当前位置:文档之家› 材料科学基础习题集

材料科学基础习题集

材料科学基础习题集
材料科学基础习题集

材料科学基础习题集(2010)

第1章: 原子结构与键合

1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?

2. 在多电子的原子中,核外电子的排布应遵循哪些原则?

3. 在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下

元素结构有什么区别?性质如何递变?

4. 何谓同位素?为什么元素的相对原子质量不总为正整数?

5. 铬的原子序数为24,它共有四种同位素:4.31%的Cr 原子含有26个中子,83.76%含有28个中

子,9.55%含有29个中子,且2.38%含有30个中子。试求铬的相对原子质量。

6. 铜的原子序数为29,相对原子质量为63.54,它共有两种同位素Cu 63和Cu 65,试求两种铜的同

位素之含量百分比。

7. 锡的原子序数为50,除了4f 亚层之外其它内部电子亚层均已填满。试从原子结构角度来确定

锡的价电子数。

8. 铂的原子序数为78,它在5d 亚层中只有9个电子,并且在5f 层中没有电子,请问在Pt 的6s

亚层中有几个电子?

9. 已知某元素原子序数为32,根据原子的电子结构知识,试指出它属于哪个周期?哪个族?并

判断其金属性强弱。

10. S 的化学行为有时象6价的元素,而有时却象4价元素。试解释S 这种行为的原因? 11. Al 2O 3的密度为3.8g/cm 3,试计算a)1mm 3中存在多少原子?b)1g 中含有多少原子?

12. 尽管HF 的相对分子质量较低,请解释为什么HF 的沸腾温度(19.4℃)要比HCl 的沸腾温度(-85℃)高?

13. 高分子材料按受热的表现可分为热塑性和热固性两大类,试从高分子链结构角度加以解释之。 14. 高密度的聚乙烯可以通过氯化处理即用氯原子来取代结构单元中氢原子的方法实现。若用氯取

代聚乙烯中8%的氢原子,试计算需添加氯的质量分数。

第2章:固体结构

1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,

配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。

2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四

面体间隙数为 。

3. 纯铁冷却时在912度发生同素异晶转变是从 结构转变为 结构,配位数 ,致密

度 ,晶体体积 ,原子半径发生 。

4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平面上的方

向。在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。

5. 求]111[和]120[两晶向所决定的晶面。

6. 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径

R=0.175×10-6mm 。 7、 填空

1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。

2) 影响置换固溶体溶解度大小的主要因素是(1) ;(2) ;(3) ;(4) 和环境因素。

3) 置换式固溶体的不均匀性主要表现为 和 。

4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。

5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,

导电性。

6)间隙固溶体是,间隙化合物是。

二、问答

1、分析氢,氮,碳,硼在a-Fe 和g-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。已知元素的原子半径如下:氢:0.046nm,氮:0.071nm,碳:0.077nm,硼:0.091nm,a-Fe:0.124nm,g-Fe :0.126nm。

2、简述形成有序固溶体的必要条件。

第三章晶体缺陷

一、名词解释

空位平衡浓度,位错,柏氏回路,P-N力,扩展位错,堆垛层错,弗兰克-瑞德位错源,

奥罗万机制,科垂耳气团,面角位错,铃木气团,多边形化

二、问答

1 fcc晶体中,层错能的高低对层错的形成、扩展位错的宽度和扩展位错运动有何影响?层错能对金属材料冷、热加工行为的影响如何?

2. 在铝单晶体中(fcc结构),

1)位错反应

]

10

1[

2

a

?

]

11

2[

6

a

]+

]1

2

1[

6

a

能否进行?写出反应后扩展位错宽度的表达式

和式中各符号的含义;若反应前的

]

10

1[

2

a

是刃位错,则反应后的扩展位错能进行何种运动?

能在哪个晶面上进行运动?若反应前的

]

10

1[

2

a

是螺位错,则反应后的扩展位错能进行何种运

动?

2) 若(1,1,1)面上有一位错]110[2a b =,与)(111面上的位错]

011[2a b =发生反

应,如图6-1。写出位错反应方程式,说明新位错的性质,是否可动。

3) 写出(111)与(111)两个滑移面上两全位错所分解为肖克莱不全位错的两个反应式。

4) 如果两扩展位错运动,当它们在两个滑移面交线AB 相遇时,两领先不全位错为

[]

1126a 和]121[6a

,两领先位错能否发生反应,若能,求新位错柏氏矢量;分析新形成位错

为何种类型位错,能否自由滑移,对加工硬化有何作用。

图6-1

3 螺旋位错的能量公式为

02ln

4r R Gb E S π=。若金属材料亚晶尺寸为R=10-3~10-4cm ,r 0约为10-8

cm ,铜的G =4×106N/cm 2,b =2.5×10-8cm 。

(1)试估算Es

(2)估算Cu 中长度为1个柏氏矢量的螺型位错割阶的能量。

4 平衡空位浓度与温度有何关系?高温淬火对低温扩散速度有何影响?

