当前位置:文档之家› 电流互感器工作原理

电流互感器工作原理

电流互感器工作原理
电流互感器工作原理

电流互感器

1、原理

一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下:

120121I N I N I N ?

?

?

+=

在理想情况下,励磁电流为零,即互感器不消耗能量,则有

12120I N I N ?

?

+=

若用额定值表示,则

1212

N N I N I N ?

?

=-

其中1N I ?

,2N I ?

为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N

N N

I K I =

P 1

1I ?

P 2

2

I ?

Z B

电流互感器工作原理

E 2

11I N ?

22I N ?

22I N ?

-

01I N ?

电流互感器的等值电路如下图所示:

Z 1 Z 2

1

I

?

2I ?

?

Z M 2U ?

Z B

'

1

E ?

2E ?

根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ?

,相位相差90(滞后);则:

222()B E I Z Z ?

?

=+

式中 Z 2---二次绕组的内阻抗,

Z 2= R 2 +jX2

Z B ―――二次负荷,Z B =R B +jXB

二次电流的相位滞后于二次感应电动势

角。

22arctan B

B

X X R R α+=+

一次电流1I

?

是(2I ?

-)和

I ?

之和,一次电流与(2I ?

-)相差角。

可见由于励磁电流

I ?

的存在,一、二次电流在变换的大小和相位上都存

在差别,这就是互感器的误差。

特别要注意,电流互感器在运行中不允许开路,如果二次开路,二次电流2I ?

为零,一次安匝全部用于励磁,铁心高度饱和,励磁磁通由正弦波变为平顶波,二次感应电动势变为峰值很高的尖顶波,对人身和设备将造成危害。 二、电流互感器的分类 1、分类

分类 说明

保护用(用于机电保护和自动控制装置的电流互感器)

2、电流互感器型号组成

产品型号字母下表为部分电流互感器型号代表字母表

电流互感器型号代表字母及涵义

特殊使用环境代号主要有以下几种:

GY----高原地区使用;

W---污秽地区使用(W1、W2、W3对应污秽等级为Ⅱ、Ⅲ、Ⅳ);

TA----干热带地区使用;

TH----湿热带地区使用。

三、电流互感器的电气特性

1、术语

A、额定电流:电流互感器的误差性能、发热性能和过流性能都是以额定电流为基数作出的相应规定的。对一、二次绕组而言,就是额定一、二次电流。电力系统额定二次电流一般为1A、5A。

B、额定电流比:额定一、二次电流之比 K N=

1

2N N

I

I

C、额定二次负荷;确定互感器的准确级所依据的二次负荷。通常以视在功率VA 表示。

S N=

2

2N B I Z

2、电流互感器的误差特性 2.1误差的定义

A 、电流误差

GB1208-87对电流误差的定义是

21

1

100%N K I I I γ-=?

从电流互感器的原理知道,由于励磁电流的存在,二次电流乘以额定电流比总是小于实际一次电流,所以电流互感器的误差总是负值,只有采取了补偿以后,才可能出现正值电流误差。

B 、相位误差

GB1208-87对相位误差的定义是:电流互感器的一次、二次电流相量的相位之差。从电流互感器相量图中可以看出,相位差是二次电流反转180后与一次电流的相角之差。二次电流相量反转180后超前于一次电流相量时,相位差为正值,通常以“分”或“厘弧度”表示。

1弧度(rad )=100厘弧度(crad )=3438分

特别注意相位差的定义只是在电流为正弦波形时是正确的。 C 、复合误差

当电流互感器通过很大电流时,铁心的磁通密度很高,励磁电流的波形畸变,二次电流也不再是正弦波,这时需要引入复合误差的概念。

GB1208-87对复合误差的定义是:在稳态时下列两个值之差的有效值为复合误差

1) 一次电流瞬时值

2) 二次电流瞬时值与额定电流比的乘积。

复合误差以下式计算:

1

100%I ε=

D 、仪表保安系数

仪表保安系数是针对测量用电流互感器的。仪表保安系数是额定仪表保安电流与额定一次电流之比。额定仪表保安电流是二次负荷为额定负荷时复合电流小于10%的最小一次电流值。

保护用和测量用电流互感器对复合误差的要求不同,保护用电流互感器在过流时要求复合误差误差要小,便于保护检测,而测量用电流互感器在过流时要求复合误差误差要大,便于保护二次仪表、电能表。 2、2保护用电流互感器误差(详见“白”P55~58)

GB1208-87对保护用电流互感器的误差要求如下:

机电保护用电流互感器的误差极限

比值误差 (

%,额定一次电流时) 复合误差 (

%,额定准确极

限一次电流时)

()

c

rad

随着高压、超高压和特高压电网的发展和电网传输容量加大,普通保护用电流互感器已经不能满足要求;提出保证暂态误差的电流互感器的概念。 “暂态—保护”类电流互感器的铁心要求、误差极限要求如下表:

比值误差(%)角误差

()

角误差

crad

、3电流互感器的误差影响因素

根据误差定义和相量图,误差计算公式如下:

比值差:

01

11

sin()100%

I N

f

I N

α?

