砷的高效处理,净化工业含砷废水。

离子交换树脂除砷的研究

更新时间:09-1-6 15:30

从工业废水中脱砷的方法和技术有许多种,目前国内最常用的方法主要有中和沉淀法、硫化物沉淀法、铁氧体沉淀法和絮凝沉淀法等。但这些方法中有的仍不能达到彻底治理的效果,有的会造成二次污染。其它处理含砷废水的方法还有活性吸附法、萃取法、浮选法和离子交换法等。由于离子树脂交换法的处理量大,操作简单,分离效果好,有利于各种有价成份的回收利用,因而它是一种很有前途的方法。国内外近几年先后报导了用活性炭交换树脂、硫化物的再生树脂、无机离子交换树脂及选择性螯合树脂等处理含砷废水。特别是螯合树脂在水处理行业中取得了卓越的成就,对它的研究和应用正越来越受到重视。

本研究是在考察了各类型树脂如:活性炭交换树脂、无机离子交换树脂、硫化物再生树脂、聚丙烯酯类树脂和聚乙烯氟基乙酸钠类树脂对砷吸附力的基础上,结合国外文献报导含硫基型螯合树脂对As(Ⅲ)有高亲和力的特点,自制了含氢硫基的选择性螯合树脂,研究其对含砷废水的脱砷效果,并研究了各种影响因素。

试验部分

1.1 试剂

甲基丙烯酸(2,3-环氧)丙酯;硫氰化胺;硫氢化钾;2,3,4-三甲苯;BPO。

含砷废水液由90.50 %的As2O3配制,表1为As2O3的组分质量分数。

1.2 含氢硫基的螯合树脂的制备

研究中含氢硫基的螯合树脂的制备是以甲基丙烯酸(2,3-环氧)丙酯为原料先在硫氰化铵的甲醇溶液中硫代化制成甲基丙烯酸(2,3-环硫代)丙酯,然后,在聚合釜中以2,2,4-三甲苯为稀释剂,BPO为引发剂,悬浮搅拌聚合甲基丙烯酸(2,3-环硫代)丙酯,所得聚合物冷却后用硫氢化钾的乙醇溶液于50℃处理1 h,制得(32~60目)的聚甲基丙烯酸(2,3-二氢硫基)丙酯(以下简称DTMA)。

1.3 As(Ⅲ)离子的吸附量测定和试验条件的选择

1.3.1 容量测定法

用经过严格测定各组分质量分数的As2O3(90.50 %)配制成所需不同浓度的亚砷酸溶液。称取一定量的螯合树脂,经预处理后放入到装有已知浓度的亚砷酸溶液的烧杯中,用电动搅拌机不断搅拌,进行离子交换吸附试验,变换各种条件,测定其影响。用次亚磷酸-碘量法测定溶液含砷量,用差减法求出螯合树脂(DTMA)上砷的吸附量,从而求出不同条件下DTMA对砷的交换吸附量和最佳吸附条件。

1.3.2 离子交换柱测定法

制备3根不同体积的离子交换柱分别装有经预处理的10 cm3的DTMA,15 cm3的DTMA,20 cm3的DTMA。柱体分别为10 mm(Φ)×127 mm,10 mm(Φ)×191 mm,

10mm(Φ)×255 mm,用自配的含砷废液以不同流速通过离子交换柱,用次亚磷酸-碘量法分析流出液中的砷含量。用差减法求出柱体吸附砷量,从而求出不同条件下的砷离子的交换吸附量。最后用2 mol/L的(含5 %的硫氢化钠)氢氧化钠溶液洗涤柱子,使柱子循环使用并回收砷。

2 结果和讨论

2.1 DTMA的饱和交换量

为了考察DTMA对As(Ⅲ)的交换吸附容量的大小,取含As(Ⅲ)量为5 g/L,pH值为5.0的砷溶液400 mL于1 000 mL烧杯中,加入DTMA 10 g,在30℃温度下充分搅拌,进行交换吸附试验,求出不同时间下的DTMA对As(Ⅲ)的交换吸附量,随实验时间的延长,As(Ⅲ)的交换吸附量不断增加。当进行到120 min后,交换吸附量不再增加,即反应趋于平衡,根据实验结果计算,在该条件下DTMA对As(Ⅲ)的饱和吸附容量为157mg·g-1,实验结果如图1所示。

同样用3根装有不同量的DTMA的交换柱作试验,在与前面试验条件相同的情况下进行As(Ⅲ)的交换吸附量测试,结果与前面的不同,试验结果如图2所示。

出现不同试验结果的原因是进行容量试验时,进行了搅拌,使DTMA交换吸附

As(Ⅲ)离子快而饱和量充分。而进行柱交换吸附时无法充分搅拌均匀,因此,达到最大饱

和吸附量也略低。

2.2 溶液pH对交换吸附量的影响

DTMA是中性偏弱性化合物,每一单体上的两个氢硫基可失去两个氢原子而生成硫基负离子,而三价的砷酸化合物在水溶液中的存在形态与溶液的酸碱性有关[1],因此,被处理过的含砷废水溶液的pH值的变化影响到As(Ⅲ)离子的存在形态,我们用浓度5

g/L(As(Ⅲ))的溶液在常温下进行了不同溶液pH值的交换吸附实验,求得不同pH值下As(Ⅲ)的饱和吸附量(图3)。图中有一明显的最大值,表明用DTMA来吸附溶液中的As(Ⅲ)的最佳pH值应为4.6~5.5。

