当前位置:文档之家› 高中数学函数与导数(练习一)

高中数学函数与导数(练习一)

高中数学函数与导数(练习一)
高中数学函数与导数(练习一)

高中数学函数与导数(练习一)

一.选择题(共10小题)

1.已知函数f(x)=的定义域是R,则实数a的取值范围是()

A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤

2.已知a<,则化简的结果是()

A.B.﹣C.D.﹣

3.函数f(x)=在区间(﹣2,+∞)上单调递增,则实数a的取值范围是()A.(0,)B.(,+∞)C.(﹣2,+∞)D.(﹣∞,﹣1)∪(1,+∞)

4.函数y=cos(﹣2x)的单调递增区间是()

A.[kπ﹣,kπ+](k∈Z)B.[kπ﹣,kπ)(k∈Z)

C.[kπ+,kπ+](k∈Z)D.[kπ+,kπ+π](k∈Z)

5.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大关系是()

A.f(2.5)<f(1)<f(3.5)B.f(2.5)>f(1)>f(3.5)

C.f(3.5)>f(2.5)>f(1)D.f(1)>f(3.5)>f(2.5)

6.二次函数f(x)的二次项系数为正数,且对任意项x∈R都有f(x)=f(4﹣x)成立,若f(1﹣2x2)<f(1+2x﹣x2),则x的取值范围是()

A.x>2 B.x<﹣2或0<x<2 C.﹣2<x<0 D.x<﹣2或x>0

7.函数f(x)=x3﹣3x2+3x的极值点的个数是()

A.0 B.1 C.2 D.3

8.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f(4)=4,则f(2012)=()

A.0 B.﹣4 C.﹣8 D.﹣16

9.给出下列结论:

①当a<0时,=a3;②=|a|(n>1,n∈N ,n为偶数);

④若2x=16,3y=,则x+y=7.其中正确的是()

A.①②B.②③C.③④D.②④

10.设点P是曲线上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是()

A.B.[0,)∪[,π)C.D.

二.填空题(共13小题)

11.函数的定义域是.

12.计算的结果是.

13.幂函数在(0,+∞)为增函数,则m的值为.

14.的展开式中的常数项为a,则直线y=ax与曲线y=x2围成图形的面积为.15.定义域为R的可导函数f(x)的导函数f'(x),且满足f(x)>f'(x),f(0)=1,则不等

式的解集为.

三.解答题(共4小题)

16.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出服药后y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?

17.已知函数f(x)=﹣2ax﹣3,g(a)=+5a﹣7.

(1)当a=1时,求函数f(x)的单调递增区间;

(2)若函数f(x)在[﹣2,0]上不单调,且x∈[﹣2,0]时,不等式f(x)<g(a)恒成立,求实数a的取值范围.

18.已知函数f(x)=e x﹣ln(x+m)

(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;

(Ⅱ)当m≤2时,证明f(x)>0.

19.设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.

(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;

(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

高中数学函数与导数(练习一)

参考答案与试题解析

1.已知函数f(x)=的定义域是R,则实数a的取值范围是()

A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤

【分析】由函数f(x)=的定义域是R,表示函数的分母恒不为零,即方程ax2+ax﹣3=0无解,根据一元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.

【解答】解:由a=0或可得﹣12<a≤0,故选B.

2.已知a<,则化简的结果是()

A.B.﹣C.D.﹣

【分析】由a<,我们可得4a﹣1<0,我们可以根据根式的运算性质,将原式化简为

=,然后根据根式的性质,易得到结论.

【解答】解:∵a<

∴====.故选C.

【点评】本题考查的知识点是根式的化简运算,本题中易忽略4a﹣1<0,而错选A.

3.函数f(x)=在区间(﹣2,+∞)上单调递增,则实数a的取值范围是()A.(0,)B.(,+∞)C.(﹣2,+∞)D.(﹣∞,﹣1)∪(1,+∞)

【分析】把原函数用分离常数法分开,在利用复合函数的单调性即可.