=-+?

相位差:01

11

cos()3440I N I N δα?=+?

转换成互感器的参数和负荷的关系上,则变为下面的公式:

4

2221122

2()10sin()100%

222()45()sin()100%B B I Z Z L f N S I N Z Z L N S α?μα?μ

+?=-+?+=-+?

4

2221122

2()10cos()3440

222()45()cos()3440B B I Z Z L N S I N Z Z L N S δα?μα?μ

+?=+?+=+?

式中I 2-----二次电流

Z 2 ---二次绕组内阻抗()

Z B------二次负荷阻抗 N 2 ----二次绕组匝数 L-----平均磁路长度(cm ) S------铁心截面积(cm 2) ------铁心材料的磁导率(H/cm )

I1 N1----一次绕组安匝(A)

电流互感器的误差影响因素主要有以下六项:

A、电流对误差的影响

B、绕组的匝数对误差的影响

C、平均磁路长度对误差的影响

D、铁心截面积对误差的影响

E、铁心材料对误差的影响

F、二次负荷对误差的影响

2.3.1电流对误差的影响

当电流增大时,铁心的磁密按比例增大,这是铁心的磁导率和损耗角也随着增大,根据误差计算公式看出分母增加,电流互感器误差随着减小。但Sin (+)增大,cos(+)减小,因此电流互感器误差减小的少,相位差减小的多。

2.3.2绕组的匝数对误差的影响

从公式中可以看出,误差与二次绕组的匝数的平方成反比,增加了二次绕组的匝数能够减小误差;但增加了二次绕组的匝数,同时增加了二次绕组的内

阻抗,在一定程度上限制了误差的减小;根据

2

1

N

N

K

N

,同时也要增加一次绕

组的匝数,从制造工艺和节省铜材的角度,一次绕组应尽量少,多采用单匝;这种设计但当一次电流较小时,误差迅速增大,有时无法满足准确度等级要求。2.3.3平均磁路长度对误差的影响

减小平均磁路长度,误差随着减小;并且可以节省铁心材料。磁路长度取决于铁心窗口的大小,缩小铁心窗口的面积,可以缩短磁路长度,但要保证一次、二次绕组以及它们之间的绝缘。

2.3.4铁心截面积对误差的影响

铁心截面积与误差成反比,一般来讲,增加铁心截面积可以减小误差,但是铁心截面积增加同时,增加了磁路长度,同时增加了二次绕组的阻抗,这些都大大的限制了误差的减小。

2.3.5铁心材料对误差的影响

铁心的磁导率与误差成反比。提高铁心的磁导率,可以缩小铁心的尺寸。一般来讲,铁心材料愈好,铁心的尺寸亦愈小,互感器价格就低。

用于电流互感器的铁心材料一般选高磁导率的材料.如坡莫合金、非晶、超微晶合金材料、微晶高导铁氧体簿和冷、热轧硅钢片等。

2.3.6二次负荷对误差的影响

从误差公式中可以看出,误差与二次负荷成一定的正比关系。实际上当二次负荷增大,铁心的磁密增大,铁心的磁导率也略有增大。所以互感器的误差所二次负荷的增大而增大。

二次负荷的功率因数角增大,Sin(+)增大,cos(+)减小,因此二次负荷的功率因数角增大,比值差增大,相位差减小。

2.4电流互感器的误差补偿

()

20 40 60 80 100 120 500 1000 I1/ I1N(%)

f(%)

由于存在励磁电流和铁心损耗,未作补偿的电流互感器的误差必然是负值,上图是未补偿的电流互感器的误差曲线,多数情况下,(+)不超过90,所

以相位差为正值 。

为使电流互感器的误差向正方向变化,就必须采取补偿措施。 下面介绍几种常用的补偿方法:

A 、 整数匝补偿

B 、 分数匝补偿

C 、 磁分路补偿

D 、 短路匝补偿

E 、 磁分路短路匝补偿

F 、 圆环磁分路电势补偿

G 、 电容补偿

2.4.1整数匝补偿(减匝补偿)

据电

流互感

器的磁动势平衡公式

120121I N I N I N ?

?

?

+=,减少二次绕组的匝数,二次电流增

加以维持磁动势平衡,这样达到电流误差向正方向变化的目的。减匝补偿的计算公式为:

2100%b

b N

N f N =?