这是因为DTMA是弱酸性化合物,适宜于中碱性螯合,而亚砷酸为两性化合物,在强酸性溶液中,以阳离子形式存在,进行下述反应

H3AsO3+3HCl=AsCl3+3H2O

2H3AsO3+3H2SO4=As2(SO4)3+6H2O

在碱性溶液中以阴离子形式存在,有如下平衡

As(OH)3=H++H2AsO3-=2H++HAsO3-3

因此,DTMA的最佳螯合pH值范围与As(Ⅲ)以离子形式存在的pH值范围重叠在4.6~5.5之间,此时,可形成稳定的螯合物,当溶液pH值小于4.6时,DTMA中氢硫基上氢离子难以离解,使硫负离子不能游离,不易进行螯合反应;而当溶液pH值大于5.5时,As(Ⅲ)又难以离子形态游离,而呈酸根负离子形式存在,也不利于生成螯合物,因此,进行离子交换吸附时最佳pH值为5.0左右。

2.3 温度对离子交换树脂吸附性能的影响在溶液pH值为5.0,As(Ⅲ)浓度为5 g/L 的条件下,考察了不同温度下DTMA的交换吸附性能。其结果如图4所示。

从图4可以看出,随溶液温度的升高,DTMA对As(Ⅲ)的饱和吸附量降低,在50℃左右是一个转折点。而且温度越高,树脂对As(Ⅲ)的饱和吸附量也降得越多。在温度高于100℃时,曲线斜率几乎接近于垂直线,可见温度对树脂吸附As(Ⅲ)影响很大,这可能是由于螯合树脂对As(Ⅲ)形成的螯合健不强,受热易断键引起的。因此,吸附温度一般以不高于50℃为宜。

2.4 其它离子对螯合树脂吸附As(Ⅲ)离子的影响由于在试剂生产过程中难免有其它杂质离子存在,它们可能会影响螯合树脂的吸附容量和交换吸附过程,因此,我们特配制

了含有各种杂质离子的砷溶液进行试验。实验条件:离子交换柱(10 mm(Φ)×255 mm),室温,pH值5.0,流速600 mL/h,每次实验用1 200 mL溶液。结果见表2。

从表2可以看出,对组成复杂的含砷溶液,DTMA对As(Ⅲ)仍有很高的交换吸附率和很好的选择性,特别是与K+,Na+,Ca2+,Mg2+,Fe2+,Zn2+的分离效果很好,吸附率低,不受其影响,而对Hg2+则表现出很好的吸附率,说明该螯合树脂也可用于Hg2+的脱除。

2.5 砷的回收与含砷螯合树脂的清洗再生

通过一系列试验,发现DTMA离子交换柱可用2 mol/L氢氧化钠(含5 %硫氢化钠)溶液洗涤,洗涤效果极好,DTMA树脂再生率高,可再循环使用,同时洗脱下来的砷可沉淀回收。

3 结论

用自制的螯合离子交换树脂从含砷废水中脱除As(Ⅲ)的试验研究表明:

1)该螯合离子交换树脂制备简单,对As(Ⅲ)饱和交换吸附量大,吸附率高。

2)含As(Ⅲ)溶液的pH值对交换吸附有一定影响,一般最佳pH值范围在4.6~5.5之间。

3)温度也影响该螯合离子交换树脂对As(Ⅲ)的吸附,在温度不高于50℃时影响较小,该螯合树脂特别适用于常温下对As(Ⅲ)的吸附。

4)含As(Ⅲ)溶液中的共存杂质离子对螯合树脂绝大部分没有影响,只有Hg(Ⅱ)离子也能被该螯合树脂有效吸附,因此,也可以断定该螯合树脂可作Hg(Ⅱ)离子的选择性离子交换树脂。

5)总结离子交换柱试验的效果,可以得出该螯合离子树脂交换柱的最佳脱除As(Ⅲ)的试验条件:柱体10 mm(Φ)×255 mm;pH值5.0;流速600 mL/h;在该条件下对As(Ⅲ)吸附率可达99.99 %以上,脱As(Ⅲ)液的As(Ⅲ)含量完全达标。含砷离子交换柱用2 mol/L的氢氧化钠(5 %硫氢化钠)溶液作洗脱剂洗涤,可回收As(Ⅲ)离子并使螯合树脂再生,循环使用。稀土应用含砷废水处理的研究

更新时间:09-1-6 15:49

砷广泛分布于自然界中。当人体摄入少量砷时,可促进新陈代谢,过量摄入则产生中毒。稀土在工农业生产上的应用已较为广泛,如在冶金上,由于稀土与硫、磷、砷等元素

极易化合,有利这些杂质的去除。我国约有3 600万t稀土,占世界储量的80%左右。虽然稀土在工农业生产实际应用中报道较多,但在废水处理方面的应用尚未见报道,本文采用地壳中储量占首位的稀土元素铈来处理废水中的砷,为进一步拓宽我国稀土这一丰富资源应用作一探索性研究。

1 材料与方法

1.1 稀土铈贮备液的制备

称取稀土铈的氧化物,加入少量蒸馏水及浓硝酸和几滴H 2O 2,加热溶解,并蒸发剩余的酸,然后稀释配成15 g/L稀土元素铈的贮备液。

1.2 不同pH条件下稀土铈对砷的去除

取50 mL 100 mg/L稀土溶液与30 mL 100 mg/L As(Ⅲ),100 mg/L As(Ⅴ)溶液混合,用0.1 mol/L NaOH调pH,使之分别为8、9、10、11、12,产生絮状物后,静置2 h,取上清液测定砷含量。

1.3 沉淀时间对砷去除率的影响

取50 mL100 mg/L稀土铈溶液与30 mL100 mg/L As(Ⅲ),100 mg/L As(Ⅴ)溶液混合,用0.1 mol/L NaOH调pH为10,静置0.5,1.0,2.0,3.0 h,取上清液测定含砷量。