【解答】解:∵当a=0时,f(x)=在区间(﹣2,+∞)上单调递减,故a=0舍去,

∴a≠0,此时f(x)===a+,

又因为y=在区间(﹣2,+∞)上单调递减,而函数f(x)=在区间(﹣2,+∞)上单调递增,∴须有1﹣2a<0,即a>,故选B.

4.函数y=cos(﹣2x)的单调递增区间是()

A.[kπ﹣,kπ+](k∈Z)B.[kπ﹣,kπ)(k∈Z)

C.[kπ+,kπ+](k∈Z)D.[kπ+,kπ+π](k∈Z)

【分析】利用诱导公式可得函数y=,令t=sin2x,则y=,本题即求在满

足t<0的条件下函数t的增区间,故有2kπ﹣≤2x<2kπ,k∈z,解得x的范围,可得函数y 的增区间.

【解答】解:∵函数y=cos(﹣2x)=,令t=sin2x,则y=,

本题即求在满足t<0的条件下函数t的增区间,

∴2kπ﹣≤2x<2kπ,k∈z,解得kπ﹣≤x<kπ,故函数y的增区间为[kπ﹣,kπ)(k∈Z),故选:B.

5.函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大关系是()

A.f(2.5)<f(1)<f(3.5)B.f(2.5)>f(1)>f(3.5)

C.f(3.5)>f(2.5)>f(1)D.f(1)>f(3.5)>f(2.5)

【分析】根据函数y=f(x+2)是偶函数,知x=2是其对称轴,又函数y=f(x)在(0,2)上是增函数,可知其在(2,4)上为减函数,

而2.5,3.5∈(2,4),1?(2,4),而f(1)=f(3),根据函数的单调性可得结果.

【解答】解:因为函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,

所以x=2是对称轴,在(2,4)上为减函数,

f(2.5)>f(1)=f(3)>f(3.5).故选B.

【点评】考查函数的奇偶性和单调性,并且根据函数的单调性比较函数值的大小,属基础题.

6.二次函数f(x)的二次项系数为正数,且对任意项x∈R都有f(x)=f(4﹣x)成立,若f(1﹣2x2)<f(1+2x﹣x2),则x的取值范围是()

A.x>2 B.x<﹣2或0<x<2 C.﹣2<x<0 D.x<﹣2或x>0

【分析】由条件“对任意项x∈R都有f(x)=f(4﹣x)”可得函数f(x)的对称轴为x=2,得到函数f(x)在(﹣∞,2]上是单调减函数

,所以利用二次函数的单调性建立不等式关系,解之即可.

【解答】解:∵对任意项x∈R都有f(x)=f(4﹣x)

而函数的开口向上,则函数f(x)在(﹣∞,2]上是单调减函数

∵1﹣2x2≤1,1+2x﹣x2=﹣(x﹣1)2+2≤2,f(1﹣2x2)<f(1+2x﹣x2)

∴1﹣2x2>1+2x﹣x2,解得﹣2<x<0,

故选C.

7.函数f(x)=x3﹣3x2+3x的极值点的个数是()

A.0 B.1 C.2 D.3

【分析】找出其导函数看其函数值与0的关系,即可得结论.

【解答】解:由题知f(x)的导函数

f'(x)=3x2﹣6x+3=3(x﹣1)2的值恒大于或等于零,

所以函数f(x)单调递增,

故选A.

【点评】本题考查利用导熟研究函数的极值.可导函数的极值点一定是导数为0的根,但导数为0的点不一定是极值点.本题导数为0就有根,但在根的两边导函数值同号,故没有极值点.8.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f(4)=4,则f(2012)=()

A.0 B.﹣4 C.﹣8 D.﹣16

【分析】先利用函数y=f(x﹣1)的图象关于点(1,0)对称,得到函数y=f(x)是奇函数,然后求出f(3)=0,最后利用函数的周期性求f(2012)的值.

