当前位置:文档之家› 风速与风压的关系

风速与风压的关系

风速与风压的关系
风速与风压的关系

风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v2 (1)

其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2)

此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到

wp=v2/1600 (3)

此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

“作为一个复杂完整的系统,……除尘系统的性能一般要由多个参数来评定,评定气力除尘系统的参数如下: 风量____指在单位时间内通过气力除尘系统气流管道某一截面上的气体体积(m3/h);

风速____指气力吸尘系统气流管道内气流的流动速度(m/s);

风压____指气流管道内部与外部环境的压力差以Pa或mm水柱来表示。

风量、风速与风压三个参数,在一个气力除尘系统中是相互联系、相互制约。风量大小决定了管道内气流的浓度,风量与风速共同决定了气流管道截面的结构尺寸,风压的大小主要由气流管道的长度尺寸所决定。在风机输出性能许可的范围内,设计中应尽量减少管道长度,以保证足够的压力差和风速,在保证管道内气流混合浓度的条件下,应尽量地减小气流管道截面结构尺寸,以增大风速,进而增大吸料口的吸力。

实际应用中的气力除尘系统往往由于这些参数选择的不尽合理,而造成吸力不足或能耗浪费。较为典型的不合理现象有系统过于庞大,管道过长;气流混合浓度过低,管道截面过大;各段管道结构尺寸不合理,系统压力不平衡等。这些系统的不合理因素,最终造成吸料口

风速过低,吸力不足。

一般情况下,应依据各吸料口的加工状况和加工条件确定系统的风量、风速,依据管道的长度尺寸和管道截面形状的变化确定系统的压力。系统的总风量应为各吸料口风量的总和,而系统管道内各处的风速应基本相等或沿着从吸料口到风机的顺序有一个微小的降低,风压在吸入段沿着气流流动的方向逐渐升高,在压出段沿着气流流动的方向逐渐降低。”

风压风速换算和风的级别2008-11-05 09:25我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为

wp=0.5·ro·v2

其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。

wp=0.5·ro·v2 ----------> wp=0.5·r·v2/g 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到

wp=0.5·ro·v2 ----------> wp=0.5·r·v2/g ---------->wp=v2/1600 风速换算风压

此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

由此可见

风压换算风速

为v= sqrt(wp*1600) sqrt为根号开方的意思

风的几级

风:风是指空气的水平流动现象。用风向和风速表示:风向分十六个方位,是指风吹来的方向;风速用风级或多少米/秒表示,分用2分钟的平均情况表示的平均风速和瞬间情况代表的瞬时风速。

风的强度用风速表示,一般采用蒲风级或多少米/秒来衡量,分十三级:

静风:即0级风。

和风:即4级风。风速在5.5-7.9m/s之间的风。微风:即3级风。

大风:即8级风。平均风速为17.2-20.7m/s 的风。

狂风:即10级风。

暴风:即11级风。风速在28.5-32.6m/s之间的风。

飓风:即12级以上风。(中心附近地面最大风力12级或以上的热带气旋,在西北太平洋称为台风)。

蒲福风级

风级0

概况无风

陆地静,烟直上

海岸0-0.2

相当风速(m/s)0.3-1.5

风级 1

概况软风

陆地烟能表示方向,但风向标不能转动

海岸渔船不动

相当风速(m/s)0.3-1.5

风级 2 概况轻风

陆地人面感觉有风,树叶微响,寻常的风向标转动

海岸渔船张帆时,可随风移动

相当风速(m/s) 1.6-3.3

风级 3

概况微风

陆地树叶及微枝摇动不息,旌旗展开

海岸渔船渐觉簸动

相当风速(m/s) 3.4-5.4

风级 4

概况和风

陆地能吹起地面灰尘和纸张,树的小枝摇动海岸渔船满帆时,倾于一方

相当风速(m/s) 5.5-7.9

风级 5

概况清风

陆地小树摇摆

海岸水面起波

相当风速(m/s)8.0-10.7

风级 6

概况强风

陆地大树枝摇动,电线呼呼有声,举伞有困难

海岸渔船加倍缩帆,捕鱼须注意危险

相当风速(m/s)10.8-13.8

风级7

概况疾风

陆地大树摇动,迎风步行感觉不便

海岸渔船停息港中,去海外的下锚

相当风速(m/s)13.9-17.1

风级8

概况大风

陆地树枝折断,迎风行走感觉阻力很大

海岸近港海船均停留不出

相当风速(m/s)17.2-20.7

风级9

概况烈风

陆地烟囱及平房屋顶受到损坏(烟囱顶部及平顶摇动)