1.4 不同用量配比对砷的去除率的影响

按不同浓度比[稀土铈浓度(mg/L)/砷浓度(mg/L)](1:1,5:1,10:1,15:1,25:1)混合,砷的初始浓度为100 mg/L,调pH至10,静置2 h,测定上清液砷含量及形成的污泥量。

砷的测定方法采用SDDC-Ag法。

2 结果

2.1 不同pH条件下稀土铈对砷的去除

Ce(OH)3不是两性氢氧化物,在pH 7.6以上Ce 3+开始形成沉淀,但同时不同pH 条件下As的存在形态也不同,因而pH与Ce结合吸附砷的能力有关。实验结果见表1。

表1 不同pH条件下稀土元素铈对砷的去除率(%)

表2 不同沉淀时间铈对砷的去除率(%)

表3 不同Ce/As条件下砷的去除率(%)

从上表可见,在不同用量配比条件下,对砷均有一定的去除率。而且沉淀性能较好,去除率稳定。

当Ce/As≥10,铈对砷的As(Ⅲ)和As(Ⅴ)去除率分别达96%和99%以上。

2.4 铈对As(Ⅲ)和As(Ⅴ)混合液的去除试验

100 mg/L As(Ⅲ)和As(Ⅴ)等量混合后,得100 mg/L的混合砷溶液,按不同用量配比加入铈溶液,调pH 10,沉淀2 h后,铈对砷的去除结果见表4。

表4 不同Ce/As条件下混合成砷的去除率(%)

表5 常用聚凝剂对砷的去除率(%)

表6 几种聚凝剂除夏日产生的污泥用量(mg)

砷的处理方法

神的处理方法 砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20?40°C下进行处理,所得的硫化砷用硫酸铜在70°C进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在〉70 C通入空气或氧,使砷 成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂, 其废水可以先在90 C加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3ASO4可以用20%的NR3 (R = C8?16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97?98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005?0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法,或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矶土吸附或离子交换。

5.3.1铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除 直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。 由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10?30倍[16]。结合 铁盐处理,出水中的砷含量可以降至0.05?0.1mg/L[17]。铁盐法可以用在饮用 水的净化中去[18] 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中 的砷的去除率可达99.7%,克服了传统的含砷废水处理工艺投资高,占地大, 运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。 用硫酸铁或其它三价铁盐可以有效地去除废水中的砷化合物。当初始浓 度为0.31?0.35毫克/升时,用硫酸铁处理,砷的去除率可达91?94%,如再经双层滤料过滤,去除率还可增加5?7%,总去除率可达98?99%,出水砷含量可降至0.003?0.006毫克/升[20]。在用硫酸铁作为凝聚剂时,当用量在500毫克/升时,可以使水中的含砷量从25毫克/升降至5毫克/升以下。其机理是共沉淀法,在铁沉淀的同时,将砷也从废水中络合除去。砷酸盐和亚砷酸盐都可以用这种方法处理。如在处理前用氧化的方法进行预处理,使亚砷酸盐先氧化或高锰酸钾氧化成砷酸盐,其去除效果会更好[21][22]。其沉淀的pH值可以控制在>2 在沉降时加入高分子絮凝剂其效果更好[23]。采用石灰-聚合硫酸铁法对硫酸生产中含砷废水进行了处理,实验了pH值、m(Fe)/m(As)(质量比)、石灰加入量等条件对As去除率的影响。结果表明,当p H 值为&8—10.6, m ( Fe) /m (As)不小于5时,处理后的废水中As的质量浓度小于1 mg/L,符合国家排标准[24]。当用漂白粉作为氧化剂,结合铁盐处理,可以得到铁盐沉淀,出水中的砷含量可降至0.3?0.5mg/L,产生的砷酸钙含砷及锑分别为20及22%,可在玻璃工

砷的处理方法

废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至~L[2]。 沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至~L[17]。铁盐法可以用在饮用水的净化中去[18]。 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的

铜冶炼含砷污水处理

铜冶炼含砷污水处理 国内铜冶炼企业在90年代得到了快速发展,冶炼能力的上升加大了对原料铜精砂的需求。为了生产需要,一些企业降低了对原料的质量要求,特别是原料中砷的含量。国家有关质量标准规定原料中As<0.3%,但国内有些矿山生产的铜精砂中As含量较高,个别原料中As>1%。产生的后果是给企业的环境治理带来难度,使某些企业的大气排放和污水排放超标。本文主要讨论的是水环境的影响。对铜冶炼企业含砷工业污水的形成以及如何处理达标排放,并确保不造成二次污染,从本人的设计经验及生产实践中,阐述一些认识及看法。 1 含砷工业污水的组成 1.1 污酸 铜精砂中砷一般以铜的硫化物形态存在,主要是以砷黝铜矿(3Cu2S.As2S3)和硫砷铜矿(Cu3AsS4)存在。含砷矿物在采选过程中基本不溶于水而赋存在铜精砂中。在熔炼过程中,铜精砂中的砷由于高温绝大部分进入冶炼烟气中,并以As2O3的形态存在。而冶炼烟气通过净化、干吸、转化的工艺流程制成硫酸。制酸工艺采用一转一吸时,烟气中As2O3绝大部分进入制酸尾气中,经尾气处理系统进行处理和回收,使尾气达标排放。但现有尾气处理工艺存在着处理费用高,且尾气排放难以达标的问题,所以冶炼烟气制酸企业大都通过技术改造尽可能采用两转两吸制酸工艺,使制酸尾气能够达标排放。而烟气中的As2O3及其它杂质则进入定期抽出的污酸中,再对污酸进行处理,回收其有用金属。分析一些企业的排出污酸中含砷量一般均达3~10g/L,特殊情况高达20g/L,并含其它有害杂质。如贵冶和金隆铜业公司的污酸成分,见表1。 表1 污酸成分及杂质含量 g/L 成分H2SO4As F Cu Fe Bi Cd 贵冶529.9 5.281 1.181 1.3480.5450.4100.149 金隆1340.0 1.4 5.9000.10013.100 1.2 污水 冶炼企业的工业污水主要来源于电收尘冲洗、硫酸车间地面冲洗水和其它工况点被污染的生产水。水量大,成分复杂,含有As、Cu、Pb、Zn、Cd等有害金属离子,需进行深度处理后才能达标排放。有代表性的厂区工业污水成分见表2。 2 含砷污水的处理 2.1 高砷污酸的处理 2.1.1 处理原理 化工企业在硫酸生产中排出污酸一般采用石灰乳多段中和即可达到予期效果,而铜冶炼企业硫酸生产中的污酸由于高砷杂质的存在,必须采用硫化法除砷及铜离子后,再进行中和法处理,才能使工业污水达标排放。目前国内厂家污酸处理主要采用硫化→中和→氧化工艺或中和→硫化→氧化工艺。经生产实践验证,取得了满意的效果。如金隆铜业公司采用的污酸处理工艺见图1

