当前位置:文档之家› 短路保护和负载识别电路小结

短路保护和负载识别电路小结

短路保护和负载识别电路小结
短路保护和负载识别电路小结

短路保护和负载识别电路小结

-----PYS

短路保护和负载识别其本质其实是一样的,都是对电流的检测控制,其区别在于负载识别检测的是小电流,而短路保护的则是大电流。首先,对于电流的检测电路,首先是采样,一般有两种,一种是通过串联小电阻(一般是0.1欧)把电流转换成电压,然后再用放大器放大电压,如果电压过小,或者电路对电压的精度要求很高,可以采用仪表放大器,如果电压有可能会很高,就必须在放大前有一个限幅电路。经放大的的电压可以被AD采样让CPU进行数字信号处理,也可以直接进一个比较器,设定好阈值电压。另外一种是采用电流互感器检测电流,处理方法同电阻采样相同。

1.一个经典的负载识别电路

该电路由稳压二极管产生5.1V电压供运放工作,场效应管与电阻组成恒流源,运放和晶体三极管构成电压跟随器,三极管的作用是进行电流放大。

2.短路保护电路

短路保护可分为自锁式和自动恢复式,自锁式是指电路一旦被判为短路后,电路就会自动关闭,不再启动,除非再次上电,而自动回复式就算电路被判为短路,只要在一段时间内,短路故障被解决了,电路就会自动恢复到正常工作状态。其中自锁式保护可以用比较器的迟滞比较方式实现,后面会讲到。

短路保护电路要注意的是,一定要避免短路保护影响整个系统的启动,设计前一定要设定短路保护电路开始启动延时电路,防止系统一上电启动就被误判为短路,特别是设计自锁短路保护电路是尤其要注意这

一点,不然电路就会一上电就自锁了!

下面来看几个典型的短路保护电路

1.电阻检测自锁式短路(过流)保护电路

该电路采用的就是0.1欧过流取样电阻,采样的电压经过一个减法放大器(NE5532)放大,然后通过一个峰值检波电路,检出幅度电平,送给由LM393组成的电压比较器“+”端,“-”端设置为5.1V,由电阻和稳压管组成,比较器接成了迟滞比较方式,一旦过载,就可以锁定。为了防止开机瞬间比较器自锁,增加了开机延时电路,由R11、C3、D2、D3组成。D2的作用是保证关机后C3上的电压能快速放掉,以保证再开机时C3的起始电压为零。

2.电流互感器检测自动恢复式过流保护电路

电流检测电路由一个电流互感器组成,然后整流,经过一个π形滤波器,然后把检测到的电流送给控制器,控制器由光电耦合隔离器TIL113、集成电路555定时器等组成,555定时器构成了一个施密特反相器,并且电阻R T和电容C T组成一个简单的定时器电路,用以实现控制器关断及再次接通电路的间隔小时段。电位器RP、电阻R 组成一个放电及整定调节电路。V关断后,检测变换电路输出电流本应即刻变为零,但因π形滤波器中电容存储电荷的作用,I O实际并不会即刻变为零而是渐变减小到零。设置RP、R 后可大大地加快I O减小到零的过程,以保证下次电路接通时I O能真正反应I L大小的实际情况。电位器RP、电阻R同时又是一个分流器电路,调节电位器RP可改变该支路电流的大小,这实际上相当于改变了控制器动作电流的临界值,这将为限电器电流整定的实际操作提供方便。

3.最后请出我的压轴电路--------经典的晶体管自锁式短路保护电路

该电路没有利用上述的电阻检测和互感器检测方式,而是一种独特的电位检测方式,利用了一个典型的晶体三极管锁存器电路。要说明它,先来看看晶体锁存器电路的原理。

首先刚上电时,VCC给通过回路R4,R5给电容C2充电,通过R3给C3充电,我们知道刚开始电容两端的电压为0V,随着电容充电电容两端的电压就会升高,从而两个三级管的基极电位会降低,当电位降低到一定时,三极管就会导通,假设当电容两端电压升到uo时,三极管导通,则导通时间为t=RC*In(u/u-u0),计算得到Q3会先导通,一旦导通,Q2的基极电压就不可能降低了,也就是说Q2不能导通了,从而OUT锁定为1。

如果某时,OUT输入了一个低电位,Q2就会导通从而使Q3截止,OUT端就会被锁定为0。

注意:该电路由于我没有去寻找权威解释,所以上述解释全凭个人的理解,所以并不一定是正确的,只做参考!

下面再顺便介绍一下两个用继电器做的特有意思的短路保护电路,全当好玩,电路原理很简单,自己分析!

下面终于可以请出压轴电路了。

上电:C2 两端电压不能突变,Q2基极电压由VCC开始下降,下降到Q2可以导通(BE结压降取0.7V),这个时间大概是0.12mS。但是同时Q1也在起到阻止Q2导通的作用,Q1导通的时间大概是:5.87mS也就是说 Q2在5.87mS后才会导通,但是同时C3在阻止Q3的导通,阻止时间是0.17mS。Q3在上电0。17MS后导通,负载得电,Q3 C极电压达到13.3左右,迫使Q2截至。Q1是起通电防保护电路误动作C1决定保护电路通电时保护电路的灵敏度,C1容量不能太大,Q1同样是为了保护电路的可靠性稳定性而设计的,Q1、R1、R2、C1、D1主要是在电源突变时起了很大的作用。

短路时,Q3 C极被拉低,Q2导通,形成自锁,迫使Q3截止,Q3截至后面负载没有电压,这时有没有负载已经没有关系了,所以即使拿掉负载也不会有输出。要想拿掉负载后恢复输出,可以在Q3得 C E结上接一个电阻,取1K左右。

未完待续......