5 已知Al 的空位形成能为0.76eV ,问从27e 升温到627e 时空位浓度增加多少倍(取系数A=1)

6 在一个刃型位错附近放置另一个与之平行同号的另一个刃型位错,其位置如图6-2所示1,2,3,问它们在滑移面上受力方向如何?

2

3

图6-2

7、位错对金属材料有何影响?

第4章 固体中原子及分子的运动

1、 简要说明影响溶质原子在晶体中扩散的因素。

2、Ni 板与Ta 板中有0.05mm 厚MgO 板作为阻挡层,1400℃时Ni +通过MgO 向Ta 中扩散,此时Ni +在MgO 中的扩散系数为D=9×10-12cm 2/s ,Ni 的点阵常数为3.6×10-8cm 。问每秒钟通过MgO 阻挡层在2×2cm 2的面积上扩散的Ni +数目,并求出要扩散走1mm 厚的Ni 层需要的时间。

3、对含碳0.1%齿轮气体渗碳强化,渗碳气氛含碳1.2%,在齿轮表层下0.2cm 处碳含量为0.45%时齿轮达到最佳性能。已知铁为FCC 结构,C 在Fe 中的D 0=0.23,激活能Q =32900cal/mol ,误差函数如表10-1。 1)试设计最佳渗碳工艺;

2)在渗碳温度不变,在1000℃时渗碳,要将渗碳厚度增加1倍,即要求在其表面下0.4cm 处渗碳后碳含量为0.45%所需渗碳时间。

表10-1 Dt x 2与erf(Dt x

2)的对应值

4 一块厚度10毫米,含碳量0.77%的钢在强脱碳气氛中加热到800℃,然后缓慢冷却,试指出试样从表面到心部的组织分布。

5 一块用作承载重物的低碳钢板,为提高其表面硬度采用表面渗碳,试分析:

1) 渗碳为什么在g-Fe中进行而不在a-Fe中进行,即渗碳温度选择要高于727e ,为什么?

2)渗碳温度高于1100e 会出现什么问题?

6 铜-锌基单相固溶体进行均匀化处理,试讨论如下问题:

1) 在有限时间内能否使枝晶偏析完全消失?

2) 将此合金均匀化退火前进行冷加工,对均匀化过程是加速还是无影响?说明理由。

7 原子扩散在材料中的应用

8 何谓上坡扩散,举两个实例说明金属中上坡扩散现象。

9、简述固溶体合金的扩散机制

第5章材料的形变和再结晶: 1 金属塑性变形

一名词解释

固溶强化,应变时效,孪生,临界分切应力,变形织构

二问答

1 单相合金的冷塑性变形与纯金属的室温塑性变形相比,有何特点。

2 金属晶体塑性变形时,滑移和孪生有何主要区别?

3 A-B二元系中,A晶体结构是bcc,形成α固溶体,B晶体结构是fcc,形成β固溶体,A与B 形成h相,其晶体结构是hcp:

1)指出a,b,h三个相的常见滑移系;

2)绘出它们单晶变形时应力-应变曲线示意图,试解释典型低层错能面心立方单晶体的加工硬化曲线,并比较与多晶体加工硬化曲线的差别。

4 简述冷加工纤维组织、带状组织和变形织构的成因及对金属材料性能的影响。

5 为什么金属材料经热加工后机械性能较铸造态好。

6 何为加工硬化?列出产生加工硬化的各种可能机制。(不必说明),加工硬化现象在工业上有哪些作用?

7 铝单晶体拉伸时,其力轴为[001],一个滑移系的临界分切应力为0.79MN/m2,取向因子COSfCOSl=0.41,试问有几个滑移系可同时产生滑移?开动其中一个滑移系至少要施加多大的拉应力?

9 简要说明第二相在冷塑性变形过程中的作用。

10 讨论织构的利弊及控制方法。

11 叙述金属和合金在冷塑性变形过程中发生的组织性能的变化。

12 图7-1所示低碳钢的三条拉伸曲线,1-塑性变形;2-去载后立即再行加载;3-去载后时效再加载。试回答下列问题:

1)解释图示曲线2无屈服现象和曲线3的屈服现象。

2)屈服现象对金属变形制件表面质量有何影响,如何改善表面质量。

13 退火纯Fe,其晶粒尺寸d=1/4mm时,其屈服点ss=100MNm-2;d=1/64mm时ss=250MNm-

图7-1 2。d=1/16mm时,根据霍尔—配奇公式求其ss为多少?