【解答】解:因为函数y=f(x﹣1)的图象关于点(1,0)对称,所以函数y=f(x)的图象关于点(0,0)对称,

即函数y=f(x)是奇函数,

令x=﹣3得,f(﹣3+6)+f(﹣3)=2f(3),即f(3)﹣f(3)=2f(3),解得f(3)=0.

所以f(x+6)+f(x)=2f(3)=0,即f(x+6)=﹣f(x),

所以f(x+12)=f(x),即函数的周期是12.

所以f(2012)=f(12×168﹣4)=f(﹣4)=﹣f(4)=﹣4.

故选B.

9.给出下列结论:

①当a<0时,=a3;

②=|a|(n>1,n∈N ,n为偶数);

④若2x=16,3y=,则x+y=7.

其中正确的是()A.①②B.②③C.③④D.②④

【分析】根据a的取值判定①②的正误,求出定义域判定③,求出x的值判定④,最后确定结果.

【解答】解:∵a<0时,>0,a3<0,∴①错;

②显然正确;

解,得x≥2且x≠,∴③正确;

∵2x=16,∴x=4,∵3y==3﹣3,∴y=﹣3,

∴x+y=4+(﹣3)=1,∴④错.故②③正确.

故选B

【点评】本题考查有理数指数幂的运算性质,函数的定义域及其求法,是基础题.

10.设点P是曲线上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是()

A.B.[0,)∪[,π)C.D.

【分析】先求函数的导数的范围,即曲线斜率的取值范围,从而求出切线的倾斜角的范围.【解答】解:y′=3x2﹣≥﹣,tanα≥﹣,

∴α∈[0,)∪[,π),

故答案选B.

二.填空题(共13小题)

11.函数的定义域是(﹣1,3).

【分析】根据对数函数定义域是(0,+∞)得到关于x的不等关系,求解即可.

【解答】解:因为对数函数定义域是(0,+∞),

所以3+2x﹣x2>0,

所以﹣1<x<3,因此函数的定义域为(﹣1,3),

故答案为(﹣1,3).

12.计算的结果是2.

【解答】解:运算=1﹣++lg2+lg5=1﹣0.4+0.4+1=2.

故答案为2.

【点评】本题考查了指数幂的运算法则、对数的运算法则和换底公式等基础知识与基本方法,属于基础题.

13.幂函数在(0,+∞)为增函数,则m的值为1.

【分析】根据幂函数的系数一定为1可先确定参数m的值,再根据单调性进行排除,可得答案.【解答】解:∵函数是幂函数.

∴可得m2﹣4m+4=1,解得m=1或3.

当m=1时,函数为y=x3在区间(0,+∞)上单调递增,满足题意,

当m=3时,函数为y=x﹣1在(0,+∞)上是减函数,不满足条件.

故答案为:1.

【点评】本题主要考查幂函数的表达形式以及幂函数的单调性,属于基础题.

14.的展开式中的常数项为a,则直线y=ax与曲线y=x2围成图形的面积为.【分析】先根据二项式定理求出常数a,然后利用积分的几何意义求区域面积.

【解答】解:=,则(1+x3)3的展开式的通项公式为,

当k=1时,展开式的常数项a=,即a=3,此时直线y=ax=3x,

由得x2=3x,解得x=0或x=3,

则由积分公式得=()|=,故答案为:;

15.定义域为R的可导函数f(x)的导函数f'(x),且满足f(x)>f'(x),f(0)=1,则不等

式的解集为(0,+∞).

【分析】根据条件构造函数F(x)=,求函数的导数,利用函数的单调性即可得到结论.【解答】解:设F(x)=,

则F′(x)=,

∵f(0)=1,∴不等式<1等价为F(x)<F(0),

解得x>0,故不等式的解集为(0,+∞),故答案为:(0,+∞).

三.解答题(共7小题)

16.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出服药后y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗疾病有效.求服药一次治疗疾病有效的时间?