海岸汽船航行困难

相当风速(m/s)20.8-24.4

风级10

概况狂风陆地陆上少见,可拔树毁屋

海岸汽船航行颇危险

相当风速(m/s)24.5-28.4

风级11

概况暴风

陆地陆上很少见,有则必受重大损毁

海岸汽船遇之极危险

相当风速(m/s)28.5-32.6

风级12

概况飓风

陆地陆上绝少,其摧毁力极大

海岸海浪滔天

相当风速(m/s)32.6以上

2009-12-19 11:06据新标准,热带气旋(tropical cyclone)是生成于热带或副热带洋面上,具有有组织的对流和确定的气旋性环流的非锋面性涡旋的统称,包括热带低压、热带风暴、强热带风暴、台风、强台风和超强台风,共分6个等级。

其中,风速10.8—17.1米/秒、风力6—7级的为热带低压,风速17.2—24.4米/秒、风力8—9级的为热带风暴,风速24.5—32.6 米/

秒、风力10—11级的为强热带风暴,风速32.7—41.4米/秒、风力12—13级的为台风,风速41.5—50.9米/秒、风力14—15级的为强台风,风速大于或等于51.0米/秒、风力16级或以上的为超强台风。

风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为:

wp=0.5·ρ·v2 (1)

其中wp为风压[kN/m2],ρ为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ρ)和重度(r)的关系为r=ρ·g, 因此有ρ=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2)

此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15℃), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到

wp=v2/1600 (3)

此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,ρ在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

下面来求解一下3000Pa相当于几级风?

首先确定风速度:0: 0-0.2m/s1: 1-5m/s 2: 6-11m/s 3: 12-19m/s 4: 20-28m/s5: 29-38m/s6: 39-49m/s7: 50-61m/s8: 62-74m/s 9: 75-88m/s 10:89-102m/s 11:103-117m/s 12:>117m/s 按照贝努利公式,P=0.613v^2即可得到风压。已知风压为3000Pa,求得v=70m/s查表得8级风

根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v2其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。发上一个风速风压对照表,可以计算看看。

我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为

wp=0.5·ro·v2 (1)

其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。

由于空气密度(ro)和重度(r)的关系为r=ro·g,

因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2)

此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到

wp=v2/1600 (3)

此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。

风速与风压的换算关系及各级风速的自然表现

风速与风压的换算关系及各级风速的自然表现 P = pV^2/2 式中:P——风压,Pa ; p——空气密度,1.205 kg/m^3(20摄氏度时);V——风速,m/s。 风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5?ro?v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro?g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=0.5?r?v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得到风压wp=0.5 [kN/m瞉, 相当于每平方米广告牌承受约51千克力。风力是指风吹到物体上所表现出的力量的大小。一般根据风吹到地面或水面的物体上所产生的各种现象,把风力的大小分为13个等级,最小是0级,最大为12级。其口诀: 0级静风,风平浪静,烟往上冲。 1级软风,烟示方向,斜指天空。 2级轻风,人有感觉,树叶微动。 3级微风,树叶摇动,旗展风中。 4级和风,灰尘四起,纸片风送。 5级清风,塘水起波,小树摇动。 6级强风,举伞困难,电线嗡嗡。 7级疾风,迎风难行,大树鞠躬。 8级大风,折断树枝,江湖浪猛。 9级烈风,屋顶受损,吹毁烟囱。 此外,根据需要还可以将风力换算成所对应的风速,也就是单位时间内空气流动

风速与风压的关系

风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r= [kN/m3]。纬度为45°处的重力加速度g=[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 “作为一个复杂完整的系统,……除尘系统的性能一般要由多个参数来评定,评定气力除尘系统的参数如下: 风量____指在单位时间内通过气力除尘系统气流管道某一截面上的气体体积(m3/h); 风速____指气力吸尘系统气流管道内气流的流动速度(m/s); 风压____指气流管道内部与外部环境的压力差以Pa或mm水柱来表示。 风量、风速与风压三个参数,在一个气力除尘系统中是相互联系、相互制约。风量大小决定了管道内气流的浓度,风量与风速共同决定了气流管道截面的结构尺寸,风压的大小主要由气流管道的长度尺寸所决定。在风机输出性能许可的范围内,设计中应尽量减少管道长度,以保证足够的压力差和风速,在保证管道内气流混合浓度的条件下,应尽量地减小气流管道截面结构尺寸,以增大风速,进而增大吸料口的吸力。 实际应用中的气力除尘系统往往由于这些参数选择的不尽合理,而造成吸力不足或能耗浪费。较为典型的不合理现象有系统过于庞大,管道过长;气流混合浓度过低,管道截面过大;各段管道结构尺寸不合理,系统压力不平衡等。这些系统的不合理因素,最终造成吸料口

