当前位置:文档之家› 2019年上海高考数学 拓展学习2 数列

2019年上海高考数学 拓展学习2 数列

2019年上海高考数学 拓展学习2 数列
2019年上海高考数学 拓展学习2 数列

2019年高中数学·拓展学习 数列

一、单调性:

1、已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n n

S b n =?*

()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是

2、等差数列{}n a 的通项公式为28n a n =-,下列四个命题.1α:数列{}n a 是递增数列;2α:数列{}n na 是递增数列;3α:数列n a n ??????

是递增数列;4α:数列{}2

n a 是递增数列.其中真命题的是

3、已知定义在R 上的函数)(x f ,对任意实数21,x x 都有1212()1()()f x x f x f x +=++,且(1)1f =. (1)设对任意正整数n ,有1

()

n b f n =

.若不等式12226

log (1)35

n n n b b b x +++++>

+对任意不小于2的正整数n 都成立,求实数x 的取值范围.

二、新定义型:

1、(运算型)已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =,则首项1a 所有可能取值中最大值为

2、(方法型)设1210x x x ,,,为1210,,

,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( )

(A )512 (B )256 (C )255 (D )64

3、(运算型)已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( ) A. (3,8) B. (2,16) C. (4,8)

D.

4、(运算型)对于数列{}n a ,规定{}n a ?为数列{}n a 的一阶差分数列,其中11()n n n a a a n N *+?=-∈.对于正整数k ,规定{}k n a ?为{}n a 的k 阶差分数列,其中111k n k n k n a a a -+-?=?-?.若数列{}n a 的通项1

3

n n a -=,则

2122232n

a a a a ?+?+?++?=

5、(运算型)以()m ,0间的整数()N m m ∈>,1为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以()

2

,0m 间的整数()N m m ∈>,1为分子,以2

m 为分母组成不属于集合1A 的分数集合2A ,其所有元素和为2a ;……,依次类推以(

)n

m

,0间的整数()N m m ∈>,1为分子,以n

m

为分母组成不属于121,,,n A A A -???的分数集合n A ,其所有

元素和为n a ;则12n a a a ???+++=________.

6、(概念型)已知二次函数2() ()f x x ax a x R =-+∈同时满足: ① 不等式()0f x ≤的解集有且只有一个元素;

② 在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项和为n S ,且()n S f n =.规定:各项均不为零的数列{}n b 中,所有满足10i i b b +?<的正整数i 的个数称为这个数列{}n b 的变号数.若令1n n

a

b a =-(*n N ∈),则数列{}n b 的变号数等于

7、(概念型)设)2(log 1+=+n a n n )(*

∈N n ,称k a a a a 321为整数的k 为“希望数”,则在)2013,1(内所有“希

望数”的个数为

8、(匹配型)设数列{}n a 是公差不为零的等差数列,6,231==a a ,若自然数,...,...,21k n n n 满足

......321<<<<

9、(定义型)设数列{}n a 的前n 项和为n S ,若

1

122n n

a a +≤≤ *()n N ∈,则称{}n a 是“紧密数列”; (1)若11a =,23

2

a =

,3a x =,44a =,求x 的取值范围; (2)若{}n a 为等差数列,首项1a ,公差d ,且10d a <≤,判断{}n a 是否为“紧密数列”; (3)设数列{}n a 是公比为q 的等比数列,若数列{}n a 与{}n S 都是“紧密数列”,求q 的取值范围;

10、(定义型)由()2m m ≥个不同的数构成的数列12,,

n a a a 中,若1i j n ≤<≤时,j i a a <(即后面的项j a 小于前面

项i a ),则称i a 与j a 构成一个逆序,一个有穷数列的全部逆序的总数成为该数列的逆序数,如对于数列3,2,1,由于在第一项3后面比3小的项有2个,在第二项2后面比2小的项有1个,在第三项1后面比1小的项没有,因

此,数列3,2,1的逆序数为2+1+0=3;同理,等比数列1,111

,,248--的逆序数为4.

(1)计算数列()

*2191100,n a n n n N =-+≤≤∈的逆序数;

(2)计算数列()*1,31,,1n

n n a n k n N n n n ???? ??

??=≤≤∈??-?+?为奇数为偶数的逆序数;

(3)已知数列12,,n a a a 的逆序数为a ,求11,,

n n a a a -的逆序数.

11、(定义型)对于数列{}n a ,称12

23

11

()()1

k k

k

Pa

a a a a

a

a k -=-+-++--(其中2,k k N ≥∈)为数列{}

n a 的前k 项“波动均值”.若对任意的2,k k N ≥∈,都有1()()k k P a P a +<,则称数列{}n a 为“趋稳数列”. (1)若数列1,x ,2为“趋稳数列”,求x 的取值范围;

(2)若各项均为正数的等比数列{}n b 的公比(0,1)q ∈,求证:{}n b 是“趋稳数列”;

(3)已知数列{}n a 的首项为1,各项均为整数,前k 项的和为k S . 且对任意2,k k N ≥∈,都有3()2()k k P S P a =,

试计算:()()()23232(1)n

n n n n C P a C P a n C P a +++- (2,n n N ≥∈).

12、(周期型)在数列}{n a 中,若存在一个确定的正整数T ,对任意*

N ∈n 满足n T n a a =+,则称}{n a 是周期数列,T 叫做它的周期.已知数列}{n x 满足11=x ,a x =2(1≤a ),||12n n n x x x -=++,当数列}{n x 的周期为3时,则}{n x 的前2013项的和=2013S _________

13、(定义型)若数列{}n A 对任意的*n N ∈,都有1k n n A A +=(0)k ≠,且0n A ≠,则称数列{}n A 为“k 级创新数列”.

(1)已知数列{}n a 满足2122n n n a a a +=+且11

2

a =

,试判断数列{}21n a +是否为“2级创新数列”,并说明理由; (2)已知正数数列{}n b 为“k 级创新数列”且1k ≠,若110b =,求数列{}n b 的前n 项积n T ;

(3)设α、β是方程210x x --=的两个实根()αβ>,令k β

α

=

,在(2)的条件下,记数列{}n c 的通项1log n n n b n c T β-=?,求证:21n n n c c c ++=+,*n N ∈.

三、存在型:

1、(存在型)已知数列}{n a 的各项均为非零实数,且对于任意的正整数n ,都有

3

3231221)(n n a a a a a a +++=+++ .

