当前位置:文档之家› 微滴度PCR(ddPCR)的原理和最新应用

微滴度PCR(ddPCR)的原理和最新应用

微滴度PCR(ddPCR)的原理和最新应用
微滴度PCR(ddPCR)的原理和最新应用

pcr技术原理简介

PCR技术的基本原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。(Plateau)。到达平台期所需循环次数取决于样品中模板的拷贝。 PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA 片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应” ,这种效应称平台期数、PCR 扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多 数情况下,平台期的到来是不可避免的。 PCR扩增产物 可分为长产物片段和短产物片段两部分。短产物片段的长度严格地限定在两个引物链5'端之间,是需要扩增的特定片段。短产物片段和长产物片段是由于引

PCR原理及过程

PCR技术原理、实验步骤和应用 来源:易生物实验浏览次数:3623 网友评论0 条 PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。 关键词:PCR技术PCR聚合酶链反应 一、实验目的 1.掌握聚合酶链式反应的原理。 2. 掌握移液枪和PCR仪的基本操作技术。 二、实验原理 PCR技术,即聚合酶链反应(polymerase chain reaction,PCR)是由美国PE Cetus 公司的Kary Mullis在1983年(1993年获诺贝尔化学奖)建立的。这项技术可在试管内的经数小时反应就将特定的DNA片段扩增数百万倍,这种迅速获取大量单一核酸片段的技术在分子生物学研究中具有举足轻重的意义,极大地推动了生命科学的研究进展。它不仅是DNA分析最常用的技术,而且在DNA重组与表达、基因结构分析和功能检测中具有重要的应用价值。 PCR可以被认为是与发生在细胞内的DNA复制过程相似的技术,其结果都是以原来的DNA为模板产生新的互补DNA片段。细胞中DNA的复制是一个非常复杂的过程。参与复制的有多种因素。PCR是在试管中进行的DNA复制反应,基本原理与细胞内DNA复制相似,但反应体系相对较简单。

PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA 解离,使之成为单链,以便它与引物结合,为下轮反应做准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在Taq酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链。 重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟, 2~3小时就能将待扩目的基因扩增放大几百万倍。 三、实验试剂与器材 模板DNA、L dNTP Taq DNA聚合酶(5U/μL)、SSR引物 O 10 ×buffer、15mmol/L Mg2+、ddH 2 PCR仪、移液枪、PCR板 四、实验步骤 1、配制20μL反应体系,在PCR板中依次加入下列溶液: 模板DNA 2μL 引物1 1μL 引物2 1μL dNTP μL

PCR技术及原理

PCR定义:PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。是一项DNA 体外合成放大技术,能快速特异地在体外扩增任何目的DNA。可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。 PCR技术的基本原理 一、PCR反应成分: 1、模板DNA; 2、引物; 3、四种脱氧核糖核苷酸; 4、DNA聚合酶; 5、反应缓冲液、Mg2+等。 二、PCR反应基本步骤: 1、变性(denaturation):通过加热使模板DNA的双链之间的氢键断裂,双链分开而成单链的过程,高温使双链DNA解离形成单链(94℃,30s)。 2、退火(annealling):当温度降低时,引物与模板DNA中互补区域结合成杂交分子,低温下,引物与模板DNA互补区结合(55℃,30s)。 3、延伸(extension):在DNA聚合酶、dNTPs、 Mg2+存在下,DNA聚合酶催化引物按5’→3’方向延伸,合成出与模板DNA 链互补的DNA子链,中温延伸,DNA聚合酶催化以引物为起始点的DNA链延伸反应(70~72℃,30~60s)以上述三个步骤为一个循环,每一循环的产物均可作为下一个循环的模板,经过n次循环后,目的DNA以2n的形式增加。 PCR扩增的基本方法 PCR反应的成分和作用