风级 风速 风压对照表

风压计算和风力等级表 风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为: wp=0.5·ρ·v2 (1) 其中wp为风压[kN/m2],ρ为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ρ)和重度(r)的关系为 r=ρ·g, 因此有 ρ=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15℃), 空气重度 r=0.01225 [kN/m3]。纬度为45°处的重力加速度 g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,ρ在高原上要比在 平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取

风速上限 28.4m/s, 得到风压wp=0.5 [kN/m2], 相当于每平方米广告牌承受约51千克力。

风级、风速、风压对照表

风速与风压(风载)的关系 风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v (1) 其中wp为风压[kN/m瞉,ro为空气密度[kg/m砞,v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m砞。纬度为45°处的重力加速度g=9.8[m/s瞉, 我们得到wp=v/1600 (3)

风速与风压的关系

风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 引用Cyberspace的文章:风力风压风速风力级别 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2(1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3)

风速与风压的对应关系

B U T L E R 蒲福氏风级描述风力术语风速 (km/h)(m/s)图标风压(kg/m2) 0 级Calm 无风< 2(0.56)01 级 Light Air 软风 (烟能表示方向,但风向标不动微波)2~6(0.56~1.67)0~0.22 级 Light Breeze 轻风(人面感觉有风,风向标转动小波)7~12 (1.94~3.3)0.2~0.73 级Gentle Breeze 微风 (树叶及微枝摇动不 息,旌旗展开小波) 13~19(3.6~5.23)0.8~1.74 级Moderate Breeze 和 风 (能吹起地面纸张与灰尘轻浪)20~30 (5.5~8.3) 1.9~4.3

B U T L E R 蒲福氏风级描述风力术语风速 (km/h)(m/s)图标风压(kg/m2) 5 级Fresh Breeze 清风 (有叶的小树摇摆 中 浪)31~40(8.6~11.1) 4.6~7.76 级 Strong Breeze 强风(小树枝摇动,电线呼呼响 大浪)41~51(11.4~14.2)8.1~12.67 级 Moderate Gale 疾风(全树摇动,迎风步行不便 巨浪)52~62(14.4~17.2)13.0~18.58 级Fresh Gale 大风 (微枝折毁,人向前 行阻力甚大 狂浪) 63~75(17.5~20.8)19.1~27.09 级Strong Gale 烈风 (建筑物有小损 狂 涛)76~87(21.1~24.2)27.8~36.6

B U T L E R 蒲福氏风级描述风力术语风速 (km/h)(m/s)图标风压(kg/m2) 10 级Whole Gale 狂风 (可拔起树来,损坏 建筑物 狂涛)88~103(24.4~28.6)37.2~51.111 级 Storm 暴风 (陆上少见,有则必有广泛破坏 狂涛)104~117(28.8~32.5)51.8~66.012 级 Hurricane 飓风 (陆上极少见,摧毁力极大海浪滔天)>= 118 (32.7)>=66.8Note: W=V2/16(kg/m2)

风速风压风级对照表

风压与风速的关系 当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。 设速度为v 的一定截面的气流冲击面积较大的结构物时,由于受到阻碍,气流改成向四周外围扩散,形成压力气幕,如下图所示。如果气流原先的压力强度为b w ,气流冲击结构物后速度逐渐减小,其截面中心一点的速度减小至零时,在该点处产生的最大气流压强,设为m w 。则结构物受气流冲击的最大压力强度为m b w w -,此即工程上所定义的风压,记为w 。 为求得风压w 与风速v 的关系,设气流每点的物理量不变,略去微小的位势差影响,取流线中任一小段dl,如图所示。设1w 为作用于小段左端的压力,则作用于小段右端近压力气幕的压力为11w dw +。

以顺流向的压力为正,作用于小段上的合力为1111()w dA w dw dA dw dA -+=-,该合力应等于小段的气流质量M 与顺流向加速度a 的乘积,即1dv dw dA Ma dAdl dt ρ-==。由此式可得1dv dw dl dt ρ-=,注意到dl vdt =,代入前式得1dw vdv ρ=-,而方程的解为211 2 w v c ρ=-+。此式称为伯努利方程,其中c 为常数。从该方程可以看出,气流在运动 过程中,其本身压力随流速变化而变化,流速快,则压力小;而流速慢,则压力大。当v=0时,1m w w =,代入方程的m c w =;而当风速为v 时,1b w w =,则212 b m w w v ρ==-,因此,221122m b w w w v v g γρ=-= =,此式即为风速与风压的关系公式,其中γ为空气单位体积的重力,g 为重力加速度。 在气压为101.325kPa 、常温15C 和绝对干燥的情况下,γ=0.0120183 kN m ,在纬 度45 处,海平面上的重力加速度为g=9.82 m s ,代入前式得此条件下的风压公式为 2 2 220.012018229.81630 v w v v kN m g γ ===?。 由于各地地理位置不同,因而γ和g 值不同。在自转的地球上,重力加速度g 不仅随高度变化,还随纬度变化。而空气重度γ与当地气压、气温和湿度有关。以此,各地的2g γ 值 均为相同。

