当前位置:文档之家› 工业控制系统可靠性评估方法探讨

工业控制系统可靠性评估方法探讨

工业控制系统可靠性评估方法探讨
工业控制系统可靠性评估方法探讨

可靠性评估方法(可靠性预计、审查准则、工程计算)

电子产品可靠性评估方法培训 课程介绍: 作为快速发展的制造企业,产品可靠性的量化评估是一个难题,尤其是机械、电子、软件一体化的产品。针对此需求,本公司开发了《电子产品可靠性评估方法》课程,以期在以基于应力计数法的可靠性预计和分配、基于寿命鉴定的试验评估法两个方面提供对电子产品的评价数据。并在日常管理实践中,通过质量评价的方式,通过设计规范审查、FMEA分析发现评估中的关键问题点,以便更好地改进。 课程收益: 通过本课程的学习,可以了解电子产品的可靠性评估方法以及导致产品可靠性问题的问题点,为后期的质量管理统计和技术部门的解决问题提供工作依据。 课程时间:1天 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 【培训对象】本课程适于质量工程师、质量管理、测试工程师、技术工程师、测试部门等岗位。 课程特点: 讲师是可靠性技术+可靠性管理、军工科研+民品开发管理的综合背景; 课程包括开展可靠性评估工作的技术措施、管理手段,内容和授课方法着重于企业实践技术和学员的消化吸收效果。 课程本着“从实践中来,到实践中去,用实践所检验”的思想,可靠性设计培训面向设计生产实际,针对具体问题,充分结合同类公司现状,提炼出经过验证的军工和民用产品的可靠性

设计实用方法,帮助客户实现低成本地系统可靠性的开展和提升。 课程大纲: 一、可靠性评估基础 可靠性串并联模型 软件、机械、硬件的失效率曲线 可靠性计算 二、基于应力计数法的可靠性预计与分配 依据的标准 基于用户需求的设计输入应力条件 可靠性分配的计算方法和过程 基于应力计数法的可靠性预计 三、寿命鉴定试验评估方法 试验依据标准要求 试验过程 判定方式 四、产品质量与可靠性审查准则 基于失效机理的可靠性预防措施 系统设计准则(热设计、系统电磁兼容设计、接口设计准则) 机械可靠性设计准则 电路可靠性设计准则(降额、电子工艺、电路板电磁兼容、器件选型方法)嵌入式软件可靠性设计准则(接口设计、代码设计、软件架构、变量定义)五、DFMEA与PFMEA过程的潜在缺陷模式及影响分析方法

电力系统综自可靠性的评估

电力系统综自可靠性的评估 近年来,世界上大停电事故层出不穷, 表明了电力二次系统的故障失效对连锁大停电事故具有重要影响。电力二次系统, 包括变电站综合自动化系统的可靠性问题引起笔者的关注, 运用故障树分析法能有效掌握系统的运行状态和可靠性。与电力一次系统可靠性研究和应用比较成熟相比, 国内电力系统规划与运行部门对变电站供电可靠性的研究大多还停留在定性评估阶段, 还没有建立二次系统可靠性定量评估的衡量标准和具体评价指标。变电站综合自动化系统可靠性的定量研究将有助于变电站自动化的推广和无人站的普及,提高电力系统的运行管理水平, 避免连锁大停电事故的发生。 故障树分析法, 简称FTA(Fault Tree Analysis), 是一种评价复杂系统可靠性与安全性的方法。应用FTA还可以进行故障诊断, 分析系统的薄弱环节,指导运行和检修, 实现系统的优化设计因而是大型复杂系统可靠性分析的重要工具。目前,FTA 已从宇航、核能进入一般电子、电力、化工、机械、交通及船舶等领域。 一、故障树分析法的基本理论 1.FTA 分析法故障树分析是以故障树的形式进行可靠性分析的方法。它以系统的故障为顶事件(Top Event), 自上而下地逐层查找导致系统故障的原因,直至找出全部直接原因(硬件故障、软件故障、人为差错和环境因素等), 并根据它们之间的逻辑关系采用图形表示。这种图的外形像一棵以系统故障为根的树, 故称故障树。故障树

以图形化的方式表示了在一个系统内故障或其他事件之间的交互关系。在故障树中, 底事件(Basic Event) 通过一些逻辑符号( 如与门和或门) 连接到一个或多个顶事件。 2.故障树的建造故障树建造过程是寻找所研究系统故障和导致系统故障诸因素之间逻辑关系的过程, 并且用故障树的图形符号(事件符号与逻辑符号), 抽象表示实际系统故障组合与传递的逻辑关系。步骤有以下几点。 (1)对故障树事件给出明确的定义, 即给出明确的故障判据。例如,变电站综合自动化系统失效。 (2)在判明故障的基础上, 确定最不希望发生的故障事件为顶事件, 记为T。 (3)合理确定边界条件, 即确定故障树的范围。 (4)从上向下逐级建树。从顶事件开始, 由上向下顺次逐层用 逻辑门符号表示导致故障的中间事件及其逻辑关系, 每个逻辑门无遗漏地逐个分析输入事件。 (5)把对事件的抽象描述具体化。为了故障树的向下发展, 必须用等价的比较具体的直接事件逐步取代比较抽象的间接事件, 直至全部都是底事件为止。 3.故障树的定性分析和定量计算 故障树定性分析的主要目的是找出它的所有最小割集或最小路集。割集是故障树中一些底事件的集合, 当这些底事件同时发生时, 顶事件必然发生。若将割集中所含的底事件任意去掉一个就不再成为