电容在电路中的断路短路漏电

电容在电路中的断路短路漏电 断路;只用在耦合电容,用一个耳机来测量把耳机的一端接地(电池的负极),机子播放MP3,用耳机的另一端分别点耦合电容的两端,如接主控端有声音,接耳机座端没有,属于断路,用耳机来检查声 音的故障是很有效的; 短路:如用维修电源接MP3MP4,出现200毫安以上,或用表量电容的两端,阻值为零的,属于短路现象,多出现在充电电路和DC-DC直流转换电路,接电源时间长了会烫手。 漏电;电容漏电判断比较复杂,用维修电源接MP3MP4,不开机就有电流的,一般在10毫安到30毫安的属于漏电故障,维修这类故障可以用电压对比法,电压值比原来值低的,它的滤波电容漏电的多 集成电路的检测 对于集成电路的质量检测,应了解它在MP3/MP4电路中的作用,各管脚的电气参数以及和其他元件的相互关系等,有的放矢地用频谱仪、示波器或万用表来检测其质量。 下面介绍检测集成电路质量的几种方法,供维修时参考。 1.逻辑分析法 所谓逻辑分析法是指若怀疑某一集成电路的问题,可先测量该集成电路的输入信号是否正常,再测 量集成电路的输出信号是否正常,若有输入而无输出,一般可判断该集成电路损坏。 直流电阻比较法 直流电阻比较法是把检测的集成电路各管脚的直流电阻值与正常集成电路的直流电阻值相比较,以 此来判断集成电路的好坏。测量时要使用同一只万用表,同一个电阻挡位,以减小测量误差。直流电阻比 较法可以对不同机型、不同结构的集成电路进行检测,但需用相同型号的正常集成电路作为参照。 2.排除法 排除法是指维修中若判断某一部分电路(包含有集成电路)有故障,可先检测此部分电路的分立元件是否正常,若分立元件正常,则说明集成电路有问题,应考虑更换集成电路。如在MP3/MP4维修中,经常通过检查在主控外围的电路的电阻、电容、晶体管等的好坏推测主控的好坏, 此法不需要集成电路的参考资料,而且不必了解内部工作原理,在MP3/MP4维修中经常使用此方法。 3.直流电压测量法 直流电压测量法是检测集成电路的常用方法,主要是测量集成电路各管脚对地的直流工作电压值, 再与标称值相比较,从而判断集成电路的好坏。 测量时还应注意以下几个问题: (1)标称电压有静态与动态之分,集成电路的某些管脚在播放与其他功能时,测得的电压值差别很大。(2)注意外围电路故障会引起管脚电压的变化。外围电路短路、断路用及元件的损坏,都可能引起集成电路管脚电压异常。 (3)减少测量误差。不同电压表的内阻是不同的,在测量时电表内阻被测电路并联,因而带来测量误差。一般情况下,应选用内阻大于20KΩ/V的万用表。同时还应注意,不同的电阻挡测量时对电路电压的影响也会有差异。 如果了解集成电路各管脚的功能及动态情况下的技术参数,也可用动态电压观察法来检测。把万用 表打在直流电压挡,再直接并联在电路的相应测试点上,然后使电路进入到动态工作后再切换到静态,同 时观察测试点的电压变化,进而判断电压变化是否符合电路的逻辑功能。 MP3/4组成部分 ①MP3/4一般有以下几部分:主控电路,FLASH电路,USB供电,按键电路,录音电路,收音电路,功放电路(外响),耳机音频输出电路,显示部分的升压电路和显示屏,电池升压电路(1.5V干电池供电的MP3),假彩屏的背光电路,带外置插卡的有SD卡电路和缓存电路. ②维修时是针对故障查相关联的电路部分.炬力方案查供电是以3V为中心,搞清楚每一部分电路供电是怎样供给的. 查信号线,控制线是以主控为中心,搞清楚每一部份电路和主控是怎么联系的.