风力等级和风速对照表

风力等级和风速对照表 风级、风速、风压对照表?(机构与结构设计参考) ? WindscaleandWindspeed ,Windforcelist?(fordesigned) 风级 名称? 风速windspeed?? 风压W0=V 2 /16(kg/m 2 ), 10N/m 2 陆地地面物体征象 海面状态 浪高(米) km/h (m/s ) 0 无风 <1 0-0.2 0-0.0025 静、烟直上 静 0.0 1 软风 1-5 0.3-1.5 0.0056-0.014 烟能表示方向,但风向标不动 微波峰无飞沫 0.1 2 轻风 6-11 1.6-3.3 0.016-0.68 人面感觉有风,风向标转动 小波峰未破碎 0.2 3 微风 12-19 3.4-5.4 0.72-1.82 树叶及微枝摇动不息,旌旗展 开 小波峰顶破裂 0.6 4 和风 20-28 5.5-7.9 1.89-3.9 能吹起地面纸张与灰尘 轻浪、小浪白沫波峰 1.0 5 清风 29-38 8.0-10.7 4-7.16 有叶的小树摇摆 中浪折沫峰群 2.0 6 强风 39-49 10.8-13.8 7.29-11.9 小树枝摇动,电线呼呼响 大浪到个飞沫 3.0 7 疾风 50-61 13.9-17.1 12.08-18.28 全树摇动,迎风步行不便 巨浪、破峰白沫成条 4.0 8 大风 62-74 17.2-20.7 18.49-26.78 微枝折毁,人向前行阻力甚大 狂浪、浪长高有浪花 5.5 9 烈风 75-88 20.8-24.4 27.04-37.21 建筑物有小损 狂涛、浪峰倒卷 7.0 10 狂风 89-102 24.5-28.4 37.52-50.41 可拔起树来,损坏建筑物 狂涛、海浪翻滚咆哮 9.0 11 暴风 103-117 28.5-32.6 50.77-66.42 陆上少见,有则必有广泛破坏 狂涛、波峰全呈飞沫 11.5 12 飓风 >117 32.7-36.9 ?66.42-85.1 陆上极少见,摧毁力极大 海浪滔天 14.0

风量风压风速的计算方法

离心式风机风量风压转速的关系和计算 n:转速 N:功率 P:压力 Q:流量 Q1/Q2=n1/n2 P1/P2=(n1/n2)平方 N1/N2=(n1/n2)立方 风机风量及全压计算方法风机 功率(W)=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%) 全压=静压+动压。风机马达功率(W)=风机功率(W)*130%= 风量(L/S)*风压(Kpa)/效率(75%)/力率(75%)*130% 风机的,静压,动压,全压 所谓静压的定义是:气体对平行于气流的物体表面作用的压力。通俗的讲:静压是指克服管道阻力的压力。 动压的定义是:把气体流动中所需动能转化成压的的形式。通俗的讲:动压 是带动气体向前运动的压力。 全压=静压+动压 全压是出口全压和入口全压的差值 静压是风机的全压减取风机出口处的动压(沿程阻力) 动压是空气流动时自身产生的阻力P动=0.5*密度*风速平方P=P动+P静 、两台型号相同且转速相等的风机并联后,风量最高时是两台风机风量的90%左右,风压等于单台风机的压力。 2、两台型号相同且转速相等的风机串联后,风压是单台风机风压的2倍,风量等于单台风机的风量。 3、两台型号不同且转速不等并联使用,风量等于较大的一台风机的风量,风压不叠加。 4、两台型号不同且转速不等,型号较大的一台置前串联使用,风压小于单台风机的风压,风量等于较大的一台风机的风量 风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1)

其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 引用Cyberspace的文章:风力风压风速风力级别 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 风压 P = pV^2/2 = 1.2*9^2/2 = 48.6 (Pa) 假如说9[m/s]风速,风压应该怎么计算,请把公式也写下 要测风道中的风速但手边没有风速计,只有个测风压的,