(1)当3=n 时,求所有满足条件的三项组成的数列1a 、2a 、3a ;

(2)试求出数列}{n a 的任一项n a 与它的前一项1-n a 间的递推关系.是否存在满足条件的无穷数列}{n a ,使得

20122013-=a ?若存在,求出这样的无穷数列}{n a 的一个通项公式;若不存在,说明理由.

2、(探究型)已知数列{}n a 满足7

6

1-=a ,12110n n a a a a +++++-λ=(其中0λ≠且1λ≠-,n N *∈)

.n S 为数列{}n a 的前n 项和.

(1) 若3122a a a ?=,求λ的值;

(2) 求数列{}n a 的通项公式n a ; (3) 当1

3

λ=时,数列{}n a 中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,说明理由.

3、(存在型)数列{}n a 中,已知()12121,,n n n a a a a k a a ++===+对任意*n N ∈都成立,数列{}n a 的前n 项和为n S .(这里,a k 均为实数)

(1)若{}n a 是等差数列,求k ; (2)若1

1,2

a k ==-

,求n S ; (3)是否存在实数k ,使数列{}n a 是公比不为1的等比数列,且任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列?若存在,求出所有k 的值;若不存在,请说明理由.

4、已知数列{a n }中,a 2=1,前n 项和为S n ,且1()

2

n n n a a S -=. (1)求a 1,a 3;

(2)求证:数列{a n }为等差数列,并写出其通项公式; (3)设1

lg 3

n n n a b +=

,试问是否存在正整数p ,q (其中1

5、已知数列{}n a 的前n 项和为n S ,且满足a a =1 (3≠a ),n n n S a 31+=+,设n n n S b 3-=,*∈N n . (1)求证:数列{}n b 是等比数列;

(2)若1+n a ≥n a ,*∈N n ,求实数a 的最小值; (3)当4=a 时,给出一个新数列{}n e ,其中??

?≥==2

,1

,3n b n e n n ,设这个新数列的前n 项和为n C ,若n C 可以写

成p

t (*∈N p t ,且1,1>>p t )的形式,则称n C 为“指数型和”.问{}n C 中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

6、给定数列}{n a ,若满足a a =1(0>a 且1≠a ),对于任意的*,N ∈m n ,都有m n m n a a a ?=+,则称数列}{n a 为指数数列.

(1)已知数列}{n a ,}{n b 的通项公式分别为123-?=n n a ,n n b 3=,试判断}{n a ,}{n b 是不是指数数列(需说明理由);

(2)若数列}{n a 满足:21=a ,42=a ,n n n a a a 2312-=++,证明:}{n a 是指数数列; (3)若数列}{n a 是指数数列,4

31++=t t a (*

N ∈t ),证明:数列}{n a 中任意三项都不能构成等差数列.

四、衍生数列及子数列:

1、已知数列{}n a 与{}n b 满足112(),*n n n n a a b b n N ++-=-∈. (1)若35,n b n =+且11a =,求{}n a 的通项公式;

(2)设{}n a 的第0n 项是最大项,即0(*)n n a a n N ≥∈,求证:{}n b 的第0n 项是最大项;

(3)设10a λ=<,(*)n

n b n N λ=∈,求λ的取值范围,使得{}n a 有最大值M 和最小值m ,且使得

(2,2).M

m

∈-

2、对于项数为m 的有穷数列}{n a ,记),,2,1}(,,,max{21m k a a a b k k ==,即k b 为k a a a ,,,21 中的最大值,并称数列}{n b 是}{n a 是控制数列,如5,5,2,3,1的控制数列是.5,5,3,3,1

(1)若各项均为正整数的数列}{n a 的控制数列为,5,5,4,3,2写出所有的}{n a ;

(2)设}{n b 是}{n a 的控制数列,满足C C b a k m k (1=++-为常数,).,,2,1m k =求证:),,2,1(m k a b k k ==;

(3)设100=m ,常数)1,2

1(∈a 。若}{,)1(2)

1(2

n n n n b n an a ?--=+是}{n a 的控制数列,求

)()()(1001002211a b a b a b -+???+-+-

3、设数列{}n a 满足:①11=a ;②所有项*∈N n a ;③???<<

{}*∈≤=N ,|m m a n A n m ,将集合m A 中的元素的最大值记为m b .换句话说,m b 是数列{}n a 中满足

不等式m a n ≤的所有项的项数的最大值.我们称数列{}n b 为数列{}n a 的伴随数列.例如,数列1,3,5的 伴随数列为1,1,2,2,3.

(1)若数列{}n a 的伴随数列为1,1,1,2,2,2,3,请写出数列{}n a ; (2)设13n n a -=,求数列{}n a 的伴随数列{}n b 的前100之和; (3)若数列{}n a 的前n 项和231

22

n S n n c =-+(其中c 常数),试求数列{}n a 的伴随数列{}n b 前m 项和m T .

4、、已知有穷数列}{n a 各项均不相等....,将}{n a 的项从大到小重新排序后相应的项....数.构成新数列}{n p , 称}{n p 为}{n a 的“序数列”.例如数列:321,,a a a 满足231a a a >>,则其序数列}{n p 为2,3,1. (1)写出公差为(0)d d ≠的等差数列12,,,n a a a L 的序数列}{n p ;

(2)若项数不少于5项的有穷数列}{n b 、}{n c 的通项公式分别是n

n n b )5

3

(?=(*

n N ∈),

tn n c n +-=2(*

n N ∈),且}{n b 的序数列与}{n c 的序数列相同,求实数t 的取值范围;

(3)若有穷数列}{n d 满足11=d ,n

n n d d )2

1(||1=-+*()n N ∈,且}{12-n d 的序数列单调递减, }{2n d 的序数列单调递增,求数列}{n d 的通项公式.

五、恒成立:

1、各项均为正数的数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有2(1)n n n S b b =+. (1)求数列{}n b 的通项公式;

(2)如果等比数列{}n a 共有(2,)m m m *≥∈N 项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个*(1)()i i b i -∈N 后,得到一个新的数列{}n c .求数列{}n c 中所有项的和; (3)如果存在n *

∈N ,使不等式 11

11

(1)n n n n b n b b b λ+++≤+≤+

成立,求实数λ的范围.

2、数列{}n a 满足:112,2n n n a a a λ+==+?,且123,1,a a a +成等差数列,其中*

n N ∈。

(1)求实数λ的值及数列{}n a 的通项公式; (2)若不等式216

25n

p p n a +≤

-成立的自然数n 恰有4个,求正整数p 的值.