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

直流电源过载及短路保护电路

直流电源过载及短路保护电路 保护电路的元器件只有1O个,具有电源短路保护、停电自锁、过负荷电流保护功能(过负荷电流大小可调节设定);电路原理图见附图。接通直流电源VCC。双色发光管发绿光。指示直流电源正常。电源短路保护功能:按下轻触开关K1。三极管BGI基极经限流电阻R2得到高电平,BG1饱和导通,继电器J吸合,其常开触点J闭合,OUT端正常输出直流电源,发光管发橙色光。在继电器J 吸合的同时,三极管BG2基极也被下拉成低电平,BG2导通,此时BGl保持导通,整个电路正常工作。 当OUT端发生短路时。Vcc电压被下拉成近似为零伏(其实。只要V et电压下降造成三极管BG1基极的电压低于O.7V时),三极管BG1退出饱和导通状态,继电器J释放。 停电自锁:当Vcc电源停电再来电时。由于BG2基极通过继电器J的线圈处于高电平。所以BG2截止。BG1也截止。继电器J不吸合,OUT端无直流电压输出。过负荷电流保护:由于变压器存在内阻以及线路存在线电阻,所以。 在电源带上负荷的时侯,会出现电压下降的现象。负荷越大电压下降也越大。根据这种原理。本电路由。R2和w组成了分压器,分压点电压=W÷(R2+W)xVcc。所以,当Vcc一定时,如W越小则分压点电压越低;反之。R2和w是定值。Vcc越低。同样分压点电压也越低。当分压点电压低于017V 时,三极管BGI截止。继电器J释放,起到了限制负荷电流的作用。本人采用市售1000mA/15V、800mA/12V、500mA/10V直流电源做实验。用300W电阻丝作负载(把电阻丝的一端与电源地可靠接牢,并放在一块耐热板上。然后把电流表的红表笔接在OUT输出端,再用黑表笔从电阻丝的一端贴紧。慢慢滑向中段)。调节W阻值。在100mA一800mA都可以取得满意的保护作用。 电容C1的作用: 在实验制作过程中,未接C1时。在多次关断并再接通电源Vcc的瞬间。BG1有时会出现误导通现象,这主要是干扰和BG2可能存在的微小漏电流造成的。利用电容两端电压不能突变的原理。在BG1的基极并接上C1后,连续几十次关断并再接通电源Vcc.未再出现误导通现象。另外,电位器w还起着在停电瞬间对Cl快速放电的作用。避免电源Vcc在关、开时间极短的情况下。由于c1的作用出现BG2延迟误导通的现象。

一个高可靠性的短路保护电路设计及其应用

一个高可靠性的短路保护电路设计及其应用 电子设计工程作者:罗志聪黄世震 一个高可靠性的线性稳压器通常需要有限流保护电路,以防止因负载短路或者过载对稳压器造成永久性的损坏。限流保护通常有限流和折返式限流2种类型。前者是指将输出电流限定在最大值,该方法最大缺点是稳压器内部损失的功耗很大,而后者是指在降低输出电压的同时也降低了输出电流,其最大优点是当过流情况发生时,消耗在功率管能量相对较小,但在负载短路时,大多数折返式限流型保护电路也没有彻底关断稳压器,依然有电流流过,进而使功率MOS管消耗能量,加快器件的老化。针对上述情况,在限流型保护电路的基础上,设计改进了一个短路保护电路,确保短路情况下,关断功率MOS管。本文分别定性和定量地分析了这种短路保护电路的工作过程和原理,同时给出基于TSMCO.18μm CMOS工艺的Spectra仿真结果。 1 短路保护电路的工作原理 高可靠性短路保护电路的实现电路如图1所示,其中VMP是线性稳压器的功率MOS管,R1、R2为稳压器的反馈电阻;VMO和VMP管是电流

镜电路,VMO管以一定的比例复制功率管的电流,通过电阻R4转化为检测电压;晶体管VM1完成电平移位功能,最后接入由VM8~VM12等MOS管组成的比较器的正输入端(Vinp),比较器的负输入端(Vinm)与输出端(0UT)相连;VM13、VM14组成二极管连接形式为负载的共源级放大电路;VM14和VMp1构成电流镜电路;晶体管VMp1完成对功率管VMP的开关控制,正常工作时,VMp1的栅级电位(Vcon)为高电平,不会影响系统的正常工作,短路发生时,Vcon将为低电平,使功率管关断。 1.1 工作原理的定性分析 当短路发生时,比较器的负输入端电位(Vinm)为0 V;同时VM1管将导通,因此比较器的正输入端电位大于0 V,最终比较器的输出节点电位(Vcom)为高电平,在MOS管VM13、VM14作用下,控制信号Vcon 将为低电平,最终VMP管的栅极电压将升高,进而关断P功率管,实

IGBT短路保护的应用及意义

IGBT短路保护的应用及意义 IGBT短路保护电路可以实现快速保护,同时能节省检测短路电流所需的霍尔电流传感器,降低整个系统的成本。实践证明,该电路有比较大的实用价值,尤其是在低直流母线电压的应用场合,可以应用于大型的高频逆变器。 在变频器的内部的直流电源部分的输出(连接到逆变器)的两根线上分别有两个霍尔器件.在正常情况下,流出直流源(流入逆变器)的电流和流回直流源(从逆变器流回)的电流是相等的。两个霍尔器件上的电压是平衡的.一旦发生接地故障,流出直流源的电流同流回直流源的电流不等,两个两个霍尔器件上的电压不等,变频器检测到这种情况,就立刻发出报警信号,实施接地保护,所以接地保护的基本原理,并不是靠出现了较大的接地短路电流来进行保护的。 1、短路保护的工作原理 2、图11-2所示为工作在PWM整流状态的H型桥式PWM变换电路(此图为正弦波正半波输入下的等效电路,上半桥的两只IGBT未画出),图11-2为下半桥两只大功率器件的驱动信号和相关的器件波形。现以正半波工作过程为例进行分析(对于三相PWM电路,