石灰沉淀法是一种常用的含砷废水处理方法

石灰沉淀法是一种常用的含砷废水处理方法,其基本原理是向含砷废水中加入氧化钙、氢氧化钙等沉淀剂,利用可溶性砷与钙离子形成难溶的化合物,如各种亚砷酸钙和砷酸钙盐沉淀,从而达到从废水中去除砷的目的。但石灰沉淀法除砷过程中形成的砷酸钙盐在堆放过程中如果与空气中的CO2接触,会影响其溶解度和稳定性。Robins(1981,1983)的研究结果表明,砷酸钙与空气中的CO2接触会分解成碳酸钙和砷酸,砷会从砷酸钙盐沉淀中析出,重新进入环境中[1,2];张昭和、彭少方(1995)研究了大气中CO2对Ca3(AsO4)2溶解度的影响,结果表明在砷渣露天堆放的开放体系中由于CO2的作用,砷酸钙向碳酸钙转化,砷又进入水中从而造成二次污染,应引起足够的重视[3]。石灰沉淀法除砷过程中,随着Ca/As摩尔比和pH值的不同,除生成Ca3(AsO4)2外,还可以生成一系列其他的砷酸钙盐,而这些砷酸钙盐因组成和结构的不同,在水环境中的稳定性与溶解度也存在一定的差异,其受CO2影响的程度也未见报道。本文通过前期砷酸钙盐沉淀和溶解实验所得到的热力学数据,对平衡系统中的Ca3(AsO4)2·xH2O、Ca5(AsO4)3(OH)和Ca4(OH)2(AsO4)2·4H2O三种砷酸钙盐进行不同CO2分压条件下的化学模拟计算和热力学分析,预测CO2对砷酸钙盐在水中稳定性和溶解度的影响,研究结果为含砷酸钙盐废弃物的最终处置场所与方法的选择,避免砷被天然水体浸取

具有实际的指导意义。 1含砷废水中和沉淀过程中形成的砷酸钙的类型 石灰沉淀法除砷一直以来被认为是一种有效的含砷废水处理方法并得到普遍应用,所以其沉淀产物砷酸钙盐在自然条件下的稳定性一直受到人们的关注。Nishimura等(1985)曾用Ca3(AsO4)2·Ca(OH)2表示石灰沉淀法去除五价砷形成的砷酸钙盐的物质结构[4];Swash和Monhemius(1995)在常温条件下进行实验,结果说明沉淀物的组成很可能是CaHAsO4·xH、Ca5H2(AsO4)4和Ca3(AsO4)2结构的化合物[5];Bothe和Brown(1999)通过实验确定,在向含砷(V)的废水中投加石灰时,会形成Ca4(OH)2(AsO4)2·4H2O、Ca5(AsO4)3OH和Ca3(AsO4)2·3H2O等[6];Donahue 和Hendry(2003)在高Ca/As比条件下,确定含砷尾矿废水中和产生的沉淀主要是Ca4(OH)2(AsO4)2·4H2O[7]。 混合沉淀过程中生成的砷酸钙化合物的组成与结构主要取决于溶液的Ca/As摩尔比和pH值。在我们实验的Ca/As 摩尔比(10、125、15、167、20和40)和pH值(1~14)条件下,生成的砷酸钙盐利用X射线衍射(XRD, Brucker D8Advance)、扫描电镜(SEM, Joel JSM-5610LV)和热重分析(TGA,TA Instruments Model 2050)对其性质进行研究,发现主要存在三种类型的砷酸钙盐,即Ca3(AsO4)2·xH2O、