式中 N b ----补偿匝数,即二次绕组中减去的匝数;

N 2N ----额定二次匝数。

补偿后电流互感器的误差为 f 1 = f + f b 2.4.2分数匝补偿

在整数匝补偿的方法补偿值过大时,可以采用分数匝补偿,分数匝补偿有两种:

a 、 双铁心补偿或铁心穿孔补偿

b 、 双线或多线并绕补偿

双铁心实现分数匝补偿的原理是:电流互感器的铁心分成大小相同的两个,并在它们上面绕制二次绕组,其中有一匝只绕在一个铁心上,少绕绕组的铁心称之为辅助铁心;对整个铁心来讲,相当于少绕了半匝,这就得到半匝补偿。如果辅助铁心的截面积是整个铁心截面积的1/3,则得到三分之一补偿。分数匝补偿的误差计算公式是:

21

100%b b N S f N S

=??

式中 S b ----辅助铁心的截面积;

S----铁心的总截面积(两个铁心的截面积和)。

双铁心制作电流互感器有时不方便,可以在铁心上穿孔的办法实现分数匝补偿。同样少绕绕组的那部分铁心为辅助铁心,它的截面积是整个铁心截面积的1 /n ,就得到1/n 补偿。由于两个铁心的平均磁路长度不同,这种补偿的误差计算公式是:

21100%b b N b

S L f N S L =???

式中 L b ----辅助铁心的平均磁路长度;

L----整个铁心的平均磁路长度。

如果二次绕组采用完全相同的两根导线并联绕制,且有一根导线少绕一

匝,相当于整个二次绕组少绕半匝,得到半匝补偿。补偿值按照下式计算:

2

100%2b

b N f N =?

如果采用两根不同线径的导线或不同材料的导线绕制,则它们的内阻值

不同,少绕少绕一匝的导线的电阻为R b ,另一根导线的电阻为R n ,则补偿值为:

21100%n b n b

R f N R R =?+

整数匝补偿和分数匝补偿只对比值差起到补偿作用,对相位差基本不起作用。

2.4.3磁分路补偿

整数匝补偿和分数匝补偿对电流互感器误差的补偿是不变的。双铁心补偿中如果增加补偿匝数,在7%~10%额定电流时辅助铁心的导磁率和损耗角都达到或接近最大,对互感器误差的补偿也相应达到最大,这是我们所希望的,但由于电流互感器误差随电流的增加而减小,若电流达到10%~120%额定电流时,上述补偿可能反而使互感器的误差增加,此时必须减小辅助铁心的截面积,这时辅助铁心相当于一个磁分路,这种补偿方法称为磁分路补偿或小铁心补偿。磁分路补偿的特点是:7%~10%额定电流时,磁分路的导磁率和损耗角都最大,可以通过增减补偿匝数来达到。补偿数值的大小,可以通过增减磁分路的截面来调节。只要选择合适的补偿匝数和磁分路的截面,就可以使互感器误差显著减小,达到理想的补偿效果。下图为圆环磁分路补偿示意图

1 主铁心

3 二次绕组

2磁分路

4 补偿匝数(只绕在主铁心上)

圆环磁分路的片数必须是整数片。磁分路的头尾必须搭接40~60mm,保证

电流互感器的工作原理,民熔

电流互感器 是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中。 因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路 工作原理 在发电、变电、输电、配电和用电的线路中电流大小悬殊,从几安到几万安都有。 为便于测量、保护和控制需要转换为比较统一的电流,另外线路上的电压一般都比较高如直接测量是非常危险的。电流互感器就起到电流变换和电气隔离作用

对于指针式的电流表,电流互感器的二次电流大多数是安培级的(如5A等)。对于数字化仪表,采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。 电流互感器与变压器类似也是根据电磁感应原理 工作,变压器变换的是电压而电流互感器变换的是电流罢了。电流互感器接被测电流的绕组(匝数为N1),称为一次绕组(或原边绕组、初级绕组);接测量仪表的绕组(匝数为N2)称为二次绕组(或副边绕组、次级绕组)。

电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。电流互感器在额定电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。 Kn=I1n/I2n 电流互感器(Current transformer 简称CT)的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A 的电流转变为5A的电流。

电流互感器准确级大全

精心整理 电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 准确级一次电流为额定 的百分数(%) 误差限值二次负荷变化 范围 电流误差(%)相位差(’) 0.2 10 20 100—120 ±0.5 ±0.35 ±0.2 ±20 ±15 ±10 (0.25-1)S2n 0.5 10 20 100—120 ±1 ±0.75 ±0.5 ±60 ±45 ±30 1 10 20 100—120 ±2 ±1.5 ±1 ±120 ±90 ±60 3 50—120 ±3 不规定(0.5-1)S2n 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。? 5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 准确级电流误差(%)相位差(’)复合误差(%) 在额定准确限值一次电流下 在额定一次电流下