在整流、逆变工作状态或单相DC/DC工作状态下,PWM电路的分析过程及结论基本类似)。 在图11-2所示的电路中,在市电电源Us的正半周期,将Ug2.4所示的高频驱动信号加在下半桥两只IGBT的栅极上,得到管压降波形UT2D。其工作过程分析如下:在t1~t2时刻,受驱动信号的作用,T2、T4导通(实际上是T2导通, D4处于续流状态),在Us的作用下通过电感LS的电流增加,在T2管上形成如图11-2中UT2D所示的按指数规律上升的管压降波形,该管压降是通态电流在IGBT导通时的体电阻上产生的压降;在t2~t3时刻,T2、T4关断,由于电感LS中有储能,因此在电感LS的作用下,二极管D2、D4续流,形成图11-3中UT2.D的阴影部分所示的管压降波形,以此类推。分析表明,为了能够检测到IGBT导通时的管压降的值,应该将在t1~t2时刻IGBT导通时的管压降保留,而将在t2~t3时刻检测到的IGBT的管压降的值剔除,即将图11-3中UT2.D的阴影部分所示的管压降波形剔除。由于IGBT的开关频率比较高,而且存在较大的开关噪声,因此在设计采样电路时应给予足够的考虑。 图11-2 IGBT短路保护电路原理图 图11-2

电路中短路和断路的判断方法

电路中短路和断路的判断方法 1、先根据题给条件确定故障是断路还是短路:两灯串联时,如果只有一个灯不亮,则此灯一定是短路了,如果两灯都不亮,则电路一定是断路了;两灯并联,如果只有一灯不亮,则一定是这条支路断路,如果两灯都不亮,则一定是干路断路。在并联电路中,故障不能是短路,因为如果短路,则电源会烧坏。 2、根据第一步再判断哪部分断路或短路。 例1:L1与L2串联在电路中,电压表测L2两端电压,开关闭合后,发现两灯都不亮,电压表有示数,则故障原因是什么?解:你先画一个电路图:两灯都不亮,则一定是断路。电压表有示数,说明电压表两个接线柱跟电源两极相连接,这部分导线没断,那么只有L1断路了。 例2、L1与L2串联,电压表V1测L1电压,V2测L2电压。闭合开关后,两灯都不亮。则下列说法正确的是:A、若V1=0,V2示数很大,则L1短路而L2正常;B、若V1=0而V2示数很大,说明L2都断路。 解:可能你会错选A。其实答案为B。首先根据题给条件:两灯都不亮,则电路是断路,A肯定不正确。当L2断路时,此时V2相当于连接到了电源两极上,它测量的是电源电压,因此示数很大。而此时L1由于测有电流通过,因此两端没有电压,因此V1的示数为零。 再给你一个口诀 分析电路的口诀1、分析电路应有方法:先判串联和并联;电表测量然后断。一路到底必是串;若有分支是并联。2、还请注意以下几点:A表相当于导线;并时短路会出现。如果发现它并源;毁表毁源实在惨。若有电器被它并;电路发生

局部短。 V表可并不可串;串时相当电路断。 如果发现它被串;电流为零应当然。 连接电路口诀1、连接电路怎么办:串联很简单,各个元件依次连;并联有点难,连干路,标节点;支路可要条条连,连好再检验。2、还有电表怎样连:A 表串其中;V表并两端。线柱认真接;正(进)负(出)不能反。量程不能忘;大小仔细断。3、最后提醒你一点:无论串联或并联;电压表应最后连。

保护电路1(短路保护篇)

保护电路1(短路保护篇) 特瑞士半导体株式会社 ■ 概要 用电压检测器(VD)来用作短路保护是不充分的。这是因为当VD输入端的待检测电压VIN低于VD的最低工作电压0.9V的时候,VD的输出(VOUT)变得不稳定。下面,介绍一种通过在IC周边回路增加器件,在输出完全短路的时候,能使IC停止工作的闭锁型短路保护电路。 ■ 特点 可实现完全短路保护。 配合XC9201系列(带限流机能)一起使用,可以强化电路保护的作用。 ■ 动作说明1 ●起动时(保护电路动作的延迟) 当CE_in被激活后,三极管1(Q1)会导通为了不使CE=0,设定电容1(C1)的值,使得三极管1(Q1)的VBE达到导通电压(约0.6V)的时间延迟在此期间,因为输出电压已经达到2V以上,三极管2(Q2)导通,三极管1(Q1)的基极-发射极之间短路,使得三极管1(Q1)维持在断开状态。 C1电压达到0.6V的时间设定必须比IC的软启动时间长。 <延迟时间的计算公式> ■ 动作说明2 ●输出检测时(输出短路)

输出电压(VOUT)短路时,因为电阻4-地(R4-GND)之间的电压也就是三极管2(Q2)的VBE下降到约0.6V以下,三极管2Q2)断开。这时,原本被三极管2(Q2)短路的电容1(C1)有电流流过,电容1(C1)-地(C1-GND)之间的电压缓缓上升。当电容1(C1)电压也就是三极管1(Q1)的VBE约等於0.6V 时,三极管1(Q1)打开,CE端被短路降为0V,IC停止工作。 <电压检测的常数计算> ■ 基本电路 ■ 电路使用例(降压电路)