总体积:一般为25μl~100μl 一、无Mg2+buffer:由纯水、kcl、Tris组成。Tris用于调节反应体系pH值,使Taq酶在偏碱性环境中反挥活性。kcl可降低退火温度,但不能超过50?mmol/L,否则会抑制DNA聚合酶活性。二、Mg2+:终浓度为1.5~2.0mmol/L,其对应dNTP 为200?μmol/L,注意Mg2+与dNTPs之间的浓度关系,由于dNTP与Taq酶竟争Mg2+,当dNTP浓度达到1?mmol/L时会抑制Taq酶的活性。?Mg2+能影响反应的特异性和产率。、 三、BSA:一般用乙酰化的BSA,起着减少PCR管对Taq酶的吸附作用,对Taq酶有保护作用。 四、底物(dNTPs):dNTPs具有较强酸性,其储存液用NaOH调pH值至7.0~7.5,一般存储浓度为10 mmol/L,各成份以等当量配制,反应终浓度为20~200μmol/L。高浓度可加速反应,但同时增加错误掺入和实验成本;低浓度可提高精确性,而反应速度会降低。 五、Taq酶:能耐95℃高温而不失活,其最适pH值为8.3~8.5,最适温度为75~80℃,一般用72℃。能催化以DNA 单链为模板,以碱基互补原则为基础,按5’→3’方向逐个将dNTP分子连接到引物的3’端,合成一条与模板DNA互补的新的DNA子链。无3’→5’的外切酶活性,没有校正功能。某种dNTP或Mg2+浓度过高,会增加其错配率。用量一般为0.5~5个单位/100μl。 六、模板:PCR对模板DNA的纯度不要求很高,但应尽量不含有对PCR反应有抑制作用的杂质存在,如蛋白酶、核酸酶、TqaDNA聚合酶抑制剂、能与DNA结合的蛋白质。模板DNA的量不能太高,否则扩增可能不会成功,在此情况下可适当稀释模板。 七、引物:引物浓度一般为0.1~0.5μmol/L,浓度过高会引起错配和非特异扩增,浓度过低则得不到产物或产量过低。引物长度一般15~30个碱基,引物过长或过短都会降低特异性。其3’末端一定要与模板DNA配对,末位碱基最好选用A、C、G(因T错配也能引发链的延伸)。 引物G+C约占45~55%,碱基应尽量随机分布,避免嘧啶或嘌呤堆积,两引物之间不应有互补链存在,不能与非目的扩增区有同源性。 PCR反应条件的选择(影响因素) 温度参数: 1、变性:模板变性完全与否是PCR成功的关键,一般先于94℃(或95℃)变性3~10min,接着94℃变性30~60s。 2、退火:退火温度一般低于引物本身变性温度5℃。引物长度在15~25bp可通过公Tm=(G+C)×4℃+(A+T)×2℃计算退火温度,一般退火温度在40~60℃之间,时间为30~45s。如果(G+C)低于50%,退火温度应低于55℃。较高的退火温度可提高反应的特异性。 3、延伸:延伸温度应在Taq酶的最适温度范围之内,一般在70~75℃。延伸时间要根据DNA聚合酶的延伸速度和目的扩增片段的长度确定,通常对于1kb以内的片段1min是够用的。 循环数: PCR的循环数主要由模板DNA的量决定,一般20~30次循环数较合适,过多的循环数会增加非特异扩增产物,具体要多少循环数可通过预试验确定。 PCR产物积累规律: 反应初期产物以2n呈指数形式增加,至一定的循环数后,引物、模板、DNA聚合酶形成一种平衡,产物进入一个缓慢增长时期(“停滞效应”),即“平台期”。到达平台期所需PCR循环数与模板量、PCR扩增效率、聚合酶种类、非特异产物竟争有关。

PCR技术的原理与方法

PCR定义 PCR(Polymerase Chain Reaction)即聚合酶链式反应,是指在DNA聚合酶催化下,以母链DNA 为模板,以特定引物为延伸起点,通过变性、退火、延伸等步骤,体外复制出与母链模板DNA互补的子链DNA的过程。是一项DNA体外合成放大技术,能快速特异地在体外扩增任何目的DNA。可用于基因分离克隆,序列分析,基因表达调控,基因多态性研究等许多方面。 PCR技术的基本原理 一.PCR反应成分: 1.模板DNA; 2.引物; 3.四种脱氧核糖核苷酸; 4.DNA聚合酶; 5.反应缓冲液、Mg2 等。 二.PCR反应基本步骤: 1.变性:高温使双链DNA解离形成单链(94℃,30s)。 2.退火:低温下,引物与模板DNA互补区结合(55℃,30s)。 3.延伸:中温延伸。DNA聚合酶催化以引物为起始点的DNA链延伸反应(70~72℃,30~60s) 1.变性(denaturation):通过加热使模板DNA的双链之间的氢键断裂,双链分开而成单链的过程。 2.退火(annealling):当温度降低时,引物与模板DNA中互补区域结合成杂交分子。 3.延伸(extension):在DNA聚合酶、dNTPs、Mg2 存在下,DNA聚合酶催化引物按5’→3’方向延伸,合成出与模板DNA链互补的DNA子链。 以上述三个步骤为一个循环,每一循环的产物均可作为下一个循环的模板,经过n次循环后,目的