电流互感器简单易懂的原理讲解

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直 接串联于电源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按 比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电流比: 。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变, 在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一

个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2 不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图4。 图4 不同变比电流互感器原理图 例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

电流互感器的精度 ()

电流互感器的精度5P20,表示当一次侧电流为CT一次侧额定电流的20倍时,CT的复合误差能保证在5%以内。这是保护级CT的精度要求。 一、精度等级定义 互感器的精度是制造时就规定好的。常用的精度是0.1级、0.5级、10P 级。不同的负载使用不同的精度。计量要求准确,使用0.1级。当发生短路时,电流很大、考虑互感器线圈的磁饱和问题,所以保护一般选择10P 级。测量选用0.5级。 5P10,5P20,10P10,10P20 是电流互感器保护用绕组的准确级标示。以该准确级在额定准确限值一次电流下所规定的最大允许复合误差百分数标称,其后标以字母“P”(表示保护)。保护用电流互感器的标准准确级有:5P和10P。例如5P10后面的10是准确限值系数,5P10表示当一次电流是额定一次电流的10倍时,该绕组的复合误差≤±5% 5P20表示当一次电流是额定一次电流的20倍时,该绕组的复合误差≤±5% 测量用电流互感器的标准准确级有:0.1,0.2,0.5,1,3,5。 特殊使用要求的电流互感器的准确级有0.2S和0.5S。 带S的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围; 0.2,0.5等一般就是测量线圈,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差)。

而5P,10P是保护用电流互感器的精度要求,即要求在短路电流下复合误差小于一定的值,5P即小于5%,10P即小于10%。 另外还有一种保护用CT,即差动保护用CT,采用D级电流互感器,这是一种非标准的准确级。其特点是CT的抗饱和特性非常好,在短路情况下,不会像其他保护用CT一样容易饱和。 所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。

电压和电流互感器原理及结构

电压互感器: 工作原理: 其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

上图中两个尖尖一个接电压,一个接地,就形成了一次绕组,类似变压器,再有二次绕组接出来即可以。对于三个单相的电压互感器来说,每一相一端都接地,就形成了三相星型连接方式,这个接地就是PT的一次接地,即工作接地,主要作用是将中性点电位统一拉到地电位。使对地相对电压能准确统一的测量。 二次绕组必须接地,是安全接地,即:为防止高低电压绕组间绝缘击穿造成设备和人身事故,二次侧必须接地。 电磁式电压互感器

电容式电压互感器 为了获得理想的电压源,在网络中串入非线性补偿电感线圈L;为抗干扰,减少互感器开口三角形绕组的不平衡电压,提高零序保护装置的灵敏度,增设一个高频阻断线圈L’,为了抑制谐振的产生,常在互感器二次侧接入D阻尼器。

电流互感器接线图

电流互感器接线图 我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 一测量用电流互感器接线方法 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。 1普通电流互感器接线图 电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。 电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。 2穿心式电流互感器接线图 穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。 二电流互感器接线图 电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。 单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。(三相完全星形电流互感器接线图)

3.两相不完全星形接线形式电流互感器接线图 在实际工作中用得最多,但仅限于三相三线制系统。它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。 两相不完全星形接线形式电流互感器接线图 4.两相差电流接线形式电流互感器接线图 也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。 两相差电流接线形式电流互感器接线图 5.其它接线方式 5.1 原边串联、副边串联 电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。 电流互感器原边串联、副边串联接线图

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

第二章电流互感器基础学习知识原理

第二章 电流互感器原理 电流互感器是一种专门用作变换电流的特种变压器。在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器的工作原理示于图2-1。互感器的一次绕组串连在电力线路中,线路电流就是互感器的一次电流。互感器的二次绕组外部回路接有测量仪器、仪表或继电保护、自动控制装置。在图2-1中将这些串联的低电压装置的电流线圈阻抗以及连接线路的阻抗用一个集中的阻抗Z b 表示。当线路电流,也就是互感器的一次电流变化时,互感器的二次电流也相应变化,把线路电流变化的信息传递给测量仪器、仪表和继电保护、自动控制装置。 根据电力线路电压等级的不同,电流互感器的一、二次绕组之间设置有足够的绝缘,以保证所有低压设备与高电压相隔离。 电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电 流变换成较小的标准电流值,一般是5A 或1A ,这样可以减小仪表和继电器的尺寸,简化其规格。所以说电流互感器的主要作用是:①给测量仪器、仪表或继电保护、控制装置传递信息;② 使测量、保护和控制装置与高电压相隔离;③ 有利于测量仪器、仪表和继电保护、控制装置小型化、标准化。 第一节 基本工作原理 1. 磁动势和电动势平衡方程式 从图2-1看出,当一次绕组流过电流1I &时,由于电磁感应,在二次绕组中感应出电 动势,在二次绕组外部回路接通的情况下,就有二次电流2I &流通。此时的一次磁动势为一次电流1I &与一次绕组匝数N 1的乘积11N I &,二次磁动势为二次电流2I &与二次绕组匝数 N 2的乘积22N I &。根据磁动势平衡原则,一次磁动势除平衡二次磁动势外,还有极小的一 部分用于铁心励磁,产生主磁通m Φ&。因此可写出磁动势平衡方程式 102211N I N I N I &&&=+,A (2-1) 式中 1I &? 一次电流,A ; 2I &? 二次电流,A ; 0I &? 励磁电流,A ; N 1 ? 一次绕组匝数; 图2-1 电流互感器工作原理图 1?一次绕组 2?铁心 3?二次绕组 4?负荷 2