电力系统可靠性评估指标

电力系统可靠性评估指标 1.1 大电网可靠性的测度指标 1. (电力系统的)缺电概率 LOLP loss of load probability 给定时间区间内系统不能满足负荷需求的概率,即 ∑∈=s i i P LOLP 式中:i P 为系统处于状态i 的概率;S 为给定时间区间内不能满足负荷需求的系统状态全集。 2. 缺电时间期望 LOLE loss of load expectation 给定时间区间内系统不能满足负荷需求的小时或天数的期望值。即 ∑∈=s i i T P LOLE 式中:i P 、S 含义同上; T 为给定的时间区间的小时数或天数。缺电时间期望LOLE 通常用h/a 或d/a 表示。 3. 缺电频率 LOLF loss of load frequency 给定时间区间内系统不能满足负荷需求的次数,其近似计算公式为 ∑∈=S i i F LOLF 式中:i F 为系统处于状态i 的频率;S 含义同上。LOLF 通常用次/年表示。 4. 缺电持续时间 LOLD loss of load duration 给定时间区间内系统不能满足负荷需求的平均每次持续时间,即 LOLF LOLE LOLD = LOLD 通常用小时/次表示。 5. 期望缺供电力 EDNS expected demand not supplied 系统在给定时间区间内因发电容量短缺或电网约束造成负荷需求电力削减的期望数。即 ∑∈=S i i i P C EDNS 式中:i P 为系统处于状态i 的概率;i C 为状态i 条件下削减的负荷功率;S 含义同上。期望缺供电力EDNS 通常用MW 表示。

配电网可靠性评估算法的分类

配电网供电可靠性的评估算法 配电系统可靠性的评估方法是在系统可靠性评估方法的基础上,结合配电系统可靠性评估的特点而形成的。配电系统可靠性评估的大致思路是根据配电系统中元件运行的历史数据评价元件的可靠性指标,根据网络的拓扑结构、潮流分析、保护之间的配合关系以及元件的可靠性指标评价各个负荷点可靠指标,最后综合各个负荷点的可靠性指标,得出配电系统的可靠性指标。 目前研究电力系统可靠性有两种基本方法:一种是解析法,另一种是模拟法。 一:解析法:用抽样的方法进行状态选择,最后用解析的方法进行指标计算。 (1)故障模式影响分析法:通过对系统中各元件可靠性数据的搜索,建立故障模式后果表,然后根据所规定的可靠性判据对系统的所有状态进行检验分析,找出各个故障模式及后果,查清其对系统的影响,求得负荷点的可靠性指标。适用于简单的辐射型网络。。 (2)基于最小路的分析法:是先分别求取每个负荷点的最小路,将非最小路上的元件故障对负荷点可靠性的影响,根据网络的实际情况,折算到相应的最小路的节点上,从而,对于每个负荷点,仅对其最小路上的元件与节点进行计算即可得到负荷点相应的可靠性指标。算法考虑了分支线保护、隔离开关、分段断路器的影响,考虑了计划检修的影响,并且能够处理有无备用电源和有无备用变压器的情况。 (3)网络等值法:利用一个等效元件来代替一部分配电网络,并将那部分网络的可靠性等效到这个元件上,考虑这个元件可靠性对上下级馈线的影响,从而将复杂结构的配电网逐步简化成简单辐射状主馈线系统。 (4)分层评估算法:利用系统元件的可靠性数据与系统网络拓扑结构建立了系统的可靠性数学模型,在基于故障扩散的分层算法来进行系统的可靠性评估。可快速算出可靠性指标并找出供电的薄弱环节。 (5)基于最小割集的分析法。最小割集是一些元件的集合,当它们完全失效时,会导致系统失效。最小割集法是将计算状态限制在最小割集内,避免计算系统的全部状态,大大节省了时间,并近似认为系统的失效度可以为各个最小割集的不可靠度的总和。当每条支路存在大量元件时,计算量显著降低;且效率高,编程思路清晰,易于实现。本方法的关键是最小割集的确定。 (6)递归算法:先将网络用树型(多叉树)数据结构表示,利用后序遍历和前序遍历将每一馈线都用一包含了此馈线的所有数据节点来表示,由负荷点所在的顶端依次往上递归,并保留原节点,这样不仅可以算出整体可靠性指标,还可以算出所有负荷点的可靠性指标。 (7)单向等值法:将下一层网络单向等值为上一层网络,将断路器/联络开关间的元件和负荷点等值为一节点,再由下而上削去断路器/联络开关,最终可等值一个节点,便可得出整体的可靠性。由于馈线中有熔断器、变压器等存在,因此在等值前后整个网络的可靠性指标

电力系统可靠性评估方法的分析

电力系统可靠性评估方法的分析 李朝顺 (沈阳电力勘测设计院辽宁沈阳 110003) 摘要:可靠性贯穿在产品和系统的整个开发过程,形成可靠性工程这门新兴学科。可靠性工程涉及原件失效数据的统计和处理、系统可靠性的定量评定、运行维护、可靠性和经济性的协调等各方面,是一门边缘科学,它具有实用性、科学性和实间性三大特点。其可靠性评估方法是可靠性研究领域一直探索的方向,本文对现有可靠性评估方法进行论述和分析,为可靠性工作者提供参考。 关键词:系统可靠性评估分析 1电力系统可靠性概述 可靠性(Reliability)是指一个元件、设备或系统在预定时间内,在规定条件下完成规定功能的能力。可靠度则用来作为可靠性的特性指标,表示元件可靠工作的概率,可靠度高,就意味着寿命长,故障少,维修费用低;可靠度低,就意味着寿命短,故障多,维修费用高。 现代社会对电力的依赖越来越大,电能的使用已遍及国民经济及人民生活的各个领域,成为现代社会的必需品。电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助设施,按规定的技术经济要求组成的一个统一系统。发电厂将一次能源转换为电能,经过输电网和配电网将电能输送和分配给电力用户的用电设备,从而完成电能从生产到使用的整个过程。电力系统的基本结构如图1所示。 图1电力系统基本结构图 60年代中期以后,随着电力工业的发展,可靠性工程理论开始逐步引入电力工业,电力系统可靠性也应运而生,并逐步发展成为一门应用学科,成为电力工业取得重大经济效益