风速和风压计算关系

广告牌和风压计算 协飞 最近有读者来信询问如何计算风压,他的问题是:“我想知道9-10 级大风时,楼顶的广告牌一平方要承受多大的风压?” 我想,大多数经营户外广告牌的广告公司可能都会问类似问题,因为广告公司在楼顶安装广告牌时首先会想到,遇大风时该广告牌能否承受相应的风压。遇上大风如果广告牌不能承受相应的风压,则有可能造成难以预料的后果:如广告牌从楼顶被吹落,砸伤楼下行人或造成自己或他人财产受损。如果保险公司承保这块广告牌,当然也会首先估算一下该广告牌被大风吹落的概率有多大。事实上,即使在平地上安装广告牌,这个问题依然存在。记得几年前,江苏某市曾有路边广告牌被大风吹落导致公路交通受阻的例子。因此,无论对于广告公司还是保险公司,根据当地可能出现的大风事先估算广告牌承受的风压显得尤为重要。 下面我们就来讨论风压的计算问题。 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为 r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度 r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得到风压wp=0.5 [kN/m2], 相当于每平方米广告牌承受约51千克力。 有兴趣的读者可以查查现在全国哪里风力最大,再算一算风压有多大。然后在家等着吧,或许广告公司不久会来找你咨询:)。

风压与风速的计算方法

风压与风速的计算方法 风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m2],ro 为空气密度[kg/m?],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。纬度为45°处的重力加速度 g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。纬度为45°处的重力加速度g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。风压 P = pV^2/2 = 1.2*9^2/2 = 48.6 (Pa) 假如说 9[m/s]风速,风压应该怎么计算,请把公式也写下要测风道中的风速但手边没有风速计,只有个测风压的,我知道一般风压与风速的换算公式近似为风压=风速^2x1600 不是风道中测的负压能不能直接带进去,或者有什么其他的换算方式?你的风压计测得的风道中的压力是静压 Pj 吧,如果能测出同一断面处的全压 Pq,则该断面的动压 Pd=Pq-Pj(静压 Pj 为负值,连同负号代入),而动压 Pd=pV^2/2,从中可以算出风速 V=(2Pd/p)^(1/2)。我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度r=0.01225 [kN/m?]。纬度为45°处的重力加速度 g=9.8[m/s?], 我们得到wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

风压与风速的计算关系

风压与风速的关系浅析 空气散热器是密闭式纯水循环冷却水系统的重要组成部分,而风机是空气散热器的重要组成元件,风机选型的好坏关系到整个水冷系统的散热效果与质量,而风压与风速是风机选型最重要的性能指标,因此本文结合理论知识,对风压与风速的关系做了初步的分析和探讨。 概述 风速是空气散热器风机的重要性能指标之一,风速即风机出风口或进风口的空气流动速度,单位一般为m/s,它仅是某一位置的速度数值,不能完全体现风机的性能。因为风速在不同位置数值可能有较大差异,且平均值难以计算。风机的摆放位置会影响他的风速,因为外界条件不同,风传播介质的粗糙程度不同。不同距离测量到的风速也不会相同。要设计合适的散热器,必须全面了解风机的性能,那么就要了解与风速密不可分的另一个因素风压。 风压与风速关系公式 风是空气从气压大的地方向气压小的地方流动形成的。从风的形成我们就可以看到风与压力是密不可分的。压力产生风。当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。

设速度为v 的一定截面的气流冲击面积较大的结构物时,由于受到阻碍,气流改成向四周外围扩散,形成压力气幕,如下图所示。如果气流原先的压力强度为b w ,气流冲击结构物后速度逐渐减小,其截面中心一点的速度减小至零时, 在该点处产生的最大气流压强,设为 m w 。则结构物受气流冲击的最大压力强度为m b w w -,此即工程上所定义的风压,记为w 。 为求得风压w 与风速v 的关系,设气流每点的物理量不变,略去微小的位势差影响,取流线中任一小段dl,如图所示。设 1w 为作用于小段左端的压力,则作用于小段右端近压力气幕的压力为 11w dw +。 d l w 11w 1)d A