3、已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*

n N ∈).

(1)求{}n a 的通项公式;

(2)设1122++-=n n n b b ,81=b ,n T 是数列{}n

b 的前n 项和,求正整数k ,使得对任意*n N ∈均有k n T T ≥恒

成立; (3)设1

1(1)(1)

n n n n a c a a ++=++,n R 是数列{}n

c 的前n 项和,若对任意*n N ∈均有n R λ<恒成立,求λ的最小

值.

4、已知数列{}n a 的前n 项和为n S ,且()*10,4??

>?=∈ ???

n

n n n a a S n N .

(1)若()21log =+?n n n b a S ,求数列{}n b 的前n 项和n T ; (2)若0,2tan 2

π

θθ<<

?=n n n n a ,求证:数列{}θn 为等比数列,并求出其通项公式;

(3)记1231111

222

2

=-+-+-++-

n n c a a a a ,若对任意的*,∈≥n n N c m 恒成立,求实数m 的取值范围.

5、数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)

2

n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;

(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个

(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和;

(3)如果存在*

n N ∈,使不等式11

820

(1)()(1)n n n n n b n b b b λ++++≤+≤+

成立,若存在,

6、设数列{}{}n n a b 、的各项都是正数,n S 为数列{}n a 的前n 项和,且对任意*n N ∈,

都有2421n n n a S a =--,1b e =,1n n b b λ+=,1ln n n n c a b +=?(常数0λ>,ln n b 是以e 为底数的自然对数, 2.71828

e =)

(1)求数列{}n a 、{}n b 的通项公式;

(2)(存在型)用反证法证明:当4λ=时,数列{}n c 中的任何三项都不可能成等比数列;

(3)设数列{}n c 的前n 项和为n T ,试问:是否存在常数M ,对一切*

n N ∈,(1)n n T c M λλ-+≥恒成立?

若存在,求出M 的取值范围;若不存在,请证明你的结论.

7、设数列}{n a ,}{n b ,}{n c ,已知41=a ,31=b ,51=c ,n n a a =+1,21n n n c a b +=+,2

1n n n b a c +=+(*

N ∈n ). (1)求数列}{n n b c -的通项公式;

(2)求证:对任意*

N ∈n ,n n c b +为定值;

(3)设n S 为数列}{n c 的前n 项和,若对任意*

N ∈n ,都有]3,1[)4(∈-?n S p n ,求实数p 的取值范围.

六、应用型:

1、某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车...的 牌照的数量维持在这一年的水平不变.

(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{}n a ,每年发放的电动型汽车牌照数 为构成数列{}n b ,完成下列表格,并写出这两个数列的通项公式; (2)从2013年算起,累计各年发放的牌照数,哪一年开始超过200万张?

2、某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为70万元,同时将受到环保部门的处罚,第一个月罚3万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面也可以大大降低原料成本.据测算,添加回收净化设备并投产后的前5个月中的累计生产净收入)(n g 是生产时间n 个月的二次函数kn n n g +=2)((k 是常数),且前3个月的累计生产净收入可达309万,从第6个月开始,每个月的生产净收入都与第5个月相同.同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励100万元.

(1)求前8个月的累计生产净收入)8(g 的值;

(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造时的纯收入.

七、极限型:

1、对数列{}{}

,n n a b ,

若区间[],n n a b 满足下列条件:①[]11,n n a b ++≠

?[]()

*

,n n a b n N ∈;②()lim 0n n n b a →∞

-=,则称

{}

,n n

a

b ????为区间套。下列选项中,可以构成区间套的数列是 ( )

A

12,23n

n

n n a b ==??

??

? ?????; B. 21,31n

n n n a b n ==+??

???

C .1

1,13n

n n n a b n -==+?? ???

D .32,21n n n n a b n n ++=

=++ 2、已知点??? ??

+

0,11n A ,??? ??

+n B 22,0,??? ?

?

++n n C 23,12,其中n 为正整数,设n S 表示△ABC 的面积,则=∞

→n n S lim _________

3、已知函数?????≥-<≤--=,2,

)2(,20,)1(1)(2x x f x x x f 若对于正数n k (*

N ∈n ),直线x k y n ?=与函数)(x f y =的图像

恰有12+n 个不同交点,则=+++∞

→)(lim 2

2

22

1n n k k k ______.

4、定义函数}}{{)(x x x f ?=,其中}{x 表示不小于x 的最小整数,如2}4.1{=,2}3.2{-=-.当]

,0(n x ∈(*

N ∈n )时,函数)(x f 的值域为n A ,记集合n A 中元素的个数为n a ,则=???? ??+++∞→n n a a a 111lim 21

5、已知*N n ∈,在坐标平面中有斜率为n 的直线n l 与圆222x y n +=相切,且n l 交y 轴的正半轴于点n P ,交x 轴于点

n Q

,则lim

n ∞

→的值为

6、设{}n a 是公比为(1)q q ≠的等比数列,若{}n a 中任意两项之积仍是该数列中的项, 那么称{}n a 是封闭数列.

(1)若1

23a q ==,,判断{}n a 是否为封闭数列,并说明理由;

(2)证明{}n a 为封闭数列的充要条件是:存在整数1m ≥-,使1m a q =;

(3)记n ∏是数列{}n a 的前n 项之积,2log n

n b =∏,若首项为正整数,公比2q =,试问:是否存在这样的

封闭数列{}n a ,使12

11111

lim 9n n b b b →∞??++???+= ???,若存在,求{}n a 的通项公式;若不存在,说明理由。

八、函数综合:

1、已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*

n N ∈),写出数列{}n a 的通项公式;

(2)若1()n n a f a -=(*

n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围;

2、已知定义域为R 的二次函数f x ()的最小值为0,且有f x f x ()()11+=-,直线g x x ()()=-41被f x ()的图像截得的弦长为417,数列{}a n 满足a 12=,()()()(

)a a g a f a n N n n n n +-+=∈10*

(1)求函数f x ()的解析式; (2)求数列{}a n 的通项公式;

(3)设()()b f a g a n n n =-+31,求数列{}b n 的最值及相应的n

3、平面直角坐标系xoy 中,已知点(,)n n a (*)n N ∈在函数(2,)x y a a a N =∈≥ 的图像上,点(,)n n b (*)n N ∈在直线(1)y a x b =++ ()b R ∈上.