的一种重要手段。目前已渗透到电力系统规划、设计、制造、建设安装、运行和管理等各方面,并得到了广泛的应用,

如图2所示。 图2可靠性工程在电力系统中的应用 所谓电力系统可靠性,就是可靠性工程的一般原理和方法与电力系统工程问题相结合的应用科学。电力系统可靠性包括电力系统可靠性工程技术与电力工业可靠性管理两个方面。电力系统可靠性实质就是用最科学,经济的方式充分发挥发、供电设备的潜力,保证向全部用户不断供给质量合格的电力,从而实现全面的质量管理和全面的安全管理。因此,一切为提高电力系统、设备健康水平和安全经济运行水平的活动都属于电力工业可靠性工作的范畴,都是为了提高电力工业可靠性水平所从事的服务活动。 通常,评价电力系统可靠性从以下两方面入手[2]。 (1) 充裕性(adequacy)—充裕性是指电力系统维持连续供给用户总的电力需求和总的电能量的能力,同时考虑到系统元件的计划停运及合理的期望非计划停运.又称为静态可靠性,即在静态条件下电力系统满足用户电力和电能量的能力。充裕性可以用确定性指标表示,如系统运行时要求的各种备用容量(检修备用、事故各用等)百分比,也可以用概率指标表示,如电力不足概率(LOLP),电力不足时间期望值(LOLE),电量不足期望值(EENS)等。 (2) 安全性(security)—安全性是指电力系统承受突然发生的扰动,如突然短路或未预料到的失去系统元件的能力,也称为动态可靠性, 即在动态条件下电力系统经受住突然扰动且不间断地向用户提供电力和电能量的能力。安全性现在一般采用确定性指标表示,例如最常用的可靠 性工 程在 电力 系统 中的 应用 元件故障数据统计和处理 可靠性数学理论 电源可靠性 输电系统可靠性 配电系统可靠性 大电力系统可靠性 可靠性管理 电气主接线可靠性 负荷预测 可靠性设备预诊断 故障分析 可靠性指标预测 建设安装质量管理 最佳检修和更换周期的确定 运行方式可靠性定量评估 可靠性工程教育

可靠性评估

可靠性概念理解: 可靠性是部件、元件、产品、或系统的完整性的最佳数量的度量。可靠性是指部件、元件、产品或系统在规定的环境下、规定的时间内、规定条件下无故障的完成其规定功能的概率。从广义上讲,“可靠性”是指使用者对产品的满意程度或对企业的信赖程度。 可靠性的技术是建立在多门学科的基础上的,例如:概率论和数理统计,材料、结构物性学,故障物理,基础试验技术,环境技术等。 可靠性技术在生产过程可以分为:可靠性设计、可靠性试验、制造阶段可靠性、使用阶段可靠性、可靠性管理。我们做的可靠性评估应该就属于使用阶段的可靠性。 机床的可靠性评定总则在GB/T23567中有详细的介绍,对故障判定、抽样原则、试验方式、试验条件、试验方法、故障检测、数据的采集、可靠性的评定指标以及结果的判定都有规范的方法。对机床的可靠性评估时,可以在此基础上加上自己即时的方法,做出准确的评估和数据的收集。 可靠性研究的方法大致可以分为以下几种: 1)产品历史经验数据的积累; 2)通过失效分析(Failure Analyze)方法寻找产品失效的机理; 3)建立典型的失效模式; 4)通过可靠性环境和加速试验建立试验数据和真实寿命之间的对应关系;5)用可靠性环境和加速试验标准代替产品的寿命认证; 6)建立数学模型描述产品寿命的变化规律; 7)通过软件仿真在设计阶段预测产品的寿命; 大致可把可靠性评估分为三个阶段:准备阶段、前提工作、重点工作。 准备阶段:数据的采集(《数控机床可靠性试验数据抽样方法研究》北京科技大学张宏斌) 用于收集可靠性数据, 并对其量化的方法是概率数学和统计学。在可靠性工程中要涉及到不确定性问题。我们关心的是分布的极尾部状态和可能未必有的载荷和强度的组合, 在这种情形下, 经常难以对变异性进行量化, 而且数据很昂贵。因此, 把统计学理论应用于可靠性工程会更困难。当前,对于数控机床可靠性研究数据的收集方法却很少有人提及, 甚至可以说是一片空白。目前, 可靠性数据的收集基本上是以简单随机抽样为主, 甚至在某些情况下只采用了某一个厂家在某一个时间段内生产的机床进行统计分析。由此所引发的问题就是: 这样收集的数据不能够很好地反映数控机床可靠性的真实状况, 同时其精度也不能够令人满意。 由于现在数控机床生产厂家众多、生产量庞大、机床型号多以及成产的批次多,这样都对数据的收集带来了很大的困难。因此,在数据采样时: (1)必须采用合理的抽样方法来得到可靠性数据; (2)简单随机抽样是目前普遍应用的抽样方法,但是必须抽取较大的样本量才能够获得较高的精度和信度; 针对以上的特点有三种数据采集的方法可以选择:简单随机抽样、二阶抽样、分层抽样。 (1)简单随机抽样:从总体N个单元中,抽取n个单元,保证抽取每个单元或者几个单元组合的概率相等。