某半导体芯片生产项目含砷废水处理方案

某半导体芯片生产项目含砷废水处理方案浅析 摘要:随着半导体行业的高速发展,半导体芯片生产将产生大量的含砷废水。同时,日趋严格的废 水排放标准对含砷废水处理提出了更高的要求。本文针对半导体集成电路芯片生产产生的含砷废水,结合 工程实际情况,分析了袋滤-氢氧化钙-氯化铁混凝沉淀的处理方法,并采用膜分离技术及离子交换技术对 废水进行深度处理,取得了良好的除砷效果,将出水总砷稳定地控制在0.1mg/L以下,达到污染排放标准, 降低了对环境的影响。 关键词:半导体;砷化镓;含砷废水;共沉淀;超滤;离子交换 随着信息技术和通讯产业的高速发展,化合物半导体材料在微电子和光电子领域发挥越来越重要的作用。在半导体材料发展过程中,半导体材料主要经历了以硅(Si)、锗(Ge)为代表的第一代元素半导体,以砷化镓(GaAs)、磷化铟(InP)为 代表的第二代化合物半导体,以及以氮化镓(GaN)、碳化硅(SiC)为代表的第三代宽禁带半导体材料三大阶段[1]。作为第二代半导体材料,砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。相对于硅,砷化镓具有较大的禁带宽度,更高的电子迁移率和饱和迁移速率[2],其不仅可直接研制光电子器件,以砷化镓为衬底制备的集成电路芯片是实现高速率光线通信及高频移动通信必不可少的关 键部件[3],在光电子、微电子及移动通信中应用愈加广泛。近年来,砷化镓半导体材料市场需求迅速增长。我国的砷化镓产业也在不断发展,近几年成立了多家砷化镓芯片生产企业。 基于自身材料和生产工艺,在砷化镓芯片的生产过程中排放的废气和废水中均含有砷化合物,其含砷废水的处理也成为砷化镓生产项目亟待解决的问题之一。砷及其化合物对人体及其他生物体均有广泛的毒害作用,已被国际防癌研究机构和美国疾病控制中心确定为第一类致癌物[4]。由于砷的高毒性和致癌性,在 GB8978-1996《污水综合排放标准》[5]中总砷被列于第一类污染物,最高允许排放浓度为0.5mg/L。而一些经济较为发达的城市和地区针对废水中总砷制定了更为严格的地方标准。DB31/374-2006《上海市地方标准——半导体行业污染物排放标准》[6]中,砷化镓工艺的总砷最高允许排放浓度为0.3mg/L。DB11/307-2013《北京市地方标准——水污染物综合排放标准》[7]中,排入公共污水处理系统的砷排放限值为0.1 mg/L,均高于国家标准。半导体行业排放监管的日趋严格,对含砷废水的处理工艺也提出了更高的要求。本文以某半导体芯片生产项目为例,浅析其含砷废水综合处理方案,以期为含砷废水处理达标排放提供思路。 1 含砷废水来源 半导体集成电路芯片制造是采用半导体平面工艺在衬底上形成电路并具备 电学功能的生产过程,其生产工艺十分复杂,包括外延片清洗、光刻、湿法蚀刻、

含砷废水处理研究进展

含砷废水处理研究进展 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 摘要:含砷废水的传统处理方法,如物理法和化学法的不足之处在于费用高,二次污染大,工程化程度小。微生物法在含砷废水处理方面的研究取得了显著进展,研究成果已投入工程应用。本文认为活性污泥法对含砷废水的处理有着广阔的应用前景。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大[1]。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中

砷的中毒事件[2]。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为时,溶液中砷主要以无机砷的形态存在,当pH为时,有机砷为其主要存在形态[3]。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。 本文通过对含砷废水的传统处理方法如物化法和化学法进行系统论述,找出其存在的问题,详细考察微生物法处理含砷废水的研究进展,旨在为进一步发展活性污泥法处理含砷废水的处理技术提供重要的参考依据。 1化学法处理含砷废水处理含砷废

水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。

含砷废水处理技术

含砷废水处理技术 1 化学法处理含砷废水 处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。 铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣[5]。Nakazawa Hiroshi 等研究指出[6],在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾[7]从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。 马伟等报道[8],采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾[9]有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。 化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。 2 物化法处理含砷废水 物化法一般都是采用离子交换、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。 陈红等曾[10]利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。

砷的处理方法.

砷的处理方法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。 5.3沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 5.3.1 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。铁盐法可以用在饮用水的净化

含砷废水的处理方法

砷和含砷废水 更新时间:09-1-5 13:59 砷在地壳中含量并不大,但是它在自然界中到处都有。砷在地壳中有时以游离状态存在,不过主要是以硫化物矿的形式存在如雌黄(As2S3)、雄黄(As2S2)和砷黄铁矿(FeAsS)。无论何种金属硫化物矿石中都含有一定量砷的硫化物。砷的硫化物矿自古以来被用作颜料和沙虫剂、灭鼠药。硫化合物具有强烈毒性,砷和它的可溶性化合物都有毒。砷作合金添加剂生产铅制弹丸、印刷合金、黄铜(冷凝器用)、蓄电池栅板、耐磨合金、高强结构钢及耐蚀钢等。黄铜中含有重量砷时可防止脱锌。高纯砷是制取化合物半导体砷化镓、砷化铟等的原料,也是半导体材料锗和硅的掺杂元素,这些材料广泛用作二极管、发光二极管、红外线发射器、激光器等。砷的化合物还用于制造农药、防腐剂、染料和医药等。用于制造硬质合金;黄铜中含有微量砷时可以防止脱锌;砷的化合物可用于杀虫及医疗。砷和它的可溶性化合物都有毒。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长4.4%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长4.2%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中砷的中毒事件。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为5.0时,溶液中砷主要以无机砷的形态存在,当pH为6.5时,有机砷为其主要存在形态。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。 砷污染及砷污染的来源

含砷废水处理研究进展-最新范文

含砷废水处理研究进展 摘要:含砷废水的传统处理方法,如物理法和化学法的不足之处在于费用高,二次污染大,工程化程度小。微生物法在含砷废水处理方面的研究取得了显著进展,研究成果已投入工程应用。本文认为活性污泥法对含砷废水的处理有着广阔的应用前景。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大[1]。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长4.4%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长4.2%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中砷的中毒事件[2]。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH 为5.0时,溶液中砷主要以无机砷的形态存在,当pH为6.5时,有机砷为其主要存在形态[3]。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。

本文通过对含砷废水的传统处理方法如物化法和化学法进行系统论述,找出其存在的问题,详细考察微生物法处理含砷废水的研究进展,旨在为进一步发展活性污泥法处理含砷废水的处理技术提供重要的参考依据。 1化学法处理含砷废水处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。 铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣[5]。NakazawaHiroshi等研究指出[6],在热的含砷废水中加铁盐(FeSO4