(1)若点1(1,)a

与点1(1,)b 重合,且22a b <,求数列{}n b 的通项公式; (2)证明:当2a =时,数列{}n a 中任意三项都不能构成等差数列; (3)当1b =时,记{}

|,n A x x a n N *==∈ ,{}

|,n B x x b n N *==∈ ,设C A B =,将集合C 的元素

按从小到大的顺序排列组成数列{}n c ,写出数列{}n c 的通项公式n c .

九、向量综合:

1、若在边长为1的正三角形ABC 的边BC 上有n (∈n N *,2≥n )等分点,沿向量的方向依次为121,,,-n P P P ,记AC AP AP AP AP AB T n n ?++?+?=-1211 ,若给出四个数值:①

429 ②1091 ③18197

④33

232,则n T 的值不可能的共有 ( ) )(A 1个 )(B 2个 )(C 3个 )(D 4个

2、如图所示,向量BC 的模是向量AB 的模的t 倍,AB BC 与的夹角为θ,那么我们称向量AB 经过一次(),t θ变

换得到向量BC .在直角坐标平面内,设起始向量()14,0OA =,向量1OA

经过1n -次12,23

π

??

???

变换得到的向量为()1*,1n n A A n N n -∈>,其中*12,,()i i i A A A i N ++∈为逆时针排列,

记i A 坐标为()(),*i i a b i N ∈,则下列命题中不正确...

的是( )

A. 2b

B. 3130k k b b +-=()*k N ∈

C. 31310k k a a +--=()*k N ∈

D. ()()43180k k k k a a a a +++-+-=()*k N ∈ 3、我们把一系列向量()1,2,

,i a i n =按次序排成一列,

称之为向量列,记作{}n a ,已知向量列{}

n a 满足:()1,11=a ,()()11111

,,2

n n n n n n n a x y x y x y ----==

-+()2n ≥. (1)证明:数列{}

n a 是等比数列;

(2)设2log n n n c a a =?,问数列{}n c 中是否存在最小项?若存在,求出最小项;若不存在,请说明理由; 4、已知等差数列{}n a 的前n 项和为n S ,向量,n S OP n n ??= ???,1,m S OP m m ??

= ???

, 2,

k S OP k k ??= ???()*

n m k ∈N 、、,且12OP OP OP λμ=?+?,则用

n m k 、、表示μ= ( ). (A )k m k n -- (B )k n k m -- (C )n m k m -- (D )n m n k

--

十、解析几何综合:

1、在xOy 平面上有一系列的点),(111y x P ,),(222y x P ,…,),(n n n y x P ,…,对于所有正整数n ,点n P 位于函数)0(2≥=x x y 的图像上,以点n P 为圆心的⊙n P 与x 轴相切,且⊙n P 与⊙1+n P 又彼此外切,若11=x ,且

n n x x <+1.则=∞

→n n nx lim ( )

A .0

B .0.2

C .0.5

D .1

2、过坐标原点O 作倾斜角为60的直线交抛物线2:y x Γ=于1P 点,过1P 点作倾斜角为120的直线交x 轴于1Q 点,交Γ于2P 点;过2P 点作倾斜角为60的直线交x 轴于2Q 点,交Γ于3P 点;过3P 点作倾斜角为120的直线,

交x 轴于3Q 点,交Γ于4P 点;如此下去…….又设线段112231n n OQ QQ Q Q Q Q -,,,

,,L L 的长分别为123,,,,,n a a a a L L ,数列{}n a 的前n 项的和为n S . (1)求12,a a ; (2)求n a ,n S ;

(3)设(01)n a

n b a a a =>≠且,数列{}n b 的前n 项和为n T ,若正整数

,,,p q r s 成等差数列,且p q r s <<<,试比较p s T T ?与q r T T ?的大小.

3、已知曲线C 的方程为2

4y x =,过原点作斜率为1的直线和曲线C 相交,另一个交点记为1P , 过1P 作斜率为2的直线与曲线C 相交,另一个交点记为2P ,过2P 作斜率为4的直线与曲线C 相交, 另一个交点记为3P ,……,如此下去,一般地,过点n P 作斜率为2n

的直线与曲线C 相交,另一个 交点记为1+n P ,设点),(n n n y x P (*

n ∈N ). (1)指出1y ,并求1n y +与n y 的关系式(*

n ∈N );

(2)求{}21n y -(*

n ∈N )的通项公式,并指出点列1P ,3P ,…,12+n P ,… 向哪一点无限接近?说明理由;

(3)令2121n n n a y y +-=-,数列{}n a 的前n 项和为n S ,设13

14

n n b S =

+,求所有可能的乘积

(1)i j b b i j n ?≤≤≤的和.

十一、二项式定理综合:

1、已知数列{}n a 的首项为1,记12

12()k

n

n n k n n n

f n a C a C a C a C =++

++

+(*N n ∈). (1)若{}n a 为常数列,求(4)f 的值;

(2)若{}n a 为公比为2的等比数列,求()f n 的解析式;

(3)是否存在等差数列{}n a ,使得()1(1)2n f n n -=-对一切*

N n ∈都成立?若存在,求出数列{}n a 的通项公式;

若不存在,请说明理由.

2、数列{}n a ,定义{}n a ?为数列{}n a 的一阶差分数列,其中n n n a a a -=?+1,()

*∈N n . (1)若n n a n -=2,试判断{}n a ?是否是等差数列,并说明理由; (2)若11=a ,n n n a a 2=-?,求数列{}n a 的通项公式;

(3)对(2)中的数列{}n a ,是否存在等差数列{}n b ,使得n n

n n n n a C b C b C b =+++ 2211对一切*∈N n 都成立,若

存在,求出数列{}n b 的通项公式;若不存在,请说明理由.

2019年高考数学试题带答案

2019年高考数学试题带答案 一、选择题 1.已知二面角l αβ--的大小为60°,b 和c 是两条异面直线,且,b c αβ⊥⊥,则b 与 c 所成的角的大小为( ) A .120° B .90° C .60° D .30° 2.设集合(){} 2log 10M x x =-<,集合{ } 2N x x =≥-,则M N ?=( ) A .{} 22x x -≤< B .{} 2x x ≥- C .{}2x x < D .{} 12x x ≤< 3.如图所示的组合体,其结构特征是( ) A .由两个圆锥组合成的 B .由两个圆柱组合成的 C .由一个棱锥和一个棱柱组合成的 D .由一个圆锥和一个圆柱组合成的 4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高. 成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙 5.已知P 为双曲线22 22:1(0,0)x y C a b a b -=>>上一点,12F F , 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =± B .34 y x =? C .3 5 y x =± D .53 y x =± 6.在△ABC 中,a =5,b =3,则sin A :sin B 的值是( ) A . 53 B . 35 C . 37 D . 57 7.圆C 1:x 2+y 2=4与圆C 2:x 2+y 2﹣4x +4y ﹣12=0的公共弦的长为( ) A 2B 3 C .22 D .328.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为( ).