风力发电系统可靠性评估体系

风力发电系统可靠性评估体系 摘要:近年来,我国的用电量不断增加,风力发电系统有了很大进展。由于风电具有随机性、间歇性和波动性等特点,风力发电系统的可靠性对大规模并网电力系统安全性造成较大影响,如何准确评估风力发电系统可靠性,这提出了全新的挑战。首先分析了风力发电系统的结构特点,提出了一种基于期望故障受阻电能相等的方法,用相同容量的发电机等效替代风电机“组串”,并根据元件状态特性对系统可靠性状态进行划分,最后建立时间、出力、系统等指标体系。 关键词:风力发电系统;等效替代;可靠性评估;指标体系 引言 随着风力发电技术迅猛发展,装机容量大幅增加,已成为可再生能源中技术最成熟、应用最广泛的发电技术之一。由于风电具有间歇性、波动性和随机性等特点,使得大规模风电接入电力系统后带来了不确定的因素,因此如何准确评估风力发电系统的可靠性显得非常重要。 1风力发电系统的特点 1.1风机输出功率影响因素分析

1)季节与时间的影响 中国“三北”地区风资源较为丰富。一般来说,一年中春季和冬季风资源较丰富,夏季风资源较贫乏;在一天中来说,白天风资源较贫乏,而夜晚风资源较丰富。 2)风速大小的影响 风电机组的运行状态和输出功率都与风速息息相关。图1给出了风电机组输出功率与风速的曲线。 2可靠性状态的划分 1)全额运行状态:当风速较快时,即风力发电系统输出功率能够达到总装机容量的70%以上。2)资源限制减额运行状态:当风速较慢时,即风力发电系统输出功率低于总装机容量的70%。3)故障减额运行状态:风力发电系统部分元件故障导致输出功率减少的状态。 3可靠性指标体系 3.1时间指标 1)全额运行时间FRH:风力发电系统处于全额运行状态(即输出功率达到总装机容量70%)的累计运行时间。2)资源限制减额运行时间RDH:风力发电系统由于风速的限制,输出功率小于总装机容量的70%的累积运行时间。3)故障减额运行时间FDH:风力发电系统中部分元件故障,导致输出功率减小的累积运行时间。4)故障停运时间FOH:风力系统由于元件故障发生全站停运的累计时间。由

蒙特卡洛法在电力系统可靠性评估中地应用

3 蒙特卡洛法在电力系统可靠性评估中的应用 3.1电力系统可靠性评估的内容与意义 可靠性指的是处于某种运行条件下的元件、设备或系统在规定时间内完成预定功能的概率。电力系统可靠性是指电网在各种运行条件下,向用户持续提供符合一定质量要求的电能的能力。电力系统可靠性包括充裕度(Adequacy)和安全性(seeurity)两个方面。充裕度是指在考虑电力元件计划与非计划停运以及负荷波动的静态条件下,电力系统维持连续供应电能的能力,因此又被称为静态可靠性。安全性指的是电力系统能够承受如突然短路或未预料的失去元件等事件引起的扰动并不间断供应电能的能力,安全性又被称为动态可靠性。目前国内外学者对充裕度评估的算法和应用关注较多,且在理论和实践中取得了大量的研究成果,但随着研究的深入也出现了很多函待解决的新课题。电力系统的安全性评估以系统暂态稳定性的概率分析为基础,在原理、建模、算法和应用等方面都处于起步和探索阶段。由于电力系统的规模很大,通常根据功能特点将其分为不同层次的子系统,如发电、输电、发输电组合、配电等子系统,对电力系统的可靠性评估通常也是对上述子系统单独进行。不同层次的子系统的可靠性评估的任务、模型、算法都有较大区别。电力系统在正常运行情况下,系统能够正常供电,不会出现切负荷的事件。如果系统受到某些偶发事件的扰动,如元件停运(包括机组、线路、变压器等电力元件的计划停运与故障停运)、负荷水平变化等,可能会引起系统功率失衡、线路潮流越限和节点电压越限等故障状态,进而导致切负荷。电力系统可靠性研究的主要内容是基于系统偶发故障的概率分布及其后果分析,对系统持续供电能力进行快速和准确的评价,并找出影响系统可靠性水平的薄弱环节以寻求改善可靠性水平的措施,为电力系统规划和运行提供决策支持。 3.2电力系统可靠性评估的基本方法 电力系统可靠性评估方法可分为确定性方法和概率性方法两类。确定性方法主要是对几种确定的运行方式和故障状态进行分析,校验系统的可靠性水平。在电源规划中,典型的确定性的可靠性判据有百分备用指标和最大机组备用指标;电网规划