【分析】(1)由函数图象我们不难得到这是一个分段函数,第一段是正比例函数的一段,第二段是指数型函数的一段,由于两段函数均过M(1,4),故我们可将M点代入函数的解析式,求出参数值后,即可得到函数的解析式.

(2)由(1)的结论我们将函数值0.25代入函数解析式,构造不等式,可以求出每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间.

【解答】解:(1)由题意,当0≤t≤1时,函数图象是一个线段,由于过原点与点(1,4),故其解析式为y=4t,0≤t≤1;

当t≥1时,函数的解析式为,

此时M(1,4)在曲线上,将此点的坐标代入函数解析式得,解得a=3

故函数的解析式为,t≥1.

所以.

(2)由题意,令f(t)≥0.25,即,

解得,∴.

∴服药一次治疗疾病有效的时间为个小时.

【点评】已知函数图象求函数的解析式,是一种常见的题型,关键是要知道函数的类型,利用待定系数法设出函数的解析式,然后将函数图象上的点的坐标代入求出参数的值,即可得到要求函数的解析式.

17.已知函数f(x)=﹣2ax﹣3,g(a)=+5a﹣7.

(1)当a=1时,求函数f(x)的单调递增区间;

(2)若函数f(x)在[﹣2,0]上不单调,且x∈[﹣2,0]时,不等式f(x)<g(a)恒成立,求实数a的取值范围.

【分析】(1)求导函数,利用导数大于0,可得函数f(x)的单调递增区间;

(2)利用f(x)在[﹣2,0]上不单调,确定0<a<2,x∈[﹣2,0]时,不等式f(x)<g(a)恒成立,等价于f(﹣a)<g(a),从而可求实数a的取值范围.

【解答】解:(1)当a=1时,f(x)=

∴f′(x)=x2﹣x﹣2=(x﹣2)(x+1)

令f′(x)>0,可得x<﹣1或x>2

∴函数f(x)的单调递增区间是(﹣∞,﹣1),(2,+∞);

(2)求导函数,可得f′(x)=x2+(a﹣2)x﹣2a=(x+a)(x﹣2)

∵f(x)在[﹣2,0]上不单调,

∴﹣2<﹣a<0

∴0<a<2

∵x∈[﹣2,0]时,不等式f(x)<g(a)恒成立,

∴f(﹣a)<g(a)

∴<+5a﹣7

∴a2﹣5a+4<0∴1<a<4.

∴1<a<2.

【点评】本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

18.已知函数f(x)=e x﹣ln(x+m)

(Ⅱ)当m≤2时,证明f(x)>0.

【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;

(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).

∵.

设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.

所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;

(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.

当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).

当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,

从而当x=x0时,f(x)取得最小值.

由f′(x0)=0,得,ln(x0+2)=﹣x0.

故f(x)≥=>0.

综上,当m≤2时,f(x)>0.

【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.

19.设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.

(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值

(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.【分析】(1)求导数,利用f(x)在(1,+∞)上是单调减函数,转化为﹣a≤0在(1,+∞)上恒成立,利用g(x)在(1,+∞)上有最小值,结合导数知识,即可求得结论;

(2)先确定a的范围,再分类讨论,确定f(x)的单调性,从而可得f(x)的零点个数.

【解答】解:(1)求导数可得f′(x)=﹣a

∵f(x)在(1,+∞)上是单调减函数,∴﹣a≤0在(1,+∞)上恒成立,

∴a≥,x∈(1,+∞).

∴a≥1.

令g′(x)=e x﹣a=0,得x=lna.当x<lna时,g′(x)<0;当x>lna时,g′(x)>0.

又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.

故a的取值范围为:a>e.

(2)当a≤0时,g(x)必为单调函数;当a>0时,令g′(x)=e x﹣a>0,解得a<e x,即x>lna,

因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0<.结合上述

两种情况,有.