(注意) 由於双极型三极管是电流驱动型的器件,如果达不到一定的电流就不能正常工作。 交流plc技巧,提高知识水平,尽在plc网易电气交流QQ裙——13625626,电气朋友的家园

开关电源保护电路

开关电源保护电路 为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 关键词:开关电源;保护电路;可靠性 1 引言 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。 图1 采用晶闸管和限流电阻组成的软启动电路

图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源V cc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。 图2 采用继电器K1和限流电阻构成的软启动电路 图3 替代RC的延迟电路 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

保护电路(短路保护篇)(精)

■ 概要 ■ 动作说明 2 用电压检测器 (VD来用作短路保护是不充分的。● 输出检测时 (输出短路 这是因为当 VD 输入端的待检测电压 VIN 低于 VD 输出电压 (VOUT短路时,因为电阻 4-地 (R4-GND之间的电的最低工作电压 0.9V 的时候, VD 的输出(VOUT压也就是三极管 2(Q2的 VBE 下降到约 0.6V 以下,三极管 2变得不稳定。下面,介绍一种通过在 IC 周边回 (Q2断开。这时,原本被三极管 2(Q2短路的电容1(C1有路增加器件,在输出完全短路的时候,能使电流流过,电容 1(C1-地 (C1-GND 之间的电压缓缓上升。 IC 停止工作的闭锁型短路保护电路。当电容 1(C1电压也就是三极管 1(Q1的 VBE 约等於 0.6V 时, 三极管 1(Q1打开, CE 端被短路降为 0V , IC 停止工作。 ■ 特点 ?可实现完全短路保护。 <电压检测的常数计算 > ?配合 XC9201系列 (带限流机能一起使用, 假设以 IC2=0.1mA, CE_in=5V为条件来计算电路常数可以强化电路保护的作用。 首先, ■ 动作说明 1 ● 起动时 (保护电路动作的延迟

当 CE_in被激活后,三极管 1(Q1会导通然后计算 IB2的电流,假设 Q2的 hfe=100,为了不使 CE=0, 设定电容 1(C1的值,使得三极 管 1(Q1的 VBE 达到导通电压 (约 0.6V 的时间延迟。 在此期间,因为输出电压已经达到 2V 以上,三极管 2(Q2导通,三极管 1(Q1的基极 -发射极之假设流过 R3, R4的偏置电流 IBIAS 是基极电流的 10倍以上间短路,使得三极管 1(Q1维持在断开状态。 C1电压达到 0.6V 的时间设定必须比 IC 的软启动时间长。 设定检测电压 VDF 为 2V , <延迟时间的计算公式 > T : 三极管 Q1的延迟时间 (秒 R2:电阻 2的电阻值 (欧姆 C1:电容 C1的电容值(法拉 VBE1:三极管 Q1的 VBE(伏特 CE_in:信号电压 (伏特

初中物理短路断路专题

百度文库 电路故障专题 电路故障分析一直是电学主流的题型之一,中考中一般都会有体现,出现在选择、填空、或实验题中。考察对电表使用、电学实验操作常规的把握,及其运用电学知识解决实际电路问题的能力。 一般来说,造成电路故障的原因主要有元件的短路、短路两种。故障的原因与现象如图1所示。 上述电路中,分析等L 1、L 2、 电压表、电流表、开关处于短路或短路状态的时候,分析两个灯泡和电压表电流表的示数情况。 逆向思维练习 例1在如图所示的电路中,当闭合开关S 后,发现两灯都不亮,电流表的指针几乎指在“0”刻度线不动,电压表指针则有明显偏转,该电路中的故障可能是 A .电流表被烧坏了 B .灯泡L1的灯丝断了 C .两个灯泡都断路 D .灯泡L2的灯丝断了 例题2小星用图7.1.2所示的电路来探究串联电路的电压关系。已知电源电压为6V ,当开关S 闭合后,发现两灯均不亮。 电 路 故 障 灯泡 短路 原因:接线柱碰线 现象:灯泡不亮 断路 原因 接线柱接触不良 灯丝烧坏(断) 现象:灯泡不亮 电压表 短路 原因:接线柱碰线 现象:电压表无示数 断路 原因:接线柱接触不良或损坏 现象:电压表无示数 与用电 器串联 原因:与电压表并联的用电器断路 现象 电压表示数几乎等于电源电压 电路电流几乎为0不能使用电器正常工作 电流表 短路 原因:接线柱碰线 现象:电流表示数为0 断路 原因:接线柱接触不良,或电流表已烧坏 现象:电流表无示数 滑变 短路 原因 接线柱错接“一上,一上” 闭合开关前没有调节滑片p 位于“阻值最大处” 现象:起不到保护作用,电路电流很大 断路 原因:接线柱接触不良或烧坏 现象:整个电路被断开 接法错误,连入电阻最大并不改变 原因:接“一下,一下” 现象:阻值不变,较大 开关 短路:不存在,相当于开关闭合 断路:相当于开关断开 灯L 1发光情况 灯L 2发光情况 电流表示数情况 电压表示数情况 灯L 1短路 灯L 1断路 灯L 2短路 灯L 2断路 电压表短路 电压表断路 电流表短路 电流表、开关断 路