DNA以2n的形式增加。 ?PCR扩增的基本方法 ?PCR反应的成分和作用 总体积:一般为25μl~100 μl (一)无Mg2 buffer:由纯水、kcl、Tris组成。Tris用于调节反应体系pH值,使Taq酶在偏碱性环境中反挥活性。kcl可降低退火温度,但不能超过50 mmol/L,否则会抑制DNA聚合酶活性。(二)Mg2 :终浓度为1.5~2.0mmol/L,其对应dNTP为200 μmol/L,注意Mg2 与dNTPs之间的浓度关系,由于dNTP与Taq酶竟争Mg2 ,当dNTP浓度达到1 mmol/L时会抑制Taq酶的活性。M

简述PCR基本原理

一.简述PCR基本原理? PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 二.简述荧光定量PCR基本原理? Ct 值:是指每个反应管内的荧光信号到达设定的域值时所经历的循环数。 ?荧光域值(threshold ):是指PCR 反应的前15 个循环的荧光信号,荧光域值的缺省设置是3-15 个循环的荧光信号的标准偏差的10 倍,即:threshold

?Ct 值与起始模板的关系:研究表明,每个模板的Ct 值与该模板的起始拷贝数的对数存在线性关系〔 1 〕,起始拷贝数越多,Ct 值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct 值(如图 2 所示)。因此,只要获得未知样品的Ct 值,即可从标准曲线上计算出该样品的起始拷贝数。 三.简述PFGE优势用途? 1.对细菌DNA进行酶切后的脉冲场电泳分析,在分子水平揭示细菌的指纹图谱。 2.可对不同年代和不同地区的菌株建立PFGE图谱数据库,对某种病原菌的流行趋势进行分析和预测。 3.不同实验室和国家不同菌毒株的比较分析,通过软件实现数据化和网络连接,用于传染源或污染源的追踪,快速控制疫情。

PCR技术(原理、分类、步骤及主要试剂、设备准备)

聚合酶链式反应(P C R)原理 DNA的半保留复制时,双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。在实验条件下,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。PCR类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。 PCR由变性- 退火(复性)- 延伸三个基本反应步骤构成: ①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至40~60℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板- 引物结合物在DNA聚合酶的作用下,于72℃左右,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 PCR技术分类(常用) (1)反向PCR技术(Inverse PCR, IPCR):反向PCR是克隆已知序列旁侧序列的一种方法.主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组DNA.后酶切片段自身环化.以环化的DNA作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段。 (2)锚定PCR技术(Anchored PCR, APCR):用酶法在一通用引物反转录cDNA3’-末端加上一段已知序列, 然后以此序列为引物结合位点对该cDNA进行扩增, 称为APCR。 (3)不对称PCR技术(asymmetric PCR):两种引物浓度比例相差较大的PCR技术称不对称PCR。在扩增循环中引入不同的引物浓度, 常用50~100÷1比例。在最初的10~15个循环中主要产物还是双链DNA, 但当低浓度引物被消耗尽后, 高浓度引物介导