①当a=0时,由f(1)=0以及f′(x)=>0,得f(x)存在唯一的零点;

②当a<0时,由于f(e a)=a﹣ae a=a(1﹣e a)<0,f(1)=﹣a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.

另外,当x>0时,f′(x)=﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.

③当0<a≤时,令f′(x)=﹣a=0,解得x=.当0<x<时,f′(x)>0,当x>时,f′(x)<0,

所以,x=是f(x)的最大值点,且最大值为f()=﹣lna﹣1.

(i)当﹣lna﹣1=0,即a=时,f(x)有一个零点x=e;

(ii)当﹣lna﹣1>0,即0<a<时,f(x)有两个零点;

实际上,对于0<a<,由于f()=﹣1﹣<0,f()>0,且函数f(x)在[]上的

图象不间断,所以f(x)在()上存在零点.

另外,当0<x<时,f′(x)=﹣a>0,故f(x)在(0,)上时单调增函数,所以f(x)在(0,)上只有一个零点.

下面考虑f(x)在(,+∞)上的情况,先证明f()=a()<0.

为此,我们要证明:当x>e时,e x>x2.设h(x)=e x﹣x2,则h′(x)=e x﹣2x,再设l(x)=h′(x)=e x﹣2x,则l′(x)=e x﹣2.

当x>1时,l′(x)=e x﹣2>e﹣2>0,所以l(x)=h′(x)在(1,+∞)上时单调增函数;

故当x>2时,h′(x)=e x﹣2x>h′(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0,即当x>e时,e x>x2

当0<a<,即>e时,f()==a()<0,又f()>0,且函数f(x)在

[,]上的图象不间断,所以f(x)在(,)上存在零点.

又当x>时,f′(x)=﹣a<0,故f(x)在(,+∞)上是单调减函数,所以f(x)在(,+∞)上只有一个零点.

综合(i)(ii)(iii),当a≤0或a=时,f(x)的零点个数为1,当0<a<时,f(x)的零点个数为2.

【点评】此题考查的是可导函数的单调性与其导数的关系,考查分类讨论的数学思想,考查学生分析解决问题的能力,难度较大.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高中数学(函数和导数)综合练习含解析

高中数学(函数和导数)综合练习含解析 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知函数2()ln ()f x x ax a x a R =--∈.3253()422 g x x x x =-+-+ (1)当1a =时,求证:()12,1,x x ?∈+∞,均有12()()f x g x ≥ (2)当[)1,x ∈+∞时,()0f x ≥恒成立,求a 的取值范围. 2.已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'x x f x f ,若)1(f a =,)2(2--=f b , )21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c << 3.函数3()3f x x ax a =-+在()0,2内有最小值,则实数a 的取值范围是( ) A .[)0,4 B .()0,1 C .()0,4 D .()4,4- 4.在函数()y f x =的图象上有点列(),n n x y ,若数列{}n x 是等差数列,数列{}n y 是等比数列,则函数()y f x =的解析式可能为( ) A .()21f x x =+ B .()2 4f x x = C .()3log f x x = D .()34x f x ??= ??? 5.设:x p y c =是R 上的单调递减函数;q :函数()() 2lg 221g x cx x =++的值域为R .如果“p 且q ”为假命题,“p 或q ”为真命题,则正实数c 的取值范围是( ) A .1,12?? ??? B .1,2??+∞ ??? C .[)10,1,2??+∞ ??? D .10,2?? ??? 6.如果函数y ||2x =-的图像与曲线22:C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围 是( ) A .{2}∪(4,)+∞ B .(2,)+∞ C .{2,4} D .(4,)+∞

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ) 4.函数)(x f y =在一点的导数值为0是函数)( x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞Y B .]3,3[- A x D C x B