2019年高考数学真题分类汇编专题18:数列(综合题)

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , .

因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0. 因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m. 当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e (e,+∞) + 0 – f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项

高考理科数学专题复习题型数列

第8讲数列 [考情分析]数列为每年高考必考内容之一,考查热点主要有三个方面:(1)对等差、等比数列基本量和性质的考查,常以客观题的形式出现,考查利用通项公式、前n项和公式建立方程(组)求解,利用性质解决有关计算问题,属于中、低档题;(2)对数列通项公式的考查;(3)对数列求和及其简单应用的考查,主、客观题均会出现,常以等差、等比数列为载体,考查数列的通项、求和,难度中等. 热点题型分析 热点1等差、等比数列的基本运算及性质 1.等差(比)数列基本运算的解题策略 (1)设基本量a1和公差d(公比q); (2)列、解方程(组):把条件转化为关于a1和d(q)的方程(组),然后求解,注意整体计算,以减少运算量. 2.等差(比)数列性质问题的求解策略 (1)解题关键:抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解; (2)牢固掌握等差(比)数列的性质,可分为三类:①通项公式的变形;②等差(比)中项的变形;③前n项和公式的变形.比如:等差数列中,“若m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*)”;等比数列中,“若m+n=p+q,则a m·a n=a p·a q(m,n,p,q∈N*)”.

1.已知在公比不为1的等比数列{a n }中,a 2a 4=9,且2a 3为3a 2和a 4的等差中项,设数列{a n }的前n 项积为T n ,则T 8=( ) A.12×37-16 B .310 C.318 D .320 答案 D 解析 由题意得a 2a 4=a 23=9.设等比数列{a n }的公比为q ,由2a 3为3a 2和a 4 的等差中项可得4a 3=3a 2+a 4,即4a 3=3a 3 q +a 3q ,整理得q 2-4q +3=0,由公比 不为1,解得q =3.所以T 8=a 1·a 2·…·a 8=a 81q 28=(a 81q 16 )·q 12=(a 1q 2)8·q 12=a 83· q 12=94×312=320.故选D. 2.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5 +a 8=0,S 9=27,则S 8的值是________. 答案 16 解析 解法一:由S 9=27?9(a 1+a 9) 2=27?a 1+a 9=6?2a 5=6?2a 1+8d =6 且a 5=3.又a 2a 5+a 8=0?2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1) 2d =16. 解法二:同解法一得a 5=3. 又a 2a 5+a 8=0?3a 2+a 8=0?2a 2+2a 5=0?a 2=-3. ∴d =a 5-a 2 3=2,a 1=a 2-d =-5. 故S 8=8a 1+8×(8-1) 2 d =16.

2019高考数学复习专题:集合(含解析)

一、考情分析 集合是高考数学必考内容,一般作为容易题.给定集合来判定集合间的关系、集合的交、并、补运算是考查的主要形式,常与函数的定义域、值域、不等式(方程)的解集相结合,在知识交汇处命题,以选择题为主,多出现在试卷的前3题中. 二、经验分享 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合;如下面几个集合请注意其区别: ①{}220x x x -=;②{}22x y x x =-;③{}22y y x x =-;④(){} 2,2x y y x x =-. (2)二元方程的解集可以用点集形式表示,如二元方程2xy =的整数解集可表示为()()()(){}1,2,2,1,1,2,2,1----. (3)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题. (4)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系. (5)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况. (6)解决以集合为背景的新定义问题,要抓住两点:①紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;②用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质. 三、知识拓展 1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1. 2.A ?B ?A ∩B =A ?A ∪B =B ()()U U A B A B U ?=??=痧 . 3.奇数集:{}{}{} 21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z . 4. 数集运算的封闭性,高考多次考查,基础知识如下:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.自然数集N 对加法运算是封闭的;整数集Z 对加、减、乘法运算是封闭的.有理数集、复数

2019年高考数学理科全国三卷

2019年高考数学理科 全国三卷 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019年普通高等学校招生全国统一考试 理科数学(全国三卷) 一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.已知集合{}1,0,1,2A =-,{} 2|1B x x =≤,则A B =() A. {1,0,1}- B.{0,1} C.{1,1}- D. {0,1,2} 2.若(1)2z i i +=,则z =() A. 1i -- B. 1i -+ C. 1i - D. 1i + 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著,某中学为了解本校学生阅读四大名著的情况,随机调查了100名学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为() A. 0.5 B. 0.6 C. 0.7 D. 0.8 4.24(12)(1)x x ++的展开式中x 3的系数为() A. 12 B. 16 C. 20 D. 24 5.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=() A. 16 B. 8 C. 4 D. 2 6.已知曲线ln x y ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则() A.,1a e b ==- B.,1a e b == C.1,1a e b -== D.1,1a e b -==- 7.函数3 222 x x x y -=+在[6,6]-的图像大致为() A. B. C. D.