风级风速风压对照表

风级风速风压对照表(机构与结构设计参考) Wind scale and Wind speed,Wind force list (for designed) 风级名称Wind name 风速wind speed 风压W0=V2/16(kg/m2),10N/m2 陆地地面物体征象海面状态km/h (m/s) 0 Calm无风<1 0-0.2 0-0.0025 静静 1 light air 软风1-5 0.3-1.5 0.0056-0.014 烟能表示方向,但风向标不动微波 2 light breeze轻风6-11 1.6-3. 3 0.016-0.68 人面感觉有风,风向标转动小波 3 Gentle breeze微风12-19 3.4-5. 4 0.72-1.82 树叶及微枝摇动不息,旌旗展开小波 4 Moderate breeze和风20-28 5.5-7.9 1.89-3.9 能吹起地面纸张与灰尘轻浪 5 Fresh breeze清风29-38 8.0-10.7 4-7.1 6 有叶的小树摇摆中浪 6 Strong breeze强风39-49 10.8-13.8 7.29-11.9 小树枝摇动,电线呼呼响大浪 7 Moderate gale疾风50-61 13.9-17.1 12.08-18.28 全树摇动,迎风步行不便巨浪 8 Fresh gale大风62-74 17.2-20.7 18.49-26.78 微枝折毁,人向前行阻力甚大狂浪 9 Strong gale烈风75-88 20.8-24.4 27.04-37.21 建筑物有小损狂涛 10 Whole gale狂风89-102 24.5-28.4 37.52-50.41 可拔起树来,损坏建筑物狂涛 11 Storm 暴风103-117 28.5-32.6 50.77-66.42 陆上少见,有则必有广泛破坏狂涛 12 Hurricane飓风>117 32.7-36.9 66.42-85.1 陆上极少见,摧毁力极大海浪滔天 37.0-41.4 41.5-46.1 46.2-50.9 51.0-56.0 56.1-61.2

风级风速风压对照表台风飓风与风速风级关

风级风速风压对照表台风飓风与风速风级关时间:2010-04-23 08:38来源: 点击: 394次 风级风速风压对照表台风飓风与风速风级关系 服务热线: 风级风速风压对照表(机构与结构设计参考) Wind scale and Wind speed,Wind force list (for designed) 风级名称Windname风速windspeed风压W0=V2/16(kg/m2),10N/m2陆地地面物体征象海面状态 km/h(m/s) 0 Calm无风<1 0- 0."2 0- 0."0025静静 1 light air软风1-5 0."3- 1."5 0."0056- 0."014烟能表示方向,但风向标不动微波 2 light breeze轻风6-11 1."6-

3."3 0."016- 0."68人面感觉有风,风向标转动小波 3 Gentle breeze微风12-19 3."4- 5."4 0."72- 1."82树叶及微枝摇动不息,旌旗展开小波4 Moderate breeze和风20-28 5."5- 7."9 1."89- 3."9能吹起地面纸张与灰尘轻浪 5 Fresh breeze清风29-38 8."0- 10."7 4- 7."16有叶的小树摇摆中浪 6 Strong breeze强风39-49 10."8- 13."8 7."29- 11."9小树枝摇动,电线呼呼响大浪

7 Moderate gale疾风50-61 13."9- 17."1 12."08- 18."28全树摇动,迎风步行不便巨浪8 Fresh gale大风62-74 17."2- 20."7 18."49- 26."78微枝折毁,人向前行阻力甚大狂浪9 Strong gale烈风75-88 20."8- 24."4 27."04- 37."21建筑物有小损狂涛 10 Whole gale狂风89-102 24."5- 28."4 37."52- 50."41可拔起树来,损坏建筑物狂涛 11 Storm暴风103-117 28."5- 32."6

风速与风荷载的换算公式

12 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。 根据伯努利方程得出的风一 压关系,风的动压为 wp=0.5?ro?v2 (1) 其中wp 为风压[kN/m2],ro 为空气密度[kg/m3],v 为风速[m/s ]。 由于空气密度(ro)和重度(r)的关系为r=ro?g,因此有ro=r/g 。在⑴中使用这一关系,得到 wp=0.5?r?v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa,温度为15° C),空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2 ],我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。 应当指出的是,空气重度和重力加速度随纬度和海拔高 度而变。一般来说,r/g 在高原上要比在平原地区小, 也就是说同样的风速在相同的温度下, 其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10级大风相 当于 24.5-28.4m/s,取风速上限28.4m/s,得 到风压 wp=0.5 [kN/m 瞉,相当于每平方米广告牌承受约 风力是指风吹到物体上所表现出的力量的大小。 的各种现象,把风力的大小分为 0级静风, 2级轻风, 4级和风, 6级强风, 8级大风,折断树枝,江湖浪猛。 此外,根据需要还可以将风力换算成所对应的风速, 米/秒表示,其换算口诀供参考:二是二来一是51千克力。 般根据风吹到地面或水面的物体上所产生 13个等级,最小是0级,最大为12级。其口诀: 1级软风,烟示方向,斜指天空。 3级微风,树叶摇动,旗展风中。 5级清风,塘水起波,小树摇动。 7级疾风,迎风难行,大树鞠躬。 9级烈风,屋顶受损,吹毁烟囱。 也就是单位时间内空气流动的距离, 用 风平浪静,烟往上冲。 人有感觉,树叶微动。 灰尘四起,纸片风送。 举伞困难,电线嗡嗡。 ,三级三上加个一。四到九级不难算,级