电力系统可靠性评估发展

电力系统可靠性评估发展 发表时间:2019-07-15T11:39:19.827Z 来源:《河南电力》2018年23期作者:薛琦 [导读] 电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。 (国网河北省电力有限公司石家庄供电分公司 050000) 摘要:电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。随着经济的增长,电网向远距离、超高压甚至特高压方向的发展也越来越快,网络的规模日益庞大,结构也日益复杂。本文在对电力系统可靠性评估的研究现状进行学习的基础上,介绍了可靠性分析中的两个准则即N-1准则和概率性指标或变量的准则,在概率、频率、平均持续时间、期望值等指标框架内,讨论了解析法和蒙特卡洛法的基本原理及其在电力系统可靠性评估中的应用。 关键词:系统可靠性解析法;蒙特卡洛模拟法 一、可靠性产生背景 20世纪50年代,可靠性概念的提出开始于工业,并首先在军用的电子设备中得到应用。到了60年代中期,美国、西欧和日本以及前苏联等国家电力系统陆续出现稳定性的破坏事故,导致了大面积的停电,因此可靠性技术引入了电力系统。 1968年成立了美国电力可靠性协会,在美国的12个区各自制定可靠性准则,保证电力系统能经受较大事故的冲击,避免由于连锁反应导致大面积停电。 1981 年随着加拿大和墨西哥的加入改名为北美电力可靠性协会。 20世纪90年代电力市场的出现和1996年美国西部发生的两次停电事故成为影响电力系统可靠性进一步发展的因素。 近些年来不断发生大范围的停电事故,事故发生的同时也给人们带来了一些启示:确定性准则在大电网的规划和运行中受到了诸多限制,因此需要一些新的方法和观点来全面反映电网的状态,如需要考虑电网的一些随机事件。 二、可靠性在电力系统中的应用 电力系统的作用和任务就是保证用户用电的可靠性和经济性,并且要保证供电的质量。随着电力系统规模的扩大,对电力系统可靠性的评估也要求更加准确,但是系统元件的不断增加,系统自动化程度不断提高,所以在可靠性评估中的难度也越来越大。发输电系统可靠性评估方法及发展单一的对发电系统或输电系统进行可靠性评估,结果在实际中就会有一定的局限性。 由于评估中要考虑元件的响应、网络结构、电压的质量等因素,所以计算量比较大计算也极其复杂。同时,回顾各大连锁停电故障,可以观察到的一个现象是电力系统的运行状态随着故障的连锁发生而不断恶化,系统内其他元件承受的负荷不断增加,系统趋近于某种临界状态,此时某些小概率故障(例如输电线路悬垂增加与树木接触,保护的隐性故障等)发生的概率显著增加,且一个小的事件可能会导致一个大事件乃至突变。而且,调度人员可能由于对当前系统的状态缺乏估计和了解,忽视了某些看起来平常的扰动,结果却可能导致无法估计的停电损失;或者出于对连锁大停电故障的过分担忧,实施相对保守但更加安全的控制方案,在一定程度上损害了运行经济性。因此针对上述出现的问题,如何利用新的方法更加准确和全面的反映电力系统的可靠性,并提高计算的速度,具有重要的理论研究意义和工程应用价值。 三、可靠性评估准则 电力系统是由发电、变电、输电、配电、用电等设备和相应的辅助设施,按照规定的技术经济要求组成的统一系统。随着电力工业的发展,可靠性发展成为一门应用学科,成为电力工业取得重大经济效益的一种重要手段。电力系统可靠性实质就是用最科学、经济的方式充分发挥发、供电设备的潜力,保证向全部用户不断供给质量合格的电力,从而实现全面的质量管理和全面的安全管理。 可靠性是指一个元件、设备或系统在预定时间内,在规定条件下完成规定功能的能力。可靠度则用来作为可靠性的特性指标,表示元件可靠工作的概率,可靠度高,就意味着寿命长,故障少,维修费用低;可靠度低,就意味着寿命短,故障多,维修费用高。 可靠性评估准则,因为在电力系统中所需要的可靠性水平应达到一定的条件,所以可靠性评估应该对应相应的可靠性准则。在可靠性分析中有两个准则分别是N-1准则和概率性指标或变量的准则。在传统的可靠性评估中主要采用的是N-1准则。确定性的N-1准则已经在电力系统可靠性评估中广泛的使用了许多年,该准则概念清晰,可操作性好。N-1准则是指正常运行方式下电力系统中任意一元件(如线路、发电机、变压器等)无故障或因故障断开后,电力系统应能保持稳定运行和正常供电,并且其他元件不过负荷,电压和频率均在允许的范围内。 这一准则要求单个系统元件的停运不会造成任何损害或者负荷削减。但同时N-1准则有两个缺点:第一个是没有考虑多元件失效;第二是只分析了单一元件失效的后果,而没有考虑其发生的概率多大。如果选择的故障事件不是非常严重,但是发生的概率比较高,基于该类故障事件的确定性分析得出的结果仍然会使系统有较高的风险。相反,即使一个具有严重后果的故障事件发生但是它的的概率可忽略不计,基于这类事件的确定性分析就会导致规划评估中过分投资。 概率评估不仅可计及多重元件的失效事件,而且可以同时考虑事件的严重程度和事件发生的概率,将二者适当结合可以得到如实反映系统可靠性的指标。使用概率性指标评估的目的是在系统评估过程中增加新的考虑因素,而不是代替已经在可靠性评估中使用了多年的N-1准则,两者之间并无冲突,将二者结合起来可更加全面准确的反映系统的可靠性水平。 四、可靠性评估方法 电力系统可靠性是通过定量的可靠性指标来度量的。为了满足不同场合的需要和便于进行可靠性预测,已提出大量的指标,其中较多的主要有以下几类: (1)概率:如可靠度,可用率等; (2)频率:如单位时间内的平均故障次数; (3)平均持续时间:如首次故障的平均持续时间、两次故障间的平均持续时间、故障的平均持续时间等; (4)期望值:如一年中系统发生故障的期望天数。 上述几类指标各自从不同角度描述了系统的可靠性状况,各自有其优点及局限性。在实际应用过程中往往是采用多种指标来描述一个