工业污水处理含砷废水处理工艺

工业污水处理含砷废水处理工艺 【格林大讲堂】 作为一种高效的光催化剂,应用纳米TiO2催化As(III)氧化为As(V)的研究已有不少报道,但应用纳米TiO2催化转化DMA,MMA的报道较少,尤其是就其光催化转化产物解析,二次吸附及二次污染等方面仍值得进一步研究. 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 纳米二氧化钛(TiO2)因具有较大比表面积,性质稳定且无毒,作为环境中常见的纳米材料应用于去除环境污染物,如无机砷(As(V)和As(III))等.纳米TiO2同时也具有强光催化性能,在紫外(UV)作用下,电子发生跃迁,使原来的空带上获得带负电的高活性电子e,在原来的满带上形成带正电的空穴h+,所生成的电子和空穴对能够与吸附的氧气等反应产生多种活性氧自由基. 实验过程中,自然光中紫外光(λ=254nm)的强度为1.5μW·cm-2;光化学反应器的紫外光(λ=254nm)的强度为4030μW·cm-2. 2.2.2转化产物测定 相对无机砷的去除工作,甲基砷(DMA和MMA)的去除研究鲜有报道,而且主要集中在

使用活性碳、锰绿砂、氧化铁包覆砂以及纳米TiO2等材料,并且去除效率远低于无机砷.因此如果甲基砷能够高效转化为无机砷,砷是一种自然界中普遍存在的非金属元素,价态有+5、+3、0、-3等4种.在自然环境中砷通常以砷酸(H3AsO4)、亚砷酸(H3AsO3)及其阴离子存在.由于农药、含砷废水等外源的进入以及生物转化的作用,有机砷如二甲基砷酸盐(DMA)、一甲基砷酸盐(MMA)等也在地下水、湖泊和河流中发现.毒理学研究表明,一些有机砷(包括DMA,MMA)的毒性比最初预想强很多. 这样就能够通过去除无机砷间接去除甲基砷.本实验室前期通过水解硫酸氧钛的方法合成了纳米TiO2,能够高效去除无机砷.为了有效去除甲基砷(DMA和MMA),本文应用此纳米TiO2研究了甲基砷(DMA和MMA)光催化转化过程,主要考察了不同光照条件和pH条件的影响,通过测定液相及固相中的不同组分,解析光催化转化产物,考察纳米TiO2对甲基砷的去除性能,为后续的实际应用提供理论依据. 二甲基胂酸(DMA,C2H7AsO2),购自SigmaChemical.一甲基胂酸(MMA,CH3H2AsO3),购自ChemService.DMA和MMA在不同pH条件下的形态分布见图1.实验中配制浓度为1000mg·L-1的储备液,避光保存于4℃.实验过程中应用1mol·L-1硝酸(优级纯)和氢氧化钾(优级纯)调节pH值.实验中所用纳米TiO2是在4℃条件下水解硫酸氧钛制得,比表面积为196m2·g-1,等电点为5.8. 为分析DMA和MMA的光转化产物,配制100μg·L-1的DMA和MMA溶液中,投加0.01g·L-1纳米TiO2,调节pH值为5.旋转培养1440min,定时取样过滤测定滤液中DMA,MMA和As(V)的浓度,计算不同时刻下DMA和MMA的转化率.上述过程分别在光化学反

含砷废水的处理办法

1. 砷的处理办法 废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜 在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸 铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出 硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三 价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过 作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个 阳离子交换树脂处理,出水中形成的可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95% 以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的 生产。而出水中砷的最终浓度可降至0.005~0.007mg/L[2]。 2.1.沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法,或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。

1.1.1.铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至0.05~0.1mg/L[17]。铁盐法可以用在饮用水的净化中去[18]。 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的砷的去除率可达,克服了传统的含砷废水处理工艺投资高,占地大,运行成本高,处理后水质不稳定的弱点,滤清液无色,清澈,透明,可以达标排放或降级回用[19]。 用硫酸铁或其它三价铁盐可以有效地去除废水中的砷化合物。当初始浓度为0.31~0.35毫克/升时,用硫酸铁处理,砷的去除率可达91~94%,如再经双层滤料过滤,去除率还可增加5~7%,总去除率可达98~99%,出水砷含量可降至0.003~0.006毫克/升[20]。在用硫酸铁作为凝聚剂时,当用量在500毫克/升时,可以使水中的含砷量从25毫克/升降至5毫克/升以下。其机理是共沉淀法,在铁沉淀的同时,将砷也从废水中络合除去。砷酸盐和亚砷酸盐都可以用这种方法处

含砷废液管理知识处理(doc 21页)

目录 1含砷废液处理 (2) 2 含有天然及合成高分子化合物的废液处理 (3) 3 含有天然及合成高分子化合物的废液处理 (3) 4 含有酸、碱、氧化剂、还原剂及无机盐类的有机类废液处理 (3) 5 含酚类物质的废液处理 (4) 6 含N、S及卤素类的有机废液处理 (4) 7 含石油、动植物性油脂的废液处理 (5) 8 含一般有机溶剂的废液处理 (5) 9 有机类实验废液的处理 (6) 10 含无机卤化物的废液处理 (8) 11 含酸、碱、盐类物质的废液处理 (8) 12 含氧化剂、还原剂的废液处理 (9) 13 含氟废液处理 (10) 14 含硼废液处理 (10) 15 含钡废液处理 (10) 16 含重金属的有机类废液处理 (11) 17 含重金属的废液处理 (12) 18 含有机汞的废液处理 (14) 19 含汞废液处理 (15) 20 含镉及铅的废液处理 (17) 21 含六价铬的废液处理 (19) 22 实验室废弃物处理注意事项 (21) 23 实验室废弃物收集、贮存注意的事项 (22)