高中数学函数与导数综合复习

高二数学函数与导数综合复习 一、知识梳理: 1.基本初等函数的导数公式和导数的四则运算法则: 常用函数导数公式:='x ; =')(2 x ;=')(3 x ;=')1 (x ; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ; =')(x a ; =')(x e ;=')(log x a ;=')(ln x ; 导数运算法则:(1)/ [()()]f x g x ±= ;(2))]'()([x g x f ?= ; (3)/ ()[ ]() f x g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________; (2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间 4. 利用导数求函数的最值步骤: ⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值. 二.巩固练习: 1.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时 速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒 2. 在0000()() ()lim x f x x f x f x x ?→+?-'=?中,x ?不可能 ( ) A .大于0 B .小于0 C .等于0 D .大于0或小于0 3. 已知曲线3 2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( ) A .2 B .4 C .6+6x ?+2(x ?)2 D .6 4. 设)(x f y =存在导函数,且满足12) 21()1(lim 0 -=??--→?x x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线 斜率为( ) A .2 B .-1 C .1 D .-2

高中数学 多项式函数的导数素材

多项式函数的导数 教学目的:会用导数的运算法则求简单多项式函数的导数 教学重点:导数运算法则的应用 教学难点:多项式函数的求导 一、复习引入 1、已知函数2)(x x f =,由定义求)4()(/ /f x f ,并求 2、根据导数的定义求下列函数的导数: (1)常数函数C y = (2)函数)(*N n x y n ∈= 二、新课讲授 1、两个常用函数的导数: 2、导数的运算法则: 如果函数)()(x g x f 、有导数,那么 也就是说,两个函数的和或差的导数,等于这两个函数的导数的和或差;常数与函数的积的导数,等于常数乘函数的导数. 例1:求下列函数的导数: (1)37x y = (2)43x y -= (3)3 534x x y += (4))2)(1(2-+=x x y (5)b a b ax x f 、()()(2+=为常数 )

例2:已知曲线331x y =上一点)3 82(,P ,求: (1)过点P 的切线的斜率; (2)过点P 的切线方程. 三、课堂小结:多项式函数求导法则的应用 四、课堂练习:1、求下列函数的导数: (1)28x y = (2)12-=x y (3)x x y +=2 2 (4)x x y 433-= (5))23)(12(+-=x x y (6))4(32-=x x y 2、已知曲线24x x y -=上有两点A (4,0),B (2,4),求: (1)割线AB 的斜率AB k ;(2)过点A 处的切线的斜率AT k ;(3)点A 处的切线的方程. 3、求曲线2432+-=x x y 在点M (2,6)处的切线方程. 五、课堂作业 1、求下列函数的导数: (1)1452+-=x x y (2)7352++-=x x y (3)101372-+=x x y (4)333x x y -+= (5)453223-+-=x x x y (6))3)(2()(x x x f -+= (7)1040233)(34-+-=x x x x f (8)x x x f +-=2)2()( (9))3)(12()(23x x x x f +-= (10)x x y 4)12(32-+= 2、求曲线32x x y -=在1-=x 处的切线的斜率。 3、求抛物线241x y = 在2=x 处及2-=x 处的切线的方程。 4、求曲线1323+-=x x y 在点P (2,-3)处的切线的方程。

高二数学 几种常见函数的导数

高二数学 几种常见函数的导数 一、教学目标:熟记公式(C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=??? ??.x x 21 )'(= 二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数. 三、教学过程: (一)公式1:(C )'=0 (C 为常数). 证明:y =f (x )=C , Δy =f (x +Δx )-f (x )=C -C =0, ,0=??x y .0lim ')('0=??==∴→?x y C x f x 也就是说,常数函数的导数等于0. 公式2: 函数x x f y ==)(的导数 证明:(略) 公式3: 函数2)(x x f y ==的导数 公式4: 函数x x f y 1)(==的导数 公式5: 函数x x f y ==)(的导数 (二)举例分析 例1. 求下列函数的导数. ⑴3x ⑵21x ⑶x 解:⑴=')(3x 133-x 23x = ⑵='?? ? ??21x )(2'-x 32--=x 32x -= ⑶=')(x )(2 1'x 12121-=x 2121-=x .21x = 练习