(经典)锂电池过充电_过放_短路保护电路详解

(经典)锂电池过充电_过放_短路保护电路详解 该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。 二次锂电池的优势是什么? 1. 高的能量密度 2. 高的工作电压 3. 无记忆效应 4. 循环寿命长 5. 无污染 6. 重量轻 7. 自放电小 锂聚合物电池具有哪些优点? 1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。 2. 可制成薄型电池:以 3.6V400mAh的容量,其厚度可薄至0.5mm。 3. 电池可设计成多种形状

4. 电池可弯曲变形:高分子电池最大可弯曲900左右 5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。 7. 容量将比同样大小的锂离子电池高出一倍 IEC规定锂电池标准循环寿命测试为: 电池以0.2C放至3.0V/支后 1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环) 反复循环500次后容量应在初容量的60%以上 国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准). 电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量 什么是二次电池的自放电不同类型电池的自放电率是多少? 自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电主要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的主要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD 常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。 与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月。 什么是电池的内阻怎样测量? 电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容量极化,产生极化内阻,故无法测出其真实值,而测其交流内阻可免除极化内阻的影响,得出真实的内值. 交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值. 什么是电池的内压电池正常内压一般为多少? 电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料制造工艺,结构等使用过程因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高: 如果复合反应的速度低于分解反应的速度,产生的气体来不及被消耗掉,就会造成电池内压升高. 什么是内压测试? 锂电池内压测试为:(UL标准) 模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓. 具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA ,然后将其放在气压为11.6Kpa,温度为(20+_3)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液. 环境温度对电池性能有何影响?

开关电源保护电路实例

摘要:为使开关电源在恶劣环境及突发故障状况下安全可靠,提出了几种实用的保护电路,并对电路的工作原理进行了详尽分析。 评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。 2 开关电源常用的几种保护电路 2.1 防浪涌软启动电路 开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。 图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动。 2.2 过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高

IGBT过流和短路保护

IGBT过流与短路保护 IGBT过流与短路保护 IGBT是高频开关器件,芯片内部的电流密度大。当发生过流或短路故障时,器件中流过的大于额定值的电流时,极易使器件管芯结温升高,导致器件烧坏。因此,对IGBT的过流或短路保护响应时间必须快,必须在10us以内完成。应用实践表明:过电流是IGBT电力电子线路中经常发生的故障和损坏IGBT的主要原因之一,过流保护应当首先考虑。须指出的是:过流与短路保护是两个概念,它们既有联系也有区别。过流大多数是指某种原因引起的负载过载;短路是指桥臂直通,或主电压经过开关IGBT的无负载回路,它们的保护方法也有一定区别。如过流保护常用电流检也传感器,短路保护常通过检测IGBT饱和压降,配合驱动电路来实现。不同的功率有不同的方法来实现过流或短路保护。 1、小功率IGBT模块过流保护 对于小功率IGBT模块,通常采用直接串电阻的方法来检测器件输出电流,从而判断过电流故障,通过电阻检测时,无延迟;输出电路简单;成本低;但检测电路与主电路不隔离,检测电阻上有功耗,因此,只适合小功率IGBT模块。比如:5.5KW以下的变频器。 2、中功率IGBT模块的电流检测与过流、短路保护 中功率IGBT模块的电流检测与过流、短路保护,一种方法是仍然采用电阻检测法,为了降低电阻产生功耗及发热生产的影响,可把带散热器件的取样电阻固定在散热器上,以测量更大的电流。 3、中、大功率IGBT模块的电流检测与过流、短路保护 对于大、中功率IGBT模块的电流检测与过流保护常采用电流传感器。但需注意要选择满足响应速度要求的电流传感器。由于需要配置检测电源,成本较高,但检测电路与主电路隔离,适用于大功率的IGBT模块。保护电路动作的时间须在10us之内完成。 4、通过检测IGBT饱和压降实现短路保护 IGBT通常工作在逆变桥上,并处于开关工作状态,若设计不当,易于发生短路现象。对于短路保护,常用的方法是通过检测IGBT的饱和压降Vce(sat)来实现短路保护,它往往配合驱动电路来实现,其基本原理如图所示:

如何用万用表测短路、断路、漏电

如何用万用表测短路、断路、漏电 短路就是电源未经过负载而直接由导线接通成闭合回路。电力系统在运行中,相与相之间 或相与地(或中性线)之间发生非正常连接(即短路)时而流过非常大的电流。正常状态下,相与相之间或相与地之间的电阻是非常大的,短路时,其电阻基本为零,用万用表测电阻就完全可以了。这种测量,导电状态下很难有机会测到,但电路非接通状态下就很好测量判定了。 断路当电路没有闭合开关,或者导线没有连接好,即电路在某处断开。处在这种状态的电路叫做断路,又叫开路。用万用表测量时,其基本特征是电阻无阻大。 漏电是用电器外壳和市电火线间由于某种原因连通后和地之间有一定的电位差产生的。检测漏电的最好方法就是用电笔接触带电体,如果氖泡亮一下立刻就熄灭,证明带电体带的是静电;如果长亮定是漏电无疑。怀疑线路漏电,直接将可能的漏电点对地测电压,如果电压与交流电压接近,就是漏电了。也可以测电阻了,但操作性没有测电压方便。 断路 1 断路故障的检修 电路断路故障是指电路的某一个回路非正常断开,使电流不能在回路中流通的故障。 断路故障的现象及危害 断路故障的最基本表现形式是回路不通。如断线、电器接触不良等,在某些情况下,断路还会引起电压变化,断路点产生的电弧还可能造成电器火灾和爆炸事故。 1.1.1 电路必须构成回路才能正常工作。电路中某一个回路断路,往往会造成电器装置的部分功能或全部功能丧失(不能工作)。 三相电路中,如果发生一相断路故障,可能使电动机因缺相运行而被烧毁;还可能使三相电路不对称,各相电压发生变化,使其中的某相电压升高,造成故障。三相电路中,如果零线(中性线)断路,则对单相负荷影响更大。 断路故障原因的查找 检修断路故障,首先要确定断路故障的大致范围,即在哪些线段,在哪些情况下容易发生断路故障。 电接触点是断路故障的多发点:在电路中,除了开关触点等电接触点由于接触不良容易造成断路故障外,电路中的其他电接触点也容易发生断路故障。 a.导线相互连接点:无论是采用绞接、压接、焊接、螺栓连接等任何一种连接方式的导线连接点,都是断路故障的多发点; b.导线受力点:在外力或反复作用力的作用下,也容易发生断路故障; c.铜铝过渡点:在电化学腐蚀下,最容易造成接触不良,产生断路故障。 虚接点和虚焊点造成断路故障:形似接触实际上并未接触的连接点称为虚接点,

保护电路图全集

保护电路图全集 一.低功耗定时开关电路图 二.LM339组成的过压、欠压及过热保护电路 进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此 采用过压、欠压保护以提高电源的可靠性和安全性。 温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电 源中亦需要设置过热保护电路。 图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。N1.3为过热比较器,RT为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。N1.4用于外部故障应急关机,当其正向端 输入低电平时,比较器输出低电平封锁PWM驱动信号。由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。如将电路 稍加变动,亦可使比较器输出高电平封锁驱动信号。

图4 过压、欠压、过热保护电路 · [图文] 低功耗定时开关电路图 · [图文] LM339组成的过压、欠压及过热保护电路 · [图文] 采用继电器和限流电阻构成的软启动电路 · [图文] 采用晶闸管和限流电阻组成的软启动电路 · [组图] 防浪涌软启动电路 · [图文] CW431CS过电压保护应用电路 · [图文] 弧焊电源保护电路的设计 · [图文] 电动车控制器短路保护时间的计算方法 · 太阳能热水器与防雷电设计方案 · ESD保护元件的对比分析及大电流性能鉴定 · [图文] PolySwitch元件的保护特性解析 · 如何正确选择中小型断路器 · 变频器过电压产生的原因及解决方法 · [图文] ESD保护时怎样维持USB信号完整性 · [图文] 集成运算放大器输出过流保护电路原理 · [图文] 集成运算放大器供电过压保护电路原理 · [图文] 保险丝熔断自愈电路图原理 · [图文] 停电自锁保护开关电路原理图 · [图文] 压敏电阻原理及应用 · [图文] 选用压敏电阻的方法 · [图文] 整流电源的过压保护-压敏电阻及其应用 · [图文] 用于三极管的过压保护-压敏电阻及其应用 · [图文] 彩电消磁电路的过压保护-压敏电阻及其应用 · [组图] 显像管放电保护-压敏电阻及其应用 · [图文] 直流电机的稳速保护-压敏电阻及其应用 · [图文] 固态继电器电路的过压保护-压敏电阻及其应用 · [图文] 电视机的防雷保护-压敏电阻及其应用 · [图文] 电视机稳压保护器-压敏电阻及其应用 · [图文] 由TL431组成的高精度的恒流源电路图 · [图文] 带滞回区的电池放电保护电路 · [图文] 红外线探测报警器制作原理 · [图文] 过流保护电路原理 · [图文] 直流电路的过流保护设计方法 · [图文] 蒸汽熨斗自动保护电路原理图 · [图文] 含指示灯的短路保护电路 · [图文] 三相三线制电源缺相保护电路 · [图文] 锂芯保护电路 · [图文] T3(E3)保护电路及解决方案 · [图文] VDSL保护电路及解决方案

初中物理短路断路专题

电路故障专题 电路故障分析一直是电学主流的题型之一,中考中一般都会有体现,出现在选择、填空、或实验题中。考察对电表使用、电学实验操作常规的把握,及其运用电学知识解决实际电路问题的能力。 一般来说,造成电路故障的原因主要有元件的短路、短路两种。故障的原因与现象如图1所示。 上述电路中,分析等L 1、L 2、 电压表、电流表、开关处于短路或短路状态的时候,分析两个灯泡和电压表电流表的示数情况。 逆向思维练习 例1在如图所示的电路中,当闭合开关S 后,发现两灯都不亮,电流表的指针几乎指在“0”刻度线不动,电压表指针则有明显偏转,该电路中的故障可能是 A .电流表被烧坏了 B .灯泡L1的灯丝断了 C .两个灯泡都断路 D .灯泡L2的灯丝断了 例题2小星用图7.1.2所示的电路来探究串联电路的电压关系。已知电源电压为6V ,当开关S 闭合后,发现两灯均不亮。他用电压表分别测a 、c 和a 、b 两点间的电压,发现两次电压表示数均为6V ,由此判定灯_______(选填“L 1”或“L 2”)开路,用电压表测b 、c 两点间的电压,示数为_______V 。 电路故障分析