通信网网络管理控制系统可靠性及其评价研究

收稿日期:2007206205基金项目:国家“863”计划701主题项目资助(2006AA701116) 作者简介:韩卫占(19632),男,北京交通大学博士研究生,E 2mail :hwzhwz6409@https://www.doczj.com/doc/3213821101.html,. 通信网网络管理控制系统可靠性及其评价研究 韩卫占,张思东,孙 玉 (北京交通大学电子信息工程学院,北京 100044) 摘要:通信网网络管理控制系统是典型的软件硬件结合的综合复杂系统,其可靠性对通信网起着至关 重要的影响.提出了一种新的通信网网络管理控制系统可靠性分析和评价方法.采用层次分析法的思想 把系统分解成分系统、中心、软/硬件系统和软/硬件模块等层次,根据失效判据分析情况建立相应串联、 权联或n 中取k 表决冗余等可靠性模型.利用模块分析法得出软件系统可靠性并与硬件系统可靠性相综 合得出中心的可靠性,自下而上,最终得到全系统软硬件综合可靠性.给出了系统可靠性综合分析与评 价流程,最后通过实例仿真验证了可靠性分析和评价方法的正确性. 关键词:网络管理控制系统;可靠性;模块分析法;层次分析法 中图分类号:TN915.07 文献标识码:A 文章编号:100122400(2008)0120133207 R esearch on and evaluation of the reliability of a communication net work management and control system H A N W ei 2z han ,Z H A N G S i 2don g ,S U N Yu (School of Electronics and Information Eng.,Beijing Jiaotong Univ.,Beijing 100044,China ) Abstract : The reliability of a communication network management and control system ,typically a complicated integrated system of software and hardware ,has a significant effect on the communication network.A new approach to analyzing and evaluating the reliability of the system of a communication network is proposed.The whole system is divided into some layers such as subsystems ,centers , software/hardware system and modules.The corresponding reliability models like series ,parallel 2in 2 weight ,“n from k ”vote and redundant model ,etc.are established according to the falure criteria.The reliability of the software system can be obtained by the module analysis method and the reliability of a center can be obtained by integrating software and hardware system reliabilities.From bottom to top ,the integrated realiability of the whole system can be found in the end.We also give the processing of integrated analysis and evaluation.The efficiency of our approach is validated through a real example simulation. K ey Words : network management and control system ;reliability ;module analysis method ;hierarchical analysis method 通信网网络管理控制系统是通信网的主要支撑系统之一,在通信网可靠性研究领域,特别是在工程设计中,网络管理控制系统的可靠性研究正逐渐成为热点问题.由于通信网网络管理控制系统是典型的软件硬件综合的复杂系统,因此对其可靠性的研究应综合考虑软件和硬件可靠性的情况[1]. 早期的可靠性研究大多是针对单个设备硬件进行的,有一套较为完善的指标体系[2].目前在通信网可靠性研究方面,大都是将通信网抽象为一个由节点和链路组成的传递各种信息的流图,利用数学模型,从不同角度出发,建立或选择不同的测度指标进行研究,并已取得了不少成果[3,4].但这些研究大多从宏观角度开展,极少考虑通信网设备的细节及软件可靠性.在软件可靠性研究方面,随着计算机软件功能的逐步扩大以 2008年2月 第35卷 第1期 西安电子科技大学学报(自然科学版) J OU R NAL O F XI D IAN U N IV E R S I T Y Feb.2008 Vol.35 No.1

含风电的发电系统可靠性评估(MC法)matlab程序

%% 3.计算含风电场的发电系统可靠性指标(非序贯MC) clc clear loadresult_WindFarmOutput %文件“result_WindFarmOutput.mat”构成了风电场出力的状态模型【风力状态状态概率】相关状态计算查看百度文库“风电场出力模型matlab程序” % 3.1 求出常规机组的出力模型,按类构成多状态模型 % RBTS发电系统中共有6类常规机组,%11台常规机组数据 % %2台5MW水电机组%% %1台10MW热电机组%% %4台20MW水电机组%% %1台20MW 热电机组%% %1台40MW水电机组%% %2台40MW热电机组% Generator.Norm=[5 0.01 5 0.01 10 0.02 20 0.015 20 0.015 20 0.015 20 0.015 20 0.025 40 0.02 40 0.03 40 0.03]; save('process.mat'); % 3.2MC抽样机组确定机组状态 % 3.2.1计算含风电场的RBTS可靠性 % 共有7类机组,常规机组状态在StateNorm【出力概率】元胞数组中,风电状态在StateFORWeibull6【出力概率】 I=0 %I用来记录发生却负荷的次数 sumDNS=0; DNS=zeros(200000,1); K=rand(200000,12);%1-11常规12风电 pwind=zeros(200000,1); for k=1:200000 Pout=zeros(12,1); %得到一次抽样常规机组状态 fori=1:11 if K(k,i)>Generator.Norm(i,2) Pout(i)=Generator.Norm(i,1); else Pout(i)=0; end end