一、含砷废液处理 注意事项 是剧毒物质,其致命剂量为0.1克。因此,处理时必须十分谨慎。 1).As2O 3 2).含有机砷化合物时,先将其氧化分解,然后才进行处理(参照含重金属有机类废液的处理方法)。 处理方法(氢氧化物共沉淀法) [原理] 用中和法处理不能把 As沉淀。通常使它与Ca、Mg、Ba、Fe、Al等的氢氧化物共沉淀而分离除去。用Fe(OH)3时,其最适宜的操作条件是:铁砷比(Fe/As)为30~50;pH为7~10。 [操作步骤] 1).废液中含砷量大时,加入Ca(OH)2溶液,调节pH至9.5附近,充分搅拌,先沉淀分离一部份砷。 2).在上述滤液中,加入FeCl3,使其铁砷比达到50,然后用碱调整pH至7~10之间,并进行搅拌。 3).把上述溶液放置一夜,然后过滤,保管好沉淀物。检查滤液不含As后,加以中和即可排放。此法可使砷的浓度降到0.05ppm以下。 [分析方法] 定量分析有铁共沉淀、浓缩——溶剂萃取——钼蓝法(见JIS K 0102 48.1);或铁共沉淀、浓缩——分离砷化氢——二乙基氨荒酸银法进行测定(见JIS K 0102 48.2)。 [备注] 除上述处理方法外,还有硫化物沉淀法(用盐酸酸化,然后用H2S或NaHS等试剂使之沉淀)及吸

离子交换法处理含砷废水的小试中试试验-湖泊科学

J.LakeSci.(湖泊科学),2016,28(5):1018?1022 DOI10 18307/2016 0511 ?2016byJournalofLakeSciences 离子交换法处理含砷废水的小试/中试试验? 黄建洪,卓琼芳,郑文丽,邴永鑫,彭福全,何宗良,虢清伟??,许振成?? (环境保护部华南环境科学研究所,广州510655) 摘一要:利用选择性复合树脂处理含砷废水,使出水水质达到国家‘地表水环境质量标准“(GB38382002),同时从选择性复合树脂和阳离子柱上交换下来的离子可以生成H2O和中性盐类,无二次污染.研究采用201?7苯乙烯系强碱凝胶型树脂(Ⅰ)和D301大孔弱碱阴离子交换树脂(Ⅱ)作为比选树脂,通过小试试验选择具有较高交换容量的201?7苯乙烯系强碱凝胶型树脂用于放大规模的现场中试.实验所用选择性复合树脂制作成本及整个中试系统价格低廉,适合大规模工厂应用. 关键词:砷;离子交换;中试;泉涌水 Treatmentofarsenicwastewaterbyion?exchangeresin HUANGJianhong,ZHUOQiongfang,ZHENGWenli,BINGYongxin,PENGFuquan,HEZongliang,GUOQingwei??&XUZhencheng?? (SouthChinaInstituteofEnvironmentalScience,MinistryofEnvironmentalProtection,Guangzhou510655,P.R.China) Abstract:Theselectivecompositeresinswereusedtotreatspringwatercontainingarsenic,andthearsenicconcentrationintheef?fluentreachedtheEnvironmentalQualityStandardsforSurfaceWater(GB38382002).Ionsexchangedfromtheselectivecom?positeresinandcationexchangecolumnhaveyieldedH2Oandneutralsalt,andthismethodhasnosecondarypollution.201?7geltypestyreneofstrongakaliresin(Ⅰ)andD301macroporoushaveweakenedtheakalianionicexchangeresin(Ⅱ),whencom?paredtochoosethesuitableresinforarsenicremovalinthisstudy.The201?7resinswithhigherexchangecapabilityandlowercostwereappliedtothepilotscaleexperimentsonsiteandtheyweresuitabletolarge?scaleapplications. Keywords:Arsenic;ionexchange;pilotplantexperiment;springwater 砷(As)及其化合物广泛存在于钢铁二有色冶炼二硫酸二农药和木料防腐剂等工业生产废水中,在砷矿丰富且又是水稻主产区的省份,用含砷污水灌溉会导致水稻的砷污染[1].在自然界有三价无机态As(Ⅲ)二五价无机态As(V)以及有机砷MMA(甲基胂酸)二DMA(二甲基胂酸)二TMA(三甲基砷酸)等,具有生殖毒性二心血管毒性二肝脏毒性危害.近年来,由于经济利益驱使,个别单位和个人违法作业,造成各类环境砷污染事故不断发生,引发严重的环境危害和健康危害[2].砷在水体中主要以+3价和+5价的无机酸形式存在[3],砷污染的常规处理方法分为3类,即物理法二化学法和生化法[4?5].由于离子交换法产生的污泥量仅为化学沉淀法产生污泥量的20%,污泥的处置费用大大减少.而且离子交换法处理量大二操作简单二易再生二效果好,能够达到严格的排放标准,故适合工业化生产[6?7].据国内外的报道,在对低含量含砷水的处理中,较有成效的有无机离子交换剂(如水合二氧化钛,即TiO2四H2O)[8]和有机离子交换剂(如经二价铜离子活化的阳离子交换树脂和聚苯乙烯强碱型阴离子交换树脂)[9?10].其中有机离子交换剂聚苯乙烯强碱型阴离子交换树脂对As(V)有良好的去除效果,已有实际应用报道[11]. 本研究采用选择性复合树脂,基于物理化学反应的离子交换和吸附过程,树脂表面可交换基团R吸附 ???国家水体污染控制与治理科技重大专项(2010ZX07212?007,2012ZX07206?002,2012ZX07206?003)和铟提取过程污染控制与管理方案研究项目(201309051)联合资助.20150929收稿;20151109收修改稿.黄建洪(1978 ),男,博士,副研究员;E?mail:huangjianhong@scies.org. 通信作者;E?mail:guoqingwei@scies.org,E?mail:xuzhencheng@scies.org.