例题3:如图2所示的电路中,电源电压保持不变。闭合开关S后,灯L1、L2都正常发 光,一段时间后,其中一盏灯突然熄灭,观察电压表的示数不变,而电流表的示数变小。产生 这一现象的原因是 A. 灯L1开路 B. 灯L1短路 C. 灯L2开路 D. 灯L2短路 巩固练习 1在图所示的电路中,电源电压保持不变。闭合电键S,电路正常工作。过了—会儿,一个电 表的示数变大,另一个电表的示数变小,则下列判断中正确的是 A 电阻R一定断路。 B 电阻R一定短路。 C 灯L的亮度可能不变。D灯L可能变亮 2在图3所示的电路中,电源电压不变,闭合电键K,电路正常工作,一段时间后,发现其中一 个电压表示数变大, A.灯L可能变亮B.灯L亮度可能不变 C.电阻R可能断路D.电阻R可能短路 3在图8所示的电路中,电源电压不变。闭合电键K后,灯Ll、L2都发光。一段时间后,其中 的一盏灯突然熄灭,而电压表V1的示数变大,电压表V2的示数变小。则产生这一现象的原因 是 A.灯L1断路B.灯L2断路 C.灯L1短路D.灯L2短路 -----------2010电路故障汇编-------------A组 1(2010安徽)在如图所示的电路中,电源电压不变,闭合开关,电路正常工作。但过了一段时间,小灯泡发生断路,这时 A.电压表示数变大,电流表示数变小 B.电压表示数变大,电流表示数变大 C.电压表示数变小,电流表示数变大 D.电压表示数变小,电流表示数变小 2(2010上海在图4所示的电路中,闭合电键S,电路正常工作。一段时间后灯L熄灭,一个电 表的示数变大,另一个电表的示数变小。将两用电器位置互换后再次闭合电键S,两个电表指针 均发生明显偏转。若电路中只有一处故障,且只发生在灯L或电阻R上,则 A 灯L断路 B 灯L短路C电阻R断路D 电阻R短路 3(2010南京)如图所示电路,电源电压不变,闭合开关S,灯L1和L2均发光.一段时间后, 一盏灯突然熄灭,而电流表和电压表的示数都不变,出现这一现象的原因可能是 A 灯L1断路B.灯L2断路C.灯L1短路D.灯L2短路 4(2010株洲)小青在探究“怎样用变阻器改变灯泡的亮度”时,连接的电路如图6所示。闭合开关后,灯泡不亮,她用电压表进行电路故障检测,测试结果如右表所示,则电路中的故障可能是 A. 开关断路 B. 开关短路 C. 变阻器断路 D. 灯泡断路 B组 1(2010扬州)在如图所示的电路中,当闭合开关S后,发现两灯都不亮,电流表的指针几 乎指在零刻度线,电压表指针则有明显偏转,该电路中的故障可能是 A.灯泡L2短路 B.灯泡L2断路 C.灯泡L1断路 D.两个灯泡都断路 2(2010桂林)小明在使用手电筒时发现小灯泡不亮,进行检修前,他对造成该现象的直接原因进行了以下几种判断,其中不可能的是()

线性稳压器的短路保护电路解析

线性稳压器的短路保护电路解析 一个高可靠性的线性稳压器通常需要有限流保护电路,以防止因负载短路 或者过载对稳压器造成永久性的损坏。限流保护通常有限流和折返式限流2 种 类型。前者是指将输出电流限定在最大值,该方法最大缺点是稳压器内部损失 的功耗很大,而后者是指在降低输出电压的同时也降低了输出电流,其最大优 点是当过流情况发生时,消耗在功率管能量相对较小,但在负载短路时,大多 数折返式限流型保护电路也没有彻底关断稳压器,依然有电流流过,进而使功 率MOS 管消耗能量,加快器件的老化。针对上述情况,在限流型保护电路的 基础上,设计改进了一个短路保护电路,确保短路情况下,关断功率MOS 管。本文分别定性和定量地分析了这种短路保护电路的工作过程和原理,同时给出 基于TSMCO.18μm CMOS 工艺的Spectra 仿真结果。 1 短路保护电路的工作原理 高可靠性短路保护电路的实现电路如 式中IDM5 为VM5 的漏电电流,RL=VOUT/Imax,CL 为负载电容,其中Imax 是系统规定的最大负载电流。要使系统能正常启动,IDM5 必须满足 IDM5VOUT/RL,因此合理选取参数,就能正常启动。 2 仿真结果与讨论 基于TSMC O.18μm CMOS 工艺,仿真结果如 图3(a)所示曲线的仿真条件是输出负载周期性地从0 Ω变化到5 Ω。仿真结果表明当输出发生短路时(即负载为0),输出电流被限制在最大电流值,这样功率MOS 管会消耗大量功耗,将加快器件的老化。 图3(b)所示曲线的仿真条件与图3(a)的条件一样。仿真结果表明当输出发生 短路时(即负载为0),输出电流被限制为O,即功率MOS 管被完全关断,同时

相关主题
文本预览
相关文档 最新文档