发电系统可靠性研究

发电系统可靠性研究 发表时间:2019-11-12T14:23:01.543Z 来源:《基层建设》2019年第22期作者:齐芸芸[导读] 国网山西省电力公司 030032 电力系统可靠性包括两个方面的内容:即充裕度和安全性。充裕度是指电力系统有足够的发电容量和足够的输电容量,在任何时候都能满足用户的峰荷要求,表征了电网的暂态性能。安全性是指电力系统在事故状态下的安全和避免连锁反应而不会引起失控和大面积停电的能力,表征了电力系统的动态性能。 电力系统的根本任务是尽可能的经济而可靠的将电能供给各种规模的用户。作为目前最清洁和使用最方便的二次能源,电力在推进社会进步,经济繁荣,提高人民生活质量方面发挥着越来越重要的作用,人们对电力的依赖程度也越来越高。电力系统可靠性的重要性也日益凸显出来。定量评定和改善电力系统可靠性越来越受到人们的重视。 近年来,世界和我国的电力工业状况均发生重大变化,电力系统可靠性技术领域也取得了重要进展。例如,随着竞争机制的引入,许多国家的电力管理体制已经或正在经历空前的变革,向着放松管制的商业化方向发展,如何处理好经济和安全,即使电力系统在适应竞争机制的同时又保持合理的可靠性水平,特别是风力发电及水利发电也要并入电网的情况下,可靠性分析变得更加复杂和棘手;在电力设备和电力工程的设计和建设中如何体现可靠性合理,经济上最优;大规模发输电系统可靠性如何实现可靠性评估;电力系统可靠性管理的广度和深度如何进一步发展;如何提高核电站及其相关联的电力系统可靠性等等是当前的主要问题。由此可见,发电系统可靠性研究的必要性和意义。 1.发展历程 人们是从什么时候开始研究发电系统可靠性问题的呢?最早是在上世纪30年代用概率的方法分析电力系统可靠性,但只限于估计发电系统的备用容量。这种方法在当时并没有得到广泛应用,主要原因是由于数据缺乏且受计算工具的限制,没有可行的可靠性评估技术以及不愿使用概率方法,还有对概率判据、风险指标的意义和重要性理解错误等。直到1948年,美国电机工程学会(American Institute of Electrical Engineers 简称AIEE)创立了概率方法应用分会,才对之前的工作进行了总结,引起了人们较多的注意。 我国在电力系统可靠性评估方面的研究起步较晚,70年代后才着手电力系统可靠性研究。1983年我国成立了中国电机工程学会可靠性专业委员会,同年成立了中国电工技术学会电工产品可靠性研究会。1985年在水利电力部成立了电力可靠性管理中心,开展发电设备、输变电设备、配电设备和系统的可靠性统计工作。一些大学和研究机构也开展了电力系统可靠性的理论研究和教学,取得了不少成果,发表了许多论文和专著。这些都大大推动了我国电力系统可靠性的研究。 进入90年代,我国电力系统可靠性研究和应用有了新的进展,开发出自主版权的评估软件,并得到应用;发电、输变电设备的可靠性统计制度化且开始用于电力企业的管理。1999年6月,中国电力企业联合会成立了电力行业可靠性管理委员会。 2.研究现状 电力系统是一个复杂、动态的系统,习惯上将其分为若干子系统,如:发电系统、输电系统、发输电系统、配电系统和发电厂变电所电气主接线等,这些子系统的功能特点不同,使用的评估方法和采用的可靠性指标也不一样,其完善程度存在着很大的差异。相比之下,发电系统作为电力系统中十分重要的一个环节,发电系统的可靠性研究作为研究重点已较为成熟,国内外都取得了很多应用成果,例如对以下问题的研究:可靠性指标的设定;可靠性指标计算方法的探究以及提高系统可靠性措施的研究,包括:发电系统可靠性分析的随机生产模拟研究,不确定法在发电系统可靠性评估中的应用,发电系统可靠性指标的研究,以及电力市场下的可靠性研究等。尽管在发电系统可靠性方面已取得很多成果,但是对发电系统安全性的评估在国内外仍处于起步和探索阶段。随着社会的发展,用电需求激增,发电机组的装机容量越来越大,过去发电系统可靠性评估模型所使用的两状态模型对大型发电机组的评估结果不能令人满意,因此,建立大型发电机组的多态模型是非常必要的。另外,对发电系统可靠性薄弱环节的识别和各种因果假设分析的研究还不够充分,仍需进一步研究。 现在常用的评估发电系统可靠性的方法主要是解析法和模拟法。其中解析法包括:电力不足概率法(LOLP);电量不足概率法(LOEP);频率及持续时间法(F﹠D);电力不足期望值法(LOLE)。以上四种方法的共同特点是:组件及系统的寿命过程均用数学模型表示,可靠性指标可以通过求解数学模型的方法得到。其特点是:物理概念清晰,逻辑关系明确,模型精度高。但是当系统很复杂时,用解析法构造模型十分困难,而且计算量也会随系统的规模呈指数关系增长,所以,解析法在系统庞大时会受到限制。解析法在美国、加拿大、英国等地区的应用比较广泛。 模拟法,又叫蒙特卡罗法。模拟法是在计算机上模拟组件或系统寿命过程的一次实际实现,并按照对比模拟过程进行若干时间的观察,估计所求的可靠性指标。其特点是:原理简单,受限因素较少,适用于大型系统的可靠性评估。模拟法虽然也使用数学模型,但是它通过在模型上进行采样试验求得结果,类似于通常的统计实验。它是一种非常灵活的方法,且在处理某些问题时可能是唯一的方法。正是由于其明显的统计性质,它的计算结果不够精确且计算效率不高。模拟法在西欧各国比较流行。 近年来,人工智能技术逐渐渗透到电力系统可靠性评估领域,以弥补常规评估方法的不足。例如,贝叶斯网络方法,它是以概率论为基础的,最显著的特点是:对不确定知识的准确、直观的表示和灵活、快捷的推理。因此,基于贝叶斯网络的方法不仅能方便的表述系统能够提供的容量和负荷需求之间的平衡关系,而且通过高效的贝叶斯网络推理算法有效地计算系统失去负荷的概率和其他各种概率。 在电力控制领域,20世纪60年代初,美国一家小电厂最早使用了计算机控制系统。而在60年代中期,北京西部的高井电站成功研制并安装了全自动数字闭环发电、配电管理系统。电力工作者们很早就想到了要将计算机技术和现代化的科学理论与电力系统可靠性的研究相结合的方法,从而促进电力系统可靠性研究和工程应用的飞速发展。但是当时存在的阻碍很多,因为能满足大型电力系统可靠性评估实际需要的有效算法尚且不多,加上电力系统本身的特点,使电力系统可靠性计算非常复杂。直到林里和伍德等人发表了一批文章,介绍了建立容量模型的递推算法和便于应用数字计算机的负荷模型组合算法以后,这种指标才得到了实际应用。 发电系统的可靠性评估技术相对而言较为成熟,近年来国内国外许多专家、学者一直致力于发电系统的可靠性与计算机技术相结合的研究,虽然面临着许多问题,存在的困难不少,但是未来的发展前途很广阔,也取得了一些工程上应用的成果:不仅开发了发、输电组合系统、高电压配网、中压配网和电站电气主接线可靠性评估软件,在电力系统的相关领域中,电网可靠性规划,电网可靠性改造,可靠性开关优化,配电网可靠性重构都是可靠性在实际中应用的成果。