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

电流互感器的工作原理

电流互感器的工作原理 在供电用电的线路中电流大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 目前显示仪表大部分是指针式的电流表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 电流互感器由一次线圈、二次线圈、铁心、绝缘支持及出线端子等组成,如图1所示。 电流互感器的铁心由硅钢片叠制而成,其一次线圈与主电路串联,且通过被测电流I1,它在铁心内产生变磁通,使二次线圈感应出相应的二次电流I2(其额定电流为5A)。如将励磁损耗忽略不计,则I1n1=I2n2,其中n1和n2分别为一、二次线圈的匝数,电流互感器的变流比K=I1/I2=n2/n1。由于电流互感器的一次线圈连接在主电路中,所以一次线圈对地必须采取与一次线路电压相相适应的绝缘材料,以确保二次回路与人身的安全。二次回路由电流互感器的二次线圈、仪表以及继电器的电流线圈串联组成。 电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 一、测量用电流互感器 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。测量用电流互感器主要要求: 1、绝缘可靠, 2、足够高的测量精度, 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。 二、保护用电流互感器 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。保护用互感器主要要求: 1、绝缘可靠, 2、足够大的准确限值系数, 3、足够的热稳定性和动稳定性。 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P,表示在额定准确限值一次电流时的允许误差5%、10% 线路发生故障时的冲击电流产生热和电磁力,保护用电流互感器必须承受。二次绕组短路情况下,电流互感器在一秒内能承受而无损伤的一次电流有效值,称额定短时热电流。二次绕组短路情况下,电流互感器能承受而无损伤的一次电流峰值,称额定动稳定电流。 保护用电流互感器分为: 1、过负荷保护电流互感器, 2、差动保护电流互感器, 3、接地保护电流互感器(零序电流互感器)。 diandao999

电压电流互感器准确等级

电压电流互感器准确等 级 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

电压、电流互感器准确等级根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差的百分值。国产电流互感器的准确等级有:0.01;0.02; 0.05;0.1;0.2;0.5;1;3;10级。按照国家标准《电流互感器》 GB1208-75规定,电力系统用电流互感器的误差限值。 带S的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围;0.1级以上电流互感器,主要用于实验室进行精密测量,或者作为标准,用来校验低等级的互感器,也可以与标准仪表配合,用来校验仪表,所以叫做标准电流互感器;在工业上,0.2级和0.5级互感器用来连接电器测量仪表,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差),而3.0级及以下等级互感器主要用于连接某些继电保护装置和控制设备,如5P,10P的电流互感器一般用于接继电器保护用,即要求在短路电流下复合误差小于一定的值,5P即小于5%,10P即小于10%;标有B(或D)级的电流互感器,用来接差动保护和距离保护装置。所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。 保护用电流互感器按其功能特性分级如下: 保护用电流互感器按用途分为稳态保护用(P)和暂态保护用(TP)

P级:准确限值规定为稳态对称一次电流下的复合误差,无剩磁限值。 5P20表示在加20倍额定电流的情况下,误差小等于5% 暂态保护用电流互感器准确级分为TPX、TPY、TPZ三个级别。 TPS 级:低漏磁电流互感器,其性能由二次励磁特性和匝数比误差限值规定。无剩磁限值。 TPX级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。无剩磁限值。TPX级电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±0.5% TPY级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。剩磁不超过饱和磁通的10%。级电流互感器铁芯带有小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减,在额定负荷下允许最大电流误差为±1%。 TPZ级:准确限值规定了为在指定的二次回路时间常数下,具有最大直流偏移的单次通电时的峰值瞬时交流分量误差。无直流分量误差限值要求,剩磁通实际上可以忽略。TPZ级电流互感器铁芯心有较大气隙,气隙长度约为磁路平均长度的0.1%,由于铁芯气隙较大,一般不易饱和,特别适合于有快速重合闸(无电流时间间隙不大于0.3s)线路上使用。 测量用单相电磁式电压互感器的标准准确级为:0.1,0.2,0.5,1.0,3.0,5.0; 保护用电压互感器的标准准确级为:3P和6P,电压误差分别是3%和6%。