pcr技术的基本原理

在科学研究中,每一项新技术的创立都会带来一系列新的研究成果问世,从而推动着各学科的发展。纵观形态研究领域,50年代电子显微镜引入形态学观察领域,带来了从细胞水平到亚细胞水平的深入研究;60-70年代,免疫组织化学与免疫细胞化学技术的广泛应用,又将观察的水平由亚细胞结构推向了蛋白质分子水平,使细胞内众多的活性物质得以进行细胞或亚细胞水平的定位,对医学生物学的发展无疑产生了深刻的影响。70年代,分子生物学技术在形态学中的广泛应用,随着原位杂交技术的出现,使组织细胞内特定的DNA或RNA 序列能够被定位,将蛋白质水平又提高到基因水平即核酸分子的观察和定位,从而使人类对许多生命现象在基因水平上的认识得以深化;80年代,分子生物学领域中一项具有强大生命力的技术PCR——多聚酶链反应技术问世了,很快地就被引入形态学观察的领域,使细胞内低拷贝或单拷贝的特定DNA或RNA得以进行定位及观察。这一技术的问世,必将带来更多的研究成果,使形态学的研究又向前迈出一大步。 基本原理 原位PCR技术的基本原理,就是将PCR技术的高效扩增与原位杂交的细胞定位结合起来,从而在组织细胞原位检测单拷贝或低拷贝的特定的DNA或RNA序列。 PCR技术是在DNA聚合酶的作用下,经过模板的变性、退火和引物延伸三种循环,将引物引导下的特异性靶序列迅速地进行扩增,经过扩增的靶序列(一般能扩增106倍),很容易在凝胶电泳或Southern印记杂交中显示出来,因此,PCR技术具有灵敏度高,特异性强的优势,随着热循环自动化的提高与稳定也使得PCR技术的操作简便易行。但是,PCR技术是在液相中进行的,在扩增前,需将细胞破坏,从中提取核酸作为模板,因此很难将PCR的结果与组织细胞的形态结构联系起来,同时,也很难判断含特异性靶序列的细胞类型。 原位PCR技术成功地将PCR技术和原位杂交技术结合起来,保持了两项技术的优势又弥补了各自的不足。原位PCR技术的待检标本一般先经化学固定,以保持组织细胞的良好形态结构。细胞膜和核膜均具有一定的通透性,当进行PCR扩增时,各种成分,如引物,DNA聚合酶,核苷酸等均可进入细胞内或细胞核内,以固定在细胞内或细胞核内的RNA或DNA为模板,于原位进行扩增。扩增的产物一般分子较大,或互相交织,不易穿过细胞膜或在膜内外弥散,从而被保留在原位。这样原有的细胞内单拷贝或低拷贝的特定DNA或RNA序列在原位以呈指数极扩增,扩增的产物就很容易被原位杂交技术检查。 基本类型 根据在扩增反应中所用的三磷酸核苷原料或引物是否标记,原位PCR技术可分为直接法和间接法两大类,此外,还有反转录原位PCR技术等。 直接法原位PCR技术 直接法原位PCR技术是将扩增的产物直接携带标记分子,即使用标记的三磷酸腺苷或引物片断。当标本进行PCR扩增时,标记的分子就掺入到扩增的产物中,显示标记物,就能将特定的DNA或RNA在标本(原位)中显现出来。 常用的标记物有放射性同位素35S,生物素和地高辛,用放射性自显影的方法或用亲和组织化学及免疫组织化学的方法去显示标记物所在位置。 直接法原位PCR技术的优点是操作简便,流程短,省时。缺点是特异性较差,易出现假阳性,扩增效率也较低,特别是在石蜡切片上,上述缺点更为突出。因为在制片过程中,无论是固定,脱水还是包埋,都会导致DNA的损害,而受损的DNA可利用反应体系中的标记三磷酸核苷进行修复,这样标记物就会掺入到DNA的非靶序列中,造成假阳性。若用标记引物的方法进行直接法原位PCR,其扩增的效率比不标记更低。 间接法原位PCR技术 间接法原位PCR技术师现在细胞内进行特定DNA或RNA扩增,再用标记的探针进行原位杂交,明显提高了特异性,是目前应用最为广泛的原位PCR技术。 间接法原位PCR与直接法不同的是,反应体系与常规PCR相同,所用的引物或三磷酸腺苷均不带任何标记物。即实现先扩增的目的,然后用原位杂交技术去检测细胞内已扩增的特定的DNA产物,因此,实际上是将PCR技术和原位杂交技术结合起来的一种新技术,故又称之为PCR原位杂交(PCR in situ hybridization , PISH)。 间接法PCR技术的优点是特异性较高,扩增效率也较高。缺点是操作步骤较直接法繁琐。 原位反转录PCR技术。

PCR技术基本原理及相关知识

PCR技术基本原理 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。 PCR的反应动力学PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。反应最终的DNA 扩增量可用Y=(1+X)n计算。Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。大多数情况下,平台期的到来是不可避免的。 PCR反应体系的基本成分:模板DNA、特异性引物、DNA聚合酶、dNTP、Mg2+的缓冲液。 PCR反应体系与反应条件 -------------------------------------------------------------------------------- 标准的PCR反应体系: 10×扩增缓冲液10ul 4种dNTP混合物各200umol/L 引物各10~100pmol 模板DNA 0.1~2ug Taq DNA聚合酶 2.5u Mg2+ 1.5mmol/L 加双或三蒸水至100ul PCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 设计引物应遵循以下原则: ①引物长度:15-30bp,常用为20bp左右。 ②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。 ③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。 ④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。