2019-2020年高考数学第二轮专题复习数列教案

2019-2020年高考数学第二轮专题复习数列教案 二、高考要求 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 3.了解数学归纳法原理,掌握数学归纳法这一证题方法,掌握“归纳—猜想—证明”这一思想方法. 三、热点分析 1.数列在历年高考中都占有较重要的地位,一般情况下都是一个客观性试题加一个解答题,分值占整个试卷的10%左右.客观性试题主要考查等差、等比数列的概念、性质、通项公式、前n项和公式、极限的四则运算法则、无穷递缩等比数列所有项和等内容,对基本的计算技能要求比较高,解答题大多以考查数列内容为主,并涉及到函数、方程、不等式知识的综合性试题,在解题过程中通常用到等价转化,分类讨论等数学思想方法,是属于中高档难度的题目. 2.有关数列题的命题趋势(1)数列是特殊的函数,而不等式则是深刻认识函数和数列的重要工具,三者的综合求解题是对基础和能力的双重检验,而三者的求证题所显现出的代数推理是近年来高考命题的新热点(2)数列推理题是新出现的命题热点.以往高考常使用主体几何题来考查逻辑推理能力,近两年在数列题中也加强了推理能力的考查。(3)加强了数列与极限的综合考查题 3.熟练掌握、灵活运用等差、等比数列的性质。等差、等比数列的有关性质在解决数列问题时应用非常广泛,且十分灵活,主动发现题目中隐含的相关性质,往往使运算简洁优美.如a2a4+2a3a5+a4a6=25,可以利用等比数列的性质进行转化:a2a4=a32,a4a6=a52,从而有a32+2aa53+a52=25,即(a3+a5)2=25. 4.对客观题,应注意寻求简捷方法解答历年有关数列的客观题,就会发现,除了常规方法外,还可以用更简捷的方法求解.现介绍如下:①借助特殊数列. ②灵活运用等差数列、等比数列的有关性质,可更加准确、快速地解题,这种思路在解客观题时表现得更为突出,很多数列客观题都有灵活、简捷的解法 5.在数列的学习中加强能力训练数列问题对能力要求较高,特别是运算能力、归纳猜想能力、转化能力、逻辑推理能力更为突出.一般来说,考题中选择、填空题解法灵活多变,而解答题更是考查能力的集中体现,尤其近几年高考加强了数列推理能力的考查,应引起我们足够的重视.因此,在平时要加强对能力的培养。 6.这几年的高考通过选择题,填空题来着重对三基进行考查,涉及到的知识主要有:等差(比)数列的性质. 通过解答题着重对观察、归纳、抽象等解决问题的基本方法进行考查,其中涉及到方程、不等式、函数思想方法的应用等,综合性比较强,但难度略有下降. 四、复习建议 1.对基础知识要落实到位,主要是等差(比)数列的定义、通项、前n项和.

2020年高考理科数学《数列》题型归纳与训练及参考答案

2020年高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

(完整)2019-2020年高考数学大题专题练习——圆锥曲线(一).doc

2019-2020 年高考数学大题专题练习——圆锥曲线(一) x 2 y2 2 的直线与 12 1.设 F , F为椭圆的左、右焦点,动点P 的坐标为 ( -1,m),过点 F 4 3 椭圆交于 A, B 两点 . (1)求 F1,F 2的坐标; (2)若直线 PA, PF 2, PB 的斜率之和为 0,求 m 的所有 整数值 . x2 2 2.已知椭圆y 1,P是椭圆的上顶点.过P作斜率为 4 k(k≠0)的直线l 交椭圆于另一点A,设点 A 关于原点的 对称点为 B. (1)求△PAB 面积的最大值; (2)设线段 PB 的中垂线与 y 轴交于点 N,若点 N 在椭圆内 部,求斜率 k 的取值范围 . 2 2 5 x y = 1 a > b > 0 ) 的离心率为,定点 M ( 2,0 ) ,椭圆短轴的端点是 3.已知椭圆 C : 2 + 2 a b ( 3 B1, B2,且MB1 MB 2. (1)求椭圆C的方程; (2)设过点M且斜率不为0 的直线交椭圆C于 A, B 两点,试问 x 轴上是否存在定点P ,使 PM 平分∠APB ?若存在,求出点P 的坐标,若不存在,说明理由.

x2 y2 4.已知椭圆C 的标准方程为 1 ,点 E(0,1) . 16 12 (1 )经过点 E 且倾斜角为3π 的直线 l 与椭圆 C 交于A、B两点,求 | AB | .4 (2 )问是否存在直线p 与椭圆交于两点M 、 N 且 | ME | | NE | ,若存在,求出直线p 斜率 的取值范围;若不存在说明理由. 5.椭圆 C1与 C2的中心在原点,焦点分别在x 轴与y轴上,它们有相同的离心率e= 2 ,并 2 且 C2的短轴为 C1的长轴, C1与 C2的四个焦点构成的四边形面积是2 2 . (1)求椭圆 C1与 C2的方程; (2) 设P是椭圆 C2上非顶点的动点,P 与椭圆C1长轴两个顶点 A , B 的连线 PA , PB 分别与椭圆 C1交于E,F点 . (i)求证:直线 PA , PB 斜率之积为常数; (ii) 直线AF与直线BE的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

2019年高考理科全国1卷数学(含答案解析)

2019年普通高等学校招生全国统一考试 理科数学 本试卷共4页,23小题,满分150分,考试用时120分钟。 注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。 2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。答案不能答在试卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?=( ) A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则( ) A. 2 2 +11()x y += B. 22 (1)1x y -+= C. 22 (1)1x y +-= D. 2 2(+1)1y x += 3.已知0.20.3 2log 0.2,2,0.2a b c ===,则( ) A. a b c << B. a c b << C. c a b << D. b c a << 4. ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体 .若某人满足上述两个黄金分割

2019届高考数学专题12数列求和

培优点十二 数列求和 1.错位相减法 例1:已知{}n a 是等差数列,其前n 项和为n S ,{}n b 是等比数列,且112a b ==,4427a b +=, 4410S b -=. (1)求数列{}n a 与{}n b 的通项公式; (2)记1121n n n n T a b a b a b -=++ +,n *∈N ,求证:12210n n n T a b +=-+. 【答案】(1)31n a n =-,2n n b =;(2)见解析. 【解析】(1)设{}n a 的公差为d ,{}n b 的公比为q , 则3441127327a b a d b q +=?++=,34411104610S b a d b q -=?+-=, 即33 2322786210d q d q ?++=??+-=??,解得:32d q =??=?, 31n a n ∴=-,2n n b =. (2)()()2 31234222n n T n n =-?+-?+ +?,① ()()23+1231234222n n T n n =-?+-?+ +?,② -②①得 ()10223112n n =?---, ∴所证恒等式左边()102231n n =?--,右边()210231102n n n a b n =-+=--+?, 即左边=右边,所以不等式得证. 2.裂项相消法 例2:设数列{}n a ,其前n 项和23n S n =-,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+ . (1)求数列{}n a ,{}n b 的通项公式; (2)若()()21n n n n b c b b = --,求数列{} n c 的前n 项和n T .