第5章材料的形变和再结晶:2 回复与再结晶

1 名词

变形织构与再结晶织构,再结晶全图,冷加工与热加工,带状组织,加工流线,动态再结晶,临界变形度,二次再结晶,退火孪晶

2 问答

1 再结晶与固态相变有何区别?

2 简述金属冷变形度的大小对再结晶形核机制和再结晶晶粒尺寸的影响。

3 灯泡中W丝在高温下工作,发生显著晶粒长大性能变脆,在热应力作用下破断,试找出两种延长钨丝寿命的方法?

4 户外用的架空铜导线(要求一定的强度)和户内电灯用花线,在加工之后可否采用相同的最终热处理工艺?为什么?

5 纯铝经90%冷变形后,取三块试样分别加热到70e ,150e ,300e ,各保温一小时后空冷,纯铝的熔点为660e。

1)分析所得组织,画出示意图;

2)说明它们强度、硬度的高低和塑性方面的区别并简要说明原因。

7 今有工业纯钛、纯铝和纯铅铸锭,试问如何选择它们的轧制开坯温度?开坯后,将它们在室温(20℃)进行轧制,它们的塑性谁好谁坏?为什么?它们在室温下可否连续轧制下去?钛、铅、铝分别怎样才能轧成很薄的带材?

已知:工业纯金属的再结晶温度T再=(0.3-0.4)T熔,钛熔点1672℃,883℃以下为hcp,883℃以上为bcc;铝熔点为660℃,fcc结构(面心立方);铅熔点为327℃,fcc结构(面心立方)。

8 试说明晶粒大小对金属材料室温及高温力学性能的影响,在生产中如何控制材料的晶粒度。

9 如何提高固溶体合金的强度

10 试用位错理论解释固溶强化,弥散强化,以及加工硬化的原因。

第6章单组元相图及纯晶体凝固

1.填空

1. 在液态纯金属中进行均质形核时,需要起伏和起伏。

2 液态金属均质形核时,体系自由能的变化包括两部分,其中自由能是形核的阻力,

是形核的动力;临界晶核半径r K与过冷度vT关系为,临界形核功vG K等于。

3 动态过冷度是指。

4 在工厂生产条件下,过冷度增大,则临界晶核半径,金属结晶冷却速度越快,N/G比值,晶粒越。

5. 获得非晶合金的基本方法是。

二、问答

1 根据凝固理论,试述细化晶粒的基本途径。

2 试根据凝固理论,分析通常铸锭组织的特点。

3 简述液态金属结晶时,过冷度与临界晶核半径,形核功及形核率的关系。

4 铜的熔点Tm=1356K,熔化热vHm=1628J/cm2,s=177×10-7J/cm,点阵常数a=0.3615nm。求铜vT=100e 时均匀形核的临界核心半径。

5:何谓过冷,过冷度,动态过冷度,它们对结晶过程有何影响?

6根据冷却速度对金属凝固后组织的影响,现要获得微晶,非晶,亚稳相,请指出其凝固时如何控制。

7、简述纯金属凝固时润湿角θ、杂质颗粒的晶体结构和表面形态对异质形核的影响。

第7章二元系相图及合金的凝固

一、填空

1. 固溶体合金凝固时,除了需要结构起伏和能量起伏外,还要有起伏。

2. 按液固界面微观结构,界面可分为和。

3. 液态金属凝固时,粗糙界面晶体的长大机制是,光滑界面晶体的长大机制是和。

4 在一般铸造条件下固溶体合金容易产生偏析,用热处理方法可以消除。

5 液态金属凝固时,若温度梯度dT/dX>0(正温度梯度下),其固、液界面呈状,dT/dX<0时(负温度梯度下),则固、液界面为状。

6. 靠近共晶点的亚共晶或过共晶合金,快冷时可能得到全部共晶组织,这称为。

7 固溶体合金凝固时,溶质分布的有效分配系数k e= ,当凝固速率很大时k e趋于。

8. 在二元相图中,L1→a+L2叫反应,b→L+a称为转变,而反应a1—a2+b称为反应,a+b?g称为反应。

9 Fe-Fe3C相图中含碳量小于为钢,大于为铸铁;铁碳合金室温平衡组织均由

和两个基本相组成;根据溶质原子的位置,奥氏体其晶体结构是,是固溶体,铁素体是,其晶体结构是,合金平衡结晶时,奥氏体的最大含量是;珠光体的含碳量是,它是由和组成的两相混合物;莱氏体的含碳量是;在常温下,亚共析钢的平衡组织是,过共析钢的平衡组织是,亚共晶白口铸铁的平衡组织