电流互感器的原理与作用

讲师:靳红波 徒弟:马富敏胡振敏 内容:电流互感器的原理与作用 1、电流互感器的工作原理 电流互感器是电力系统中很重要的电力元件,作用是将一次高压侧的大电流通过交变磁通转变为二次电流供给保护,测量,虑波,计度等使用,本局所用电流互感器二次侧额定电流均为5A,也就是铭牌上标注为100/5、200/5等,表示一次侧如果100A或者200A电流,转换到二次侧电流就是5A。 电流互感器在二次侧必须有一点接地,目的是防止俩侧绕组的绝缘击穿后一次高压引入二次回路造成设备与人身伤害。同时电流互感器也只能有一点接地,如果有俩点接地,电网之间可能存在的潜电流会引起保护等设备的不正确动作。 在一般的电流回路中都是选择在该电流回路所在的端子箱接各个比较电流都在各自的端子箱接地,有可能由于地网的分流从而影响工作。所以对于差动保护规定所有电流回路都在差动保护屏一点接地。电力系统中广泛采用的是电磁式电流互感器(简称电流互感器)它的工作原理和和变压器相似。电流互感器的原理接线电流互感器的特点:(1)一次线圈串联在电路中,并且匝数很少,因此一次线圈中的电流而与二次电流无关等。 1、电流互感器不满足10%误差时,可采取哪些措施? (1)增大二次电缆截面 (2)将同名相两组电流互感器二次绕组串联 (3)改用饱和倍数较高的电流互感器 2、为什么不允许电流互感器长时间过负荷运行? 答:电流互感器长时间过负荷运行,会使误差增大,表计指示不正确。另外,由于一、二次电流增大,会使铁芯和绕组过热,绝缘老化快,甚至损坏电流互感器。 3、什么电压互感器和电流互感器的二次侧必须接地? 答:电压互感器和电流互感器的二次侧接地属于保护接地。因为一、二次侧绝缘如果损坏,一次侧高压串到二次侧,就会威胁人身和设备的安全,所以二次则必须接地。 在平时的实践中注意认真学习,才能真正的掌握这些理论知识,以及亲自动手实践。通过这短时间的培训、增加了徒弟们的团队合作精神、提高了徒弟们的动手能力。

电流互感器准确级大全定稿版

电流互感器准确级大全 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电流互感器的准确级一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。

二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。? 5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。

2、暂态保护用电流互感器的准确级分为TPX、TPY、TPZ。 TPX:电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±5%,相位差不大于±30度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的5%,电流过零时相位差不大于3度。 TPY:电流互感器环形铁芯中带小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减。在额定电流和负载下,其电流误差不大于±1%,相位差为1度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的7.5%,电流过零时相位差不大于4.5度。 TPZ:电流互感器环形铁芯中带较大气隙,气隙长度约为磁路平均长度的0.1%,由于气隙使铁芯不易饱和,特别适合快速重合闸。间隙大,剩磁可以忽略,铁芯磁化曲线线性度好,二次回路时间常数小,对交流分量的传变性能好,但是传变直流分量能力差。 500KV线路保护用的互感器一般选用TPY级暂态型互感器。 采用暂态型电流互感器的必要性?