高考理科数学《数列》题型归纳与训练

高考理科数学《数列》题型归纳与训练 【题型归纳】 等差数列、等比数列的基本运算 题组一 等差数列基本量的计算 例1 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2?S n =36,则n = A .5 B .6 C .7 D .8 【答案】D 【解析】解法一:由题知()21(1) 2 1n S na d n n n n n n ==+-=-+,S n +2=(n +2)2,由S n +2?S n =36得,(n +2)2?n 2=4n +4=36,所以n =8. 解法二:S n +2?S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.所以选D . 【易错点】对S n +2?S n =36,解析为a n +2,发生错误。 题组二 等比数列基本量的计算 例2 在各项均为正数的等比数列{a n }中,若28641,2a a a a ==+,则a 6的值是________. 【答案】4 【解析】设公比为q (q ≠0),∵a 2=1,则由8642a a a =+得6422q q q =+,即42 20q q --=,解得q 2=2, ∴4 624a a q ==. 【易错点】忘了条件中的正数的等比数列. 【思维点拨】 等差(比)数列基本量的计算是解决等差(比)数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第一问中,属基础题.等差(比)数列基本运算的解题思路: (1)设基本量a 1和公差d (公比q ). (2)列、解方程组:把条件转化为关于a 1和d (q )的方程(组),然后求解,注意整体计算,以减少运算量.

2019年全国一卷高考数学试题分析

2019年高考数学试题整体分析 1.试题突出特色: “突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法 分析问题、解决问题的能力。”2019年高考数学卷一个突出的特点是,试题突出 学科素养导向,注重能力考查,全面覆盖基础知识,增强综合性、应用性,以反映 我国社会主义建设的成果和优秀传统文化的真实情境为载体,贴近生活,联系社会 实际,在数学教育、评价中落实立德树人的根本任务。 2.试题考查目标: (1)素养导向,落实五育方针 2019年高考数学科结合学科特点,在学科考查中体现五育要求,整份试卷 站在落实“五育”方针的高度进行整体设计。理科Ⅰ卷第4题以著名的雕塑 “断臂维纳斯”为例,探讨人体黄金分割之美,将美育教育融入数学教育。文 科Ⅰ 卷第17题以商场服务质量管理为背景设计,体现对服务质量的要求,倡 导高质量的劳动成果。理科Ⅰ卷第(15)题引入了非常普及的篮球运动,以其 中普遍存在的比赛结果的预估和比赛场次的安排提出问题,要求考生应用数学 方法分析、解决体育问题。这些试题在考查学生数学知识的同时,引导学生加 强体育锻炼,体现了对学生的体育教育。(2)突出重点,灵活考查数学本质2019年高考数学试题,突出学科素养导向,将理性思维作为重点目标,将基 础性和创新性作为重点要求,以数学基础知识为载体,重点考查考生的理性思维和 逻辑推理能力。固本强基,夯实发展基础。理科(4)题源于北师大版必修五67页;理科(22)题源于北师大版4-4第53页;理科(16)和华师大附中五月押题卷(14)几乎一模一样。理科(21)题可视为2011清华大学七校联考自主招生考试 题的第15题改编。题稳中有变,助力破解应试教育。主观题在各部分内容的布局 和考查难度上进行动态设计,打破了过去压轴题的惯例。这些改革释放了一个明显 的信号:对重点内容的考查,在整体符合《考试大纲》和《考试说明》要求的前提下,在各部分内容的布局和考查难度上都可以进行调整和改变,这在一定程度上有 助于考查考生灵活应变的能力和主动调整适应的能力,有助于学生全面学习掌握重 点知识和重点内容,同时有助于破解僵化的应试教育。 (3)情境真实,综合考查应用能力数学试题注重考查数学应用素养,体现综合性 和应用性的考查要求。试卷设置的情境真实、贴近生活,同时具有深厚的文化底蕴,体现数学原理和方法在解决问题中的价值和作用。 理科Ⅰ卷第(6)题以我国古代典籍《周易》中描述事物变化的“卦”为背景设置 了排列组合试题,体现了中国古代的哲学思想。理科第(21)题情境结合社会现实,贴近生活,反映了数学应用的广阔领域,体现了数学的应用价值,有利于在中学数 学教育中激发学生学习数学的热情,提高对数学价值的认识,提升数学素养,对中 学的素质教育有很好的导向和促进作用。

2019年高考试题汇编理科数学--数列

(2019全国1理)9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则( ) A.25n a n =- B.310n a n =- C.228n S n n =- D.2 122 n S n n =- 答案: A 解析: 依题意有415146045 S a d a a d =+=??=+=?,可得13 2a d =-??=?,25n a n =-,24n S n n =-. (2019全国1理)14.记n S 为等比数列{}n a 的前n 项和,若113 a =,2 46a a =,则5S = . 答案: 5S = 121 3 解答: ∵113 a = ,2 46a a = 设等比数列公比为q ∴32 5 11()a q a q = ∴3q = ∴5S = 121 3 2019全国2理)19. 已知数列{}n a 和{}n b 满足11=a ,01=b ,4341+-=+n n n b a a ,4341--=+n n n a b b . (1)证明: {}n n b a +是等比数列,{}n n b a -是等差数列; (2)求{}n a 和{}n b 的通项公式. 答案: (1)见解析 (2)21)21(-+=n a n n ,2 1)21(+-=n b n n . 解析: (1)将4341+-=+n n n b a a ,4341--=+n n n a b b 相加可得n n n n n n b a b a b a --+=+++334411, 整理可得)(2111n n n n b a b a += +++,又111=+b a ,故{}n n b a +是首项为1,公比为2 1 的等比数列. 将4341+-=+n n n b a a ,4341--=+n n n a b b 作差可得8334411+-+-=-++n n n n n n b a b a b a , 整理可得211+-=-++n n n n b a b a ,又111=-b a ,故{}n n b a -是首项为1,公差为2的等差数列. (2)由{}n n b a +是首项为1,公比为 21的等比数列可得1)2 1 (-=+n n n b a ①;

2014年高考数学真题分类汇编理科-数列(理科)

1.(2014 北京理 5)设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.(2014 大纲理 10)等比数列{}n a 中,4525a a ==,,则数列{}lg n a 的前8项和等于( ). A .6 B .5 C .4 D .3 3.(2014 福建理 3)等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ). A.8 B.10 C.12 D.14 4.(2014 辽宁理 8)设等差数列{}n a 的公差为d ,若数列{}12 n a a 为递减数列,则( ). A .0d < B .0d > C .10a d < D .10a d > 5.(2014 重庆理 2)对任意等比数列{}n a ,下列说法一定正确的是( ). A. 139,,a a a 成等比数列 B. 236,,a a a 成等比数列 C. 248,,a a a 成等比数列 D. 369,,a a a 成等比数列 二、 填空题 1.(2014 安徽理 12)数列{}n a 是等差数列,若11a +,33a +,55a +构成公比为q 的等比数列,则q = . 2.(2014 北京理 12)若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时,{}n a 的前n 项和最大. 3.(2014 广东理 13)若等比数列{}n a 的各项均为正数,且5 10119122e a a a a +=, 则1220ln ln ln a a a +++= . 4.(2014 江苏理 7)在各项均为正数的等比数列{}n a 中,21a =,8642a a a =+,则6a 的值是 . 5.(2014 天津理 11)设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和.若 124,,S S S 成等比数列,则1a 的值为__________.