#生产设备控制系统数据可靠性风险评估应用案例 FMEA实例分析

生产设备控制系统数据可靠性风险评估应用案例 FMEA实例分析 一、概述 国家药品监督管理局颁布了《药品数据管理规范》征求意见稿,美国FDA、WHO、EMA、MHRA、PIC/S也相继出台了数据完整性的一系列指南或规范。近年来,数据可靠性已经成为了行业及监管部门关注的热点。而大部分药品生产企业只关注了QC实验室的数据可靠性,而忽视了生产设备系统的数 据可靠性。因此,本规程介绍了生产设备系统的数据可靠性风险评估方法,以保证生产过程的数据可靠性。 二、实施计划 1. 概述及目的 本规程的目的是为用于生产药品和活性物质(原料药)的设备上所嵌入的 控制系统的管理,制定必要的风险评估方针和指南,以确保这些控制系统及其GMP相关数据符合现行的数据可靠性要求。 2.风险评估范围 此文件范围包括的工艺设备和设施是供应商所提供的标准组件,部件或功能不是根据公司特别设计。因此,工艺设备和设施设计的评估不包括在此文件的范围内。此文件的范围包括对运行相关风险的评估。 本文件评估范围包括实验室从样品取样、收样、检测、审核、留样、持续稳定性考察、开具COA和放行至退样及处理的所有相关环节和操作,以及相 关文件和记录。本文件也将评估实验室所运行的其他程序,包括变更控制、偏差等。 3.风险管理实施步骤(具体见第一章) 4.质量风险管理项目组成员及职责: 4.1管理员: 根据设备系统相关的SOP制定的职责和安全要求及原则配置设备系统。 设定系统的日常备份。 4.2操作员: 遵守通用的或设备特定的合规性程序,在实践中应用本规程中建立的措施。 4.3主管或经理 遵守通用的或设备特定的合规性程序,在实践中应用本规程中建立的措施。

配电系统可靠性评估方法

浅谈配电系统可靠性评估方法 刘旭军 (大唐石门发电有限责任公司,湖南常德415300) 摘要:随着社会的发展,电力系统正在处于一个飞速发展的阶段,作为电力系统中最重要的组成部分配电系统,其可靠性直接关系着整个电力系统的正常运行,配电系统如果不稳定将会给电力系统带来巨大的经济损失。本文首先从配电系统常见的可靠性指标出发,探讨了当前配电系统可靠性评估的常见方法。 关键词:配电系统;电力系统;可靠性,评估方法 中图分类号:TM76 文献标识码:A 文章编号:1003-5168(2012)24-0001-01 1 常见配电系统可靠性指标 配电系统是用户与电力系统联系最重要的基础,它对整个用户的用电质量有着重要的影响,因此,对配电系统的可靠性进行有效的研究就显得非常重要。对配电系统可靠性的评价指标一般可以分为用户侧和系统侧两个方面。 1.1 用户侧可靠性指标 用户侧可靠性指标是对用户侧可靠性进行评估的基本指标,它是配电系统故障对某一区域产生影响大小的重要反应,同时也是下一级配电系统可靠性评估的重要依据和指标。通常用户侧可靠性指标有:用户侧故障率、用户侧故障导致的平均停电时间、用户侧年平均停电时间等。 1.2 系统侧可靠性指标 系统侧可靠性指标是评价配电系统向用户供应和分配电能以及供电质量的重要依据,系统侧可靠性指标更加注重从全局的角度对配电系统对整个电力系统的影响。系统侧可靠性指标一般包括:电力系统平均停电频率、电力系统平均停电持续时间、用户平均停电频率、用户平均停电时间、平均供电可用率等等。 2 配电系统可靠性评估的常见方法及改进 一般在实际的应用中,配电系统的拓扑结构较为复杂,对整个电网运行的影响因素较多,因此,如果直接利用相关的可靠性指标公式进行计算将会非常复杂。近几年,一些相关的研究工作取得了一定的进展,一些相关的学者和研究人员经过研究发现和总结了一些操作方便和方法和改进技术,这些方式方法通过大量的实践验证,证明其具有一定的实用性和有效性。当前较为常见的配电系统可靠性评估方法有故障式后果分析法、最小路法、网络等值法等等。 2.1 故障式后果分析法 这种评估方法又被称之为FMEA,它是用来评估电力系统可靠性最为传统的一种方法。这种方法主要是利用科学的故障判别准则来将配电系统的状态分为故障状态和正常状态两种,并对配电系统中所有可能出现故障的设备进行充分的分析,从而得到一个所有故障类型的列表,然后利用计算的方式获得配电系统可靠性的相关指标。一般这种方法只能在由主线和馈线组成的辐射式简单配电系统中进行应用,在一些多故障模式的复杂分支系统中很少使用。这种方法在实际应用过程中,并没有充分考虑线路的传输容量问题,所以,利用这种方法获得的相关评估指标会与真实的数值之间存在一定的差异,使评估结果出现一定的偏差。 随着现实中研究工作的不断深入,相关学者通过对故障后的潮流和电压约束的考虑,总结出了一种结合最小割集法的FMEA法。这种方法可以在一些大型的配电系统可靠性评估中进行应用。后来一些研究人员有总结出了应用于带子馈线的复杂配电系统可靠性评估方法。这种方法主要是利用了馈线分区思想,以馈线为基本单位进行馈线分区,然后建立起一个网络模型,这一网络模型主要由区域节点和开关弧组成,然后利用前面所说的FMEA方

相关主题
文本预览
相关文档 最新文档