求下列函数的导数: ⑴ y =x 5; ⑵ y =x 6; (3);13x y = (4).3x y = (5)x x y 2= 例2.求曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形的面积。 例3.已知曲线2x y =上有两点A (1,1),B (2,2)。 求:(1)割线AB 的斜率; (2)在[1,1+△x ]内的平均变化率; (3)点A 处的切线的斜率; (4)点A 处的切线方程 例4.求抛物线y =x 2上的点到直线x -y -2=0 的最短距离. (三)课堂小结 几种常见函数的导数公式 (C )'=0 (C 为常数), (x )'=1, ( x 2 )'=2x , 2'11x x -=?? ? ??.x x 21)'(= (四)课后作业 《习案》作业四

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高中数学题型归纳大全函数与导数题专题练习二

高中数学题型归纳大全函数与导数题专题练习二 9.已知函数f(x)=x(e2x﹣a). (1)若y=2x是曲线y=f(x)的切线,求a的值; (2)若f(x)≥1+x+lnx,求a的取值范围. 10.已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2. (Ⅰ)求a,b,c,d的值; (Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围. 11.已知函数f(x)=alnx x+1 +b x,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3 =0. (Ⅰ)求a、b的值; (Ⅱ)证明:当x>0,且x≠1时,f(x)>lnx x?1.

12.已知函数f(x)=(a ?1 x )lnx (a ∈R ). (1)若曲线y =f (x )在点(1,f (1))处的切线方程为x +y ﹣1=0,求a 的值; (2)若f (x )的导函数f '(x )存在两个不相等的零点,求实数a 的取值范围; (3)当a =2时,是否存在整数λ,使得关于x 的不等式f (x )≥λ恒成立?若存在,求出λ的最大值;若不存在,说明理由. 13.已知函数f (x )=4lnx ﹣ax +a+3 x (a ≥0) (Ⅰ)讨论f (x )的单调性; (Ⅱ)当a ≥1时,设g (x )=2e x ﹣4x +2a ,若存在x 1,x 2∈[1 2,2],使f (x 1)>g (x 2), 求实数a 的取值范围.(e 为自然对数的底数,e =2.71828…) 14.已知函数f (x )=a x +x 2﹣xlna (a >0且a ≠1) (1)求函数f (x )在点(0,f (0))处的切线方程;

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

高中数学函数与导数练习题

1、讨论函数在内的单调性 2、作出函数22||3y x x =--的图像,指出单调区间和单调性 3、求函数[]()251x f x x = -在区间,的最大值和最小值 4 、使函数y = 的最小值是 2的实数a 共有_______个。 5、已知函数()f x 的定义域为R ,且对m 、n R ∈,恒有()()()1f m n f m f n +=+-,且1()02f -=,当12 x >-时,()0f x > (1)求证:()f x 是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证. 6、已知()f x 是定义在[1,1]-上的增函数,且(1)(23)f x f x -<-,求x 的取值范围。 四、强化训练 1、已知()f x 是定义在R 上的增函数,对x R ∈有()0f x >,且(5)1f =,设1()()()F x f x f x =+,讨论()F x 的单调性,并证明你的结论。 2、设函数2 ()22f x x x =-+(其中[,1]x t t ∈+,t R ∈)的最小值为()g t ,求()g t 的表达式 3、定义域在(0,)+∞上的函数()f x 满足:(1)(2)1f =;(2)()()()f xy f x f y =+; (3)当x y >时,有()()f x f y >,若()(3)2f x f x +-≤,求x 的取值范围。 4、已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,a b R ∈, 都满足()()()f ab af b bf a =+ (1)求(0)f ,(1)f 的值;(2)判断()f x 的奇偶性,并加以证明 223f(x)x ax =-+(2,2)-

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

相关主题
文本预览
相关文档 最新文档