2019高考数学大题必考题型及解题技巧分析

快戳!数学6大必考题型全总结!掌握好轻松考到140+! 高考数学大题必考题型及解题技巧分析 1 排列组合篇 1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2. 理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3. 理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。 4. 掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5. 了解随机事件的发生存在着规律性和随机事件概率的意义。 6. 了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。 7. 了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。 8. 会计算事件在n次独立重复试验中恰好发生k次的概率。 2 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立体几何中的计算型问题,而解答题着重考查立

体几何中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2. 判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点;

2019年高考理科数学分类汇编:数列(解析版)

题08 数列 1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =- B . 310n a n =- C .2 28n S n n =- D .2 122 n S n n = - 【答案】A 【解析】由题知,415 144302 45d S a a a d ? =+??=???=+=?,解得132a d =-??=?,∴25n a n =-,2 4n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8 C .4 D .2 【答案】C 【解析】设正数的等比数列{a n }的公比为q ,则23111142 111 15 34a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2 +b ,n *∈N ,则 A . 当101 ,102 b a = > B . 当101 ,104 b a = > C . 当102,10b a =-> D . 当104,10b a =-> 【答案】A 【解析】①当b =0时,取a =0,则0,n a n * =∈N .

2019年高考数学试题分类汇编——集合

2019年高考数学试题分类汇编 集合部分(共12道试题) 试题编号2019001 (2019北京文1)(共20题的第1题 8道选择题第1题 150分占5分) 已知集合{}12A x x =-<<,{}1B x x =>,则A B =U ( ) A.()1,1- B.()1,2 C.()1,-+∞ D.()1,+∞ 答案:C 解:因为{}12A x x =-<<,{}1B x x =>,所以{}1A B x x =>-U , 故选C 。 试题编号2019002 (2019全国卷Ⅱ文1)(共23题的第1题 12道选择题第1题 150分占5分) 已知集合{}=1A x x >-,{}2B x x =<,则A B =I ( ) A.()1,-+∞ B.(),2-∞ C.()1,2- D.? 答案:C 解:{}{}{}=1212A B x x x x x x >-<=-<

2019年高考真题理科数学(全国II卷)

AB=(2,3),AC=(3,t),|BC|=1,则AB?BC=( ) M233 3

7.8.9.10.11. 12.13.设α,β为两个平面,则α∥β的充要条件是( ) α内有无数条直线与β平行 α内有两条相交直线与β平行α,β平行于同一条直线α,β垂直于同一平面 若抛物线y =2px(p>0)的焦点是椭圆x 23p +y 2p =1的一个焦点,则p=( ) 2348下列函数中,以π2为周期且在区间(π4,π2 )单调递增的是( )f(x)=|cos2x| f(x)=|sin2x|f(x)=cos|x|f(x)=sin|x|已知α∈(0,π2),2sin2α=cos2α+1,则sinα=( )15553325 5设F为双曲线C:x 2a 2-y 2b 2 =1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x +y =a 交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )2325 设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-89 ,则m的取值范围是( )(-∞,94](-∞,73](-∞,52](-∞,83 ]我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 . A. B. C. D. 2A. B. C. D. A. B. C. D. A. B. C. D. 222A. B. C. D. A. B. C. D.

2019年高考专题:数列试题及答案

2019年高考专题:数列 1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8 C .4 D .2 【解析】设正数的等比数列{a n }的公比为q ,则23111142 1111534a a q a q a q a q a q a ?+++=?=+?, 解得11,2 a q =??=?,2 314a a q ∴==,故选C . 2.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若133 14 a S ==,,则S 4=___________. 【解析】设等比数列的公比为q ,由已知22 3111314S a a q a q q q =++=++= ,即2 104 q q ++=. 解得12q =-,所以4 4 1411()(1)521181()2 a q S q -- -= ==---. 3.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S = ___________. 【解析】设等差数列{}n a 的公差为d ,根据题意可得 317 125,613a a d a a d =+=??=+=?得11,2a d =??=? 101 109109 101012100.22S a d ??∴=+=?+?= 4.【2019年高考江苏卷】已知数列* {}()n a n ∈N 是等差数列, n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【解析】由题意可得:()()()25811191470 98 9272a a a a d a d a d S a d ?+=++++=? ??=+=?? , 解得:152 a d =-??=?,则8187 840282162S a d ?=+=-+?=.

2020高考数学理科数列训练题

08高考数学理科数列训练题 1.某数列{}n a 的前四项为 ①1(1)2n n a ??=+-?? ② n a = ③0 n a =?? )(n n 为奇数为偶数)( 其中可作为{}n a 的通项公式的是() A .① B .①② C .②③ D .①②③ 2.设函数()f x 满足()()212 f n n f n ++= ()n N *∈,且()12f =,则()20f =() A .95 B .97 C .105 D .192 3.已知数列中{}n a ,11a =,()111n n n n a a a --=+- ()2,n n N *≥∈,则35a a 的值是() A .1516 B .158 C .34 D .38 4.已知数列{}n a 的首项11a =,且121n n a a -=+ (2)n ≥,则5a 为() A .7 B .15 C .30 D .31 5.已知数列{}n a 是等差数列,且31150a a +=,又413a =,则2a 等于( ) A .1 B .4 C .5 D .6 6.若lg a 、lg b 、lg c 成等差数列,则( ) A .2a c b += B .()1lg lg 2 b a b =+ C .a 、 b 、 c 成等差数列 D .a 、 b 、 c 成等比数列 7.38,524-,748,980- … 一个通项公式是____ 8.已知{}n a 是递增数列,且对任意n N *∈都有2n a n n λ=+恒成立,则实数λ的取值范 围是____ 9.设等差数列{}n a 的公差为2-,且1479750a a a a +++???+=,则36999a a a a +++???+=______. 10.等比数列中{}n a ,公比1q ≠±,200100S =,则 4020 1S q =+______.

相关主题
文本预览
相关文档 最新文档