PCR技术的种类及应用

PCR技术的发展及应用 平骏 14112822276摘要:聚合酶链式反应(Polymerase Chain Reaction, PCR)是1985年由美国PE- Cetus 公司的科学家Kary Banks Mullis发明的一种可在体外快速扩增特定基因或DNA序列的技术。经历了近30年的技术发展,现如今PCR技术在生命科学研究以及相关的很多领域都得到广泛的应用。本文主要对PCR的基本原理、反应组份作简要的介绍;同时也对在PCR基础上发展起来的相关技术作简要综述。 关键词:PCR技术;PCR原理;PCR新技术 对核酸的研究己有100多年的历史,20世纪70年代初人们就致力于研究基因的体外分离技术,Korana于1971年最早提出核酸体外扩增的设想,该设想在1985年被Mullis等人实现,他们发明了具有划时代意义的聚合酶链反应[6]。这项新技术是根据生物体内DNA序列能进行快速复制的特点,实现在体外对特定DNA序列进行快速扩增,可在短时间内从试管中获得数百万个特异DNA序列拷贝。PCR技术操作简便、结果可靠,被世界各国广泛应用于医学、农业、考古学等各个领域的基因研究和分析,对分子生物学的发展产生了深远的影响[18]。发明人Kary Banks Mulis也因此荣获了1994年的诺贝尔化学奖。 1、PCR 技术的原理[1,2] PCR技术是模拟细胞内DNA的天然复制过程,DNA 聚合酶以单链DNA为模板,借助一小段双链DNA 来启动合成,通过一个或两个人工合成的寡核苷酸引物与单链DNA 模板中的一段互补序列结合,形成部分双链。在适宜的温度和环境下,DNA 聚合酶将脱氧单核苷酸加到引物3,- OH 末端,并以此为起始点,沿模板5,→3,方向延伸,合成一条新的DNA互补链。简言之,其基本原理包括3个基本反应过程:变性→退火→延伸。PCR 反应的基本成分包括:模板DNA( 待扩增DNA )、引物、4种脱氧核苷酸( dNTPs)、DNA 聚合酶和适宜的缓冲液。每一循环中所合成的新链,又都可作为下一循环中的模板。PCR 合成的特定的DNA序列产量随着循环次数呈指数增加,每完成一次循环需2-4min,2-3h就能将目的基因扩增,从而达到迅速大量扩增的目的。 2、PCR技术的反应组份 2.1 模板DNA PCR反应的模板可以是单链DNA也可以是双链DNA,可以是基因组DNA 或cDNA,

PCR 技术的种类及其应用

PCR 技术的种类及其应用 1PCR 技术的基本原理 PCR技术是在模板DNA、引物和四种dNTP等存在的条件下, 依赖于DNA聚合酶(T aq酶)的酶促合成反应。其具体反应分三步:变性、退火、聚合。以上三步为一个循环,每一循环的产物DNA又可以作为下一个循环模板,数小时后,介于两个引物之间的目的DNA得到了大量的复制,经25~30次循环DNA数量可达2×106~7拷贝数。2PCR技术的种类 2.1反向PCR( Inverse PCR, IPCR)技术 原理:反向PCR是克隆已知序列旁侧序列的一种方法.主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组I)NA.后酶切片段自身环化.以环化的DNA 作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA 序列内部的酶切位点分布情况。用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段。 该方法的不足是:①需要从许多酶中选择限制酶,或者说必须选择一种合适的酶进行酶切才能得到合理大小的DNA片段。这种选择不能在非酶切位点切断靶DNA。②大多数有核基因组含有大量中度和高度重复序列,而在YAC或Cosmid 中的未知功能序列中有时也会有这些序列,这样,通过反向PCR得到的探针就有可能与多个基因序列杂交。 2.2锚定PCR(Anchored PCR, APCR)技术 用酶法在一通用引物反转录cDNA3’-末端加上一段已知序列, 然后以此序列为引物结合位点对该cDNA进行扩增, 称为APCR。 应用:它可用于扩增未知或全知序列, 如未知cDNA的制备及低丰度cDNA文库的构建。 2.3不对称PCR(asymmetric PCR)技术 两种引物浓度比例相差较大的PCR技术称不对称PCR。在扩增循环中引入不同的引物浓度, 常用50~100÷1比例。在最初的10~15个循环中主要产物还是双链DNA, 但

相关主题
相关文档 最新文档