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

电压、电流互感器准确等级

电压、电流互感器准确等级 根据电流互感器在额定工作条件下所产生的变比误差规定了准确等级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差的百分值。国产电流互感器的准确等级有:0.01;0.02;0.05;0.1;0.2;0.5;1;3;10级。按照国家标准《电流互感器》GB1208-75规定,电力系统用电流互感器的误差限值。 带S的是特殊电流互感器,要求在1%-120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围;0.1级以上电流互感器,主要用于实验室进行精密测量,或者作为标准,用来校验低等级的互感器,也可以与标准仪表配合,用来校验仪表,所以叫做标准电流互感器;在工业上,0.2级和0.5级互感器用来连接电器测量仪表,要求误差20%-120%负荷范围内精度足够高,一般取4个负荷点测量其误差小于规定的范围(误差包括比差和角差,因为电流是矢量,故要求大小和相角差),而3.0级及以下等级互感器主要用于连接某些继电保护装置和控制设备,如5P,10P的电流互感器一般用于接继电器保护用,即要求在短路电流下复合误差小于一定的值,5P即小于5%,10P即小于10%;标有B(或D)级的电流互感器,用来接差动保护和距离保护装置。所以电流互感器根据用途规定了不同的准确度,也就是不同电流范围内的误差精度。 保护用电流互感器按其功能特性分级如下: 保护用电流互感器按用途分为稳态保护用(P)和暂态保护用(TP) P级:准确限值规定为稳态对称一次电流下的复合误差,无剩磁限值。5P20表示在加20倍额定电流的情况下,误差小等于5% 暂态保护用电流互感器准确级分为TPX、TPY、TPZ三个级别。 TPS 级:低漏磁电流互感器,其性能由二次励磁特性和匝数比误差限值规定。无剩磁限值。TPX级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。无剩磁限值。TPX级电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±0.5% TPY级:准确限值规定为在指定的暂态工作循环中的峰值瞬时误差。剩磁不超过饱和磁通的10%。级电流互感器铁芯带有小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减,在额定负荷下允许最大电流误差为±1%。TPZ级:准确限值规定了为在指定的二次回路时间常数下,具有最大直流偏移的单次通电时的峰值瞬时交流分量误差。无直流分量误差限值要求,剩磁通实际上可以忽略。TPZ级电流互感器铁芯心有较大气隙,气隙长度约为磁路平均长度的0.1%,由于铁芯气隙较大,一般不易饱和,特别适合于有快速重合闸(无电流时间间隙不大于0.3s)线路上使用。 测量用单相电磁式电压互感器的标准准确级为:0.1,0.2,0.5,1.0,3.0,5.0; 保护用电压互感器的标准准确级为:3P和6P,电压误差分别是3%和6%。

电流互感器末屏的工作原理及试验方法

电流互感器末屏的工作原理及试验方法(故障攻关特色工作室) 朔黄铁路原平分公司

一、什么是电流互感器的电容屏及末屏? 电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。两两电容屏之间形成电容。 二、电流互感器内部为什么要设置电容屏? 电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。 绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大

的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。 三、电流互感器的末屏为什么一定要接地? 电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。 容抗X=1/(2πfC),可见频率相同的情况下,电容器的容值与容抗成反比,所以在这个电路中,这个串进来的对地小电容容抗要远大于流互内部电容器。而又由于串联电路,电流处处相等,所以电流互感器内各电容器的电量Q是相等的,Q=CU,所以对地小电容所分得的电压远远大于流互内部电容器。这个末屏高电压会使电流互感器内部绝缘的电场强度分布极度不均匀,在电场力的作用下,内部绝缘的电荷会朝末屏聚集,场强集中后,周围固体介质会烧坏或炭化,也会使绝缘油分解出大量特征气体,从而使绝缘油色谱分析结果超标,也会对地发生火花放电。 如果末屏接地,电流互感器只存在电容屏组成的电容,则每个电容器电压均分,且末屏接地,导致末屏这个最外极的电容屏电势为零,而由于电容器两极板之间电荷一定是数量相等,极性相反,且只会从负极板经外部电路流向正极板放电,所以末屏这个极板的电荷并不会导入进地,即Q不变。

电流互感器的几种接线方法

电流互感器的接线方法及形式 1、是单台电流互感器的接线形式。 只能反映单相电流的情况,适用于需要测量一相电流或三相负荷平衡,测量一相就可知道三相的情况,大部分接用电流表。 2、三相完全星形接线和三角形接线形式。 三相电流互感器能够及时准确了解三相负荷的变化情况,多用在变压器差动保护接线中。只使用三相完全星形接线的可在中性点直接接地系统中用于电能表的电流采集。三相三继电器接线方式不仅能反应各种类型的相间短路,也能反应单相接地短路,所 以这种接线方式用于中性点直接接地系统中作为相间短路保护和单相接地短路的保护。 3、两相不完全星形接线形式。 在实际工作中用得最多。它节省了一台电流互感器,用A、C相的合成电流形成反 相的B相电流。二相双继电器接线方式能反应相间短路,但不能完全反应单相接地短路,所以不能作单相接地保护。这种接线方式用于中性点不接地系统或经消弧线圈接 地系统作相间短路保护。 4、两相差电流接线形式。 也仅用于三相三线制电路中,中性点不接地,也无中性线,这种接线的优点 是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种 相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。但故障 形式不同时,其灵敏度不同。这种接线方式常用于 10kV 及以下的配电网作相 间短路保护。由于此种保护灵敏度低,现代已经很少用了。