含砷废水的处理方法有哪些

含砷废水的处理方法有哪些 砷污染是指由砷或其化合物所引起的环境污染。砷和含砷金属的开采、冶炼,用砷或深化合物作原料的玻璃、颜料、原药、纸张的生产以及煤的燃烧等过程,都可产生含砷废水、废气和废渣,对环境造成污染。那么含砷废水的处理方法有哪些? (一)石灰法 一般适用于含砷量较高的酸性废水。投加石灰乳,使其与砷酸或亚砷酸根离子发生反应,生成难溶解的砷酸钙或亚砷酸钙沉淀。 废水投加石灰乳混合沉淀,当石灰乳投加量适当,反应进行完全时,出水水质可达到污水综合排放二级标准(GB8978—88)。此法的优点是操作单位、成本低廉;缺点是沉渣量大,对三价砷的处理效果较差,容易造成二次污染。 (二)石灰—铁盐法

一般用于含砷量较低,pH值接近中性或弱碱性的废水处理。利用砷酸盐、亚砷酸盐能与铁、铝等金属形成稳定的络合物,并为铁、铝等金属的氢氧化物吸附沉淀除砷。 当pH10时,砷酸根、亚砷酸根与氢氧根置换,使一部分砷溶于水中,所以终点最好控制在pH10。 (三)硫化法 在酸性条件下,砷以阳离子形式存在,当加入硫化剂时,生成难溶的As2S3沉淀。硫化法可使废水中的含砷量降至0.05mg/L以下。但硫化法沉淀需在酸性条件下进行,否则沉淀物难以过滤,上清液中过剩的硫离子在外排前还需处理。 (四)软锰矿法

利用软锰矿法(天然的二氧化锰),使三价砷氧化为五价砷,然后投加石灰乳,生成砷酸锰沉淀,即: H2SO4+MnO2+H3AsO3→H3AsO4+MnSO4+H2O 3H2SO4+3MnSO4+6Ca(OH)2→6CaSO4↓+3Mn(OH)2+6H2O 3Mn(OH)2+2H3AsO4→Mn3(AsO4)2↓+6H2O 具体做法:废水加温至80℃,曝气1h,然后投加磨碎的软锰矿粉氧化3h,最后投加10%石灰乳,调pH值至8~9,沉淀30~40min,出水水质中砷可降至0.05mg/L以下。 (五)综合回收法 当前许多矿山正在将含砷废水蒸发、浓缩、结晶、离心脱水得

化工厂含砷污酸处理项目建设方案

大冶有色金属股份有限公司 污酸废水治理项目建设 方案 大冶有色设计研究院有限公司 2010-3-10

目录 目录 (i) 第一章总论 (1) 1.1 编制的依据及原则 (1) 1.1.1 编制依据 (1) 1.1.2 编制原则 (1) 第二章项目概况 (2) 2.1 项目名称 (2) 2.2 项目建设的必要性 (2) 2.3 项目建设的可行性 (2) 2.4 建设单位基本情况 (3) 2.5 设计的内容及范围 (4) 2.5.1 设计的内容 (4) 2.5.2 设计的范围 (4) 2.5.3设计目标 (4) 2.6 项目进度安排 (5) 2.7 项目投资 (5) 2.8 经济效益 (6) 2.9 环境效益 (6) 2.10 结论 (6) 第三章市场预测及产品方案 (8) 3.1 市场预测 (8) 3.1.1As2O3国外市场分析 (8) 3.1.2 As2O3利用的前景 (10) 3.2 产品方案 (11) 第四章工艺方案及主要设备 (12) 4.1 设计基础原则 (12) 4.2 含砷废水处理技术现状 (12) 4.3 工艺方案 (17) 4.3.1工艺参数 (17) 4.3.2工艺流程 (18) 4.4 设备选型 (20) 4.4.1 设备选型的原则 (20) 4.4.2 主要设备 (20) 4.4.3 设备表 (23) 4.5 平面配置 (23) 第五章土建 (25) i

5.1.1 气象 (25) 5.1.2 抗震设防 (25) 5.1.3 工程地质 (25) 5.1.4 建筑材料 (26) 5.1.5 施工技术力量 (26) 5.2 建筑状况 (26) 5.3 建筑设计 (26) 5.3.1 建筑布置 (27) 5.3.2 装修标准 (27) 5.3.3 屋面 (27) 5.3.4 墙体 (28) 5.3.5 通风与采光 (28) 5.4 建筑、结构防腐蚀设计 (28) 5.4.1 防腐地面 (28) 5.4.2 防腐楼面 (28) 5.4.3 地槽、地坑、水沟 (28) 5.4.4 金属防腐 (28) 5.4.5 基础防腐 (28) 5.4.6 墙、梁、柱表面 (29) 5.5 柱基、墙基 (29) 5.5.1 柱 (29) 5.5.2 楼面板 (29) 5.5.3 屋盖 (29) 第六章电气 (30) 6.1 供电源 (30) 6.2 用电负荷 (30) 6.3 低压配电以及电气控制 (30) 6.3.1 低压配电 (30) 6.3.2 电气控制 (30) 6.4 主要设备选型以及线路安装 (30) 6.5 照明、防雷、接地 (31) 第七章仪表及自动化 (32) 7.1 概述 (32) 7.2 控制方案 (32) 7.3 仪表选型 (32) 7.4 仪表气源 (32) 7.5 仪表电源 (32) 第八章电信 (34) 8.1 设计依据 (34) 8.2 设计范围 (34)

相关主题
文本预览
相关文档 最新文档