风压与风速的关系浅谈

风压与风速的关系浅谈 风与我们的日常生活密不可分。风荷载对工程建筑也影响巨大。忽略了风,也就等于放弃了工程。 风,是空气从气压大的地方向气压小的地方流动形成的。从风的形成我们就可以看到风与压力是密不可分的!压力产生风,那么风压是什么呢?当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。 首先给出风压与风速的公式:W=-0.5pv2 +C 其中W:风压p空气质量密度V风速C常数。 当V=0时,W为最大风压,数值等于C。 日常生活中,我们所测得的风压为基本风压。也就是按规定的地貌,高度,时距等量测量的风速所确定的风压为基本风压。其中地貌为空旷平坦地貌,高度一般为10米,时距10分钟所测的风压为基本风压。 夏天到了,炽热的天气带给我们高昂的热情,也带来了更多的休息时间;同时,更令我们的CPU饱受高温煎熬。那么怎么调整CPU 风扇的风速与风压才能起到更好的散热作用呢?风扇并不是什么稀奇的东西,在日常生活中早已司空见惯,具有导流、换气、散热等各种用途。风冷散热器中使用的典型风扇外形是一个底面为正方形的扁柱体,四角留有安装所需的固定孔位,直流电机通过支架固定在外框上,扇叶与转子连接在一起,通过轴承安装在电机主体之上

。 风速是风扇重要的性能指标之一,风速即风扇出风口或进风口的空气流动速度,单位一般为m/s;仅是某一位置的速度数值,不能完

全体现风扇的性能。因为风速在不同位置数值可能有较大差异,且平均值难以计算。风扇的摆放位置会影响他的风速,因为外界条件不同,风传播介质的粗糙程度不同。距离不同距离测量到的风速也不会相同。如果要全面了解风扇的性能,那么就要了解与风速密不可分的另一个因素风压。风压即风扇能够令出风口与入风口间产生的压强差,单位一般为mm(cm)water column,即毫米(厘米)水柱(类似于衡量大气压的毫米汞柱,但由于压强差较小,一般以水柱为单位)。风压是衡量风扇“强劲”程度的重要指标,如果将风量比作一把武器的挥击力量,那么风压就是这把武器的锋利程度。风压直接的影响到风扇的送风距离。风扇出口到散热片底部看来只有短短的几厘米,但考虑到复杂、密集的散热鳍片的影响,要令气流有效地覆盖散热片整体并非想象中那么简单。散热片设计过程中虽然会尽量避免产生过大的风阻,但为了保证充足的散热面积,对风压提出一定要求也是在所难免。风压既然是风扇最重要的两项性能指标之一,选择风扇时自然要特别注意。如果配合片状鳍片+风道式设计的散热片,一般不需太大的风压,即可保证空气顺畅流动,达到预期效果;如果配合典型的平行片状鳍片+顶吹式设计的散热片,则要根据鳍片的密度和高度、鳍片间风槽的形状和长度选择具有足够风压的风扇;如果配合Alpha或Swiftech等密集柱状鳍片+顶吹式设计的散热片,就需要风扇具有较大的风压。 我又想到了现在流行的流线型设计,很多交通工具都被设计成流线型,那么他的原理在哪呢?我查资料所得“流线型原是空气动力

风量的计算方法,风压和风速的关系

风量的计算方法,风压和风速的关系 1、假设在直径300mm的风管中风速为0.5m/m,它的风压是多少帕?怎么计算?(要求有公式,并说明公式中符号的意思,举例) 2、假如一台风机它的风量为100003/h,分别给10个房间抽风,就是有10个抽风口,风管的主管道是直径400mm,靠近风机的第一个抽风口的风压和抽风量肯定大于后面的抽风口,要怎么样配管才能使所有的抽风口的抽风量一样?要怎么计算? 3、如何快速的根据电机的转速、风机叶片的角度、面积来来计算出这台风机的风量和风压。?(要求有公式,并说明公式中符号的意思,举例) 4、风管的阻力怎么计算,矩形和圆形,每米的阻力是多少帕,一台风压为200帕的抽风机,管道50m,它的进风口的风压是多少帕??(要求有公式,并说明公式中符号的意思,举例)求各位工程师指点,100分 最佳答案 哈1、首先,我们要知道风机压力是做什么用的,通俗的讲:风机压力是保证流量的一种手段。基于上述定义,我们可以通过一些公式来计算出在300mm管道中要保证风速为0.5m/s时所需的压力。1.1、计算压力:1.2、Re=(D*ν/0.0000151) =(0.3*0.5/0.0000151) =9933.77 1.3、λ=0.35/Re^0.25 =0.35/9933.77^0.25 =0.035 1.4、R=[(λ/D)*(ν^2*γ/2)]*65 =(0.035/0.3)*(0.5^2*1.2/2) =0.07Pa 1.5、结论:在每米直径300mm风管中要保证0.5m/s的风速压力应为0.07Pa。2、计算400mm 管道中的流速:2.1、ν=Q/(r^2*3.14*3600) =10000/(0.2^2*3.14*3600) =22.11(m/s) 2.2、平衡各抽风口的压力,并计算出各个抽风口的直径:为保证各抽风口的流量相等,需对各抽风口的压力进行平衡,我们采用试算法调管径。当支管与主环路阻力不平衡时,可重新选择支管的管径和流速,重新计算阻力直至平衡为止。这种方法是可行的,但只有试算多次才能找到符合节点压力平衡要求的管径。设每一个抽风口的间距相等