有人问我,爱情是什么?我不知道,也无从回答,我只知道,为了遇到那个人,我等待了很多年,甚至快要忘了自己到底寻找的是什么? 是心灵的寄托还是真实的感受,我不知道,也不在乎,我执着于这份寻觅,我也不怕世事沧桑,更不怕容颜老去,哪怕还有一丝微弱的光,我都会朝着光芒勇敢的追逐。 爱情的世界里,究竟是什么样子?我曾经问了自己无数遍,我想象着,却给不出任何答案。我只知道:我要遇见你,我渴望见到你 ,我要把全部的爱给予你!我为什么如此渴望爱情?因为我相信我们的爱情早已命中注定。 都说,住在爱情世界里的人会变傻,她的欢喜和忧愁都会牵动着你的心,她哭了,你会心疼不已;她高兴,你会开心一整天。 你会无时无刻的关注她的喜怒哀乐,第一时间回复她的消息,只要有时间,你的脑海里都是她的影子,为了让她开心快乐,做什么都是值得的。从此,你的世界里最重要的人就变成了她。 有时候,你们也会吵架,可你从来不生气,因为你爱她,换作别人你会置之不理,而她的一句玩笑话你都会深思半天,到底是自己哪里做的不够好。 因为你怕她生气,怕她伤身,怕她不够幸福,你只想把全世界的爱都给她,这样的吵架让你更心疼、更深爱她。 而他也和你一样,小心翼翼的呵护你们的爱情,都愿意为对方付出,都愿意对方是那个被爱多一点的人。 爱情的世界里,没有对与错,只有爱与被爱,两个人都想多爱对方一点点 ,都想做那个爱的最深的人 ,她会把你放在心底,让你聆听她想你时的心跳,让你感受连呼吸的空气都有你的味道。

电流互感器准确级大全完整版

电流互感器准确级大全 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电流互感器的准确级 一:电流互感器的准确级:电流互感器根据测量误差的大小可划分为不同的准确级。准确级是指在规定的二次负荷变化范围内,一次电流为额定值时的最大电流误差。 带S(special特殊)特殊电流互感器,要求再1%——120%负荷范围内精度足够高,一般取5个负荷点测量其误差小于规定的范围,不带S的是取4个负荷点测量其误差小于规定的范围之内。 0.2级和0.2S级圴是针对测量用电流互感器,其最大的区别是在小负荷时,0.2S级比0.2级有更高的测量精度;主要是用于负荷变动范围比较大,而有些时候几乎空载的场合。在实际负荷电流小于额定电流的30%时,0.2S级的综合误差明显小于0.2级电流互感器。 二:保护型准确级:保护用电流互感器按用途分为稳态保护用(P代表保护)和暂态保护用的两类。 1、护用电流互感器的准确级常用的有5P和10P。由于短路过程中I1和I2的关系复杂,故保护级的准确级是以额定准确限值一次电流下的误差标称的。所谓额定准确限值一次电流即一次电流为额定一次电流的倍数。

5P20的含义为:该保护CT一次流过的电流在其额定电流的20倍以下时,此CT的误差应小于±5%。 2、暂态保护用电流互感器的准确级分为TPX、TPY、TPZ。 TPX:电流互感器环形铁芯中不带气隙,在额定电流和负载下,其电流误差不大于±5%,相位差不大于±30度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的5%,电流过零时相位差不大于3度。 TPY:电流互感器环形铁芯中带小气隙,气隙长度约为磁路平均长度的0.05%,由于气隙使铁芯不易饱和,有利于直流分量的快速衰减。在额定电流和负载下,其电流误差不大于±1%,相位差为1度,在短路全过程中,在电流互感器额定准确级范围内,其瞬间最大电流误差不超过额定二次对称短路电流峰值的7.5%,电流过零时相位差不大于4.5度。 TPZ:电流互感器环形铁芯中带较大气隙,气隙长度约为磁路平均长度的0.1%,由于气隙使铁芯不易饱和,特别适合快速重合闸。间隙大,剩磁可以忽略,铁芯磁化曲线线性度好,二次回路时间常数小,对交流分量的传变性能好,但是传变直流分量能力差。 500KV线路保护用的互感器一般选用TPY级暂态型互感器。 采用暂态型电流互感器的必要性? (1)500KV电力系统的时间常数增大。22KV系统时间常数一般小于60MS,而500KV系统时间常数在80MS-200MS之间,系统时间常数增大,导致短路电流非周期分量的衰减时间加长,短路电流的暂态持续时间加长。 (2)系统容量增大,短路电流的幅值也增大。 (3)由于系统稳定的要求,500KV系统主保护动作时间一般在20MS左右,总的切除故障时间小于100MS,系统主保护是在故障的暂态过程中动作的。 由于电力系统短路,暂态电流流过电流互感器时,在互感器内产生一个暂态过程。如果不采取措施,电流互感器铁芯很快趋于饱和。特别是在装有重合闸的电路上,在第一次故障造成的暂态过程尚未衰减完毕的情况下,再叠加另一次短路的暂态过程,由于电流互感器剩磁的存在,有可能使铁芯更快的饱和。其结果是电流互感器传变电流信息准确性受到破坏,造成继电保护不正确动作。

相关主题
文本预览
相关文档 最新文档