风压与风速的计算方法

风压与风速的计算方法集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

风压与风速的计算方法 风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v (1) 其中 wp 为风压[kN/m2],ro 为空气密度[kg/m],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m]。纬度为45°处的重力加速度 g=9.8[m/s], 我们得到 wp=v/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v (1) 其中 wp 为风压[kN/m],ro 为空气密度[kg/m],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m]。纬度为45°处的重力加速度 g=9.8[m/s], 我们得到 wp=v/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来

风速与风压的关系

风与我们的日常生活密不可分。风荷载对工程建筑也影响巨大。忽略了风,也就等于放弃了工程。风压就是垂直于气流方向的平面所受到的风的压力 风,是空气从气压大的地方向气压小的地方流动形成的。从风的形成我们就可以看到风与压力是密不可分的!压力产生风,那么风压是什么呢?当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。首先给出风压与风速的公式:W=-0.5pv2 +C 其中W:风压p空气质量密度V风速C常数。当V=0时,W为最大风压,数值等于C。 日常生活中,我们所测得的风压为基本风压。也就是按规定的地貌,高度,时距等量测量的风速所确定的风压为基本风压。其中地貌为空旷平坦地貌,高度一般为10米,时距10分钟所测的风压为基本风压,风速即空气流动速度,单位一般为m/s;仅是某一位置的速度数值。因为风速在不同位置数值可能有较大差异,且平均值难以计算。摆放位置会影响他的风速,因为外界条件不同,风传播介质的粗糙程度不同。距离不同距离测量到的风速也不会相同。如果要全面了解风扇的性能,那么就要了解与风速密不可分的另一个因素风压。风压即出风口与入风口间产生的压强差,单位一般为mm(cm)water column,即毫米(厘米)水柱(类似于衡量大气压的毫米汞柱,但由于压强差较小,一般以水柱为单位)。风压是“强劲”程度的重要指标,如果将风量比作一把武器的挥击力量,那么风压就是这把武器的锋利程度。风压直接的影响到送风距离。 我又想到了现在流行的流线型设计,很多交通工具都被设计成流线型,那么他的原理在哪呢?我查资料所得“流线型原是空气动力学名词,用来描述表面圆滑、线条流畅的物体形状,这种形状能减少物体在高速运动时的风阻。但在工业设计中,它却成了一种象征速度和时代精神的造型语言而广为流传,冰箱、汽车的设计都受其影响。这种外形能够符合空气动力学的原理,呈现出一种流线型,在运动中能够得到更大的速度。流线型设计最早是用在20 世纪交通技术上。如轮船,飞机,汽车,以此来解决高速运动中的流体动力和气体动力性能。它不仅运用于功能改进上,还用在家居产品上,从电熨斗、电冰箱乃至所有的家用电器,都采用了这种表面光滑、线条流畅的形式,这些产品对消费者具有更大的吸引力。不少流线型设计完全是由于它的象征意义,而无功能上的含义,流线型在富有想象力的设计师手中,体现了流线型作为现代化符号的强大象征作用。”上文中提到流线型会降低风阻,那么我想,风阻的大小一定跟物体正面所受的风压大小有直接关系。而正面风压的大小又 与物体与流动空气接触部位的风速有关,想到这里,我就豁然开朗,流线设计,使物体没有直接阻止空气的前进,也就是说,风速的降低不会很大,我们看到风压与风速关系的公式中,风速越大,风阻就越小。没有直接阻止空气前进的部位,那么风速就不会很小,相应的风压就不大,我想流线设计也与风压风速的关系密不可分

相关主题
文本预览
相关文档 最新文档