是,莱氏体的相组成物是,变态莱氏体的相组成物是,Fe3C I是从中析出的,Fe3C II是从中析出的,Fe3C III是从中析出的,它们的含碳量为,Fe3C主要性能特点是,A共析反应后的生成物称为。

2 问答

1 如图4-1所示为Ni-Al相图

1)填出相图中各相区的平衡相;

2)指出图中的稳定化合物和不稳定化合物;

3)写出图中存在的恒温反应,指明反应类型;

4)指出含Ni 30%(重量)的合金在平衡冷却时的相变过程,计算室温下的相组成与组织组成,并计算出其中组织组成物的百分数。

5)试说明含Ni89%(重量)的Ni-Al合金其平衡凝固与非平衡凝固后的显微组织的不同。6)设X合金平衡凝固完毕时的组织为a(Al)初晶+(a+b)共晶,其中a初晶占80%,则此合金中Ni组元的含量是多少?

7)绘出1500e 时Al-Ni合金系的自由能—成分曲线示意图。

图4-1 图4-2

2 根据Cu-Sn相图(图4-2),Cu为fcc结构。回答下列问题:

1)a相为何种晶体结构?

2)计算212℃时Cu-90%Sn合金在T E温度时(共晶反应前)的平衡分配系数。

3)Cu-13.47%Sn合金在正常条件下凝固后,a相的晶界上出现少量b相,其原因何在?如何消除b相?

4)分析Cu-70%Sn合金平衡凝固过程,并计算共晶反应刚完毕时相组成物和组织组成物的相对含量。

5)画出Cu-Sn系合金在450℃时各相自由能---成分曲线示意图。

图4-3 图4-4

3 如图4-3为Mg-Y相图

1)填相区组成,写出相图上等温反应及Y=5%wt时的合金K在室温时的平衡组织。

2)已知Mg为hcp结构,试计算Mg晶胞的致密度;

3)指出提高合金K强度的可能方法

4)简述图中Y=10%wt之合金可能的强化方法。

4 试说明纯Al和铝-铜单相固溶体结晶的异同。

5 根据4-4的铁碳亚稳平衡相图回答下列问题:

1)写出下列Fe3C II含量最多的合金;珠光体含量最多的合金;莱氏体含量最多的合金。2)指出此二元系中比较适合做变形合金和铸造合金的成分范围。

3)如何提高压力加工合金的强度。

4)标注平衡反应的成分及温度,写出平衡反应式。

5)分析Fe-1%C合金的平衡凝固过程,并计算室温下其中相组成物和组织组成物的百分含量,

6)分析Fe-1%C合金在亚稳冷却转变和淬火冷却转变后组织的差异。

7)根据Fe-Fe3C状态图确定下列三种钢在给定温度下的显微组织(填入表中)

含碳量温度显微组织温度显微组织

0.4770℃停留一段时间P+F 900℃A+F

0.77680℃P 刚达到770℃ A

1.0700℃P+Fe3CⅡ刚达到770℃A+Fe3C

8)画出1200℃时各相的自由能---成分曲线示意图。

图4-5 图4-6

6:A为金属元素,B为非金属元素,形成二元相图如图4-5:

1)画出Ⅱ合金平衡冷却曲线以及平衡结晶后组织示意图,计算其室温下相组成物及组织组成物相对含量。

2)试分析不同冷却速度对下图中Ⅰ合金凝固后显微组织的影响。

3)Ⅰ合金在工业条件冷凝后如对合金进行扩散退火,应如何确定退火温度。

7:简述典型金属凝固时,固/液界面的微观结构,长大机制,晶体在正温度梯度下、负温度梯度下成长时固/液界面的形态。

8:根据Pb-Bi相图(图4-6)回答下列问题:

1)把空相区填上相的名称。

2)设X合金平衡凝固完毕时的相组成物为b和(Bi),其中b相占80%,则X合金中Bi组元的含量是多少?

3)设Y合金平衡凝固完毕时的组织为(Bi)初晶+[b+(Bi)]共晶,且初晶与共晶的百分含量相等,则此合金中Pb组元的含量是多少?

4)Pb-30%Bi合金非平衡凝固后室温下组织与平衡凝固组织有何不同。

第8章三元相图

1 根据Fe-C-Si的3.5%Si变温截面图(5-1),写出含0.8%C的Fe-C-Si三元合金在平衡

冷却时的相变过程和1100℃时的平衡组织。

图5-1

2 图5-2为Cu-Zn-Al合金室温下的等温截面和2%Al的垂直截面图,回答下列问题:

1)在图中标出X合金(Cu-30%Zn-10%Al)的成分点。

2)计算Cu-20%Zn-8%Al和Cu-25%Zn-6%Al合金中室温下各相的百分含量,其中α相成分点为Cu-22.5%Zn-3.45%Al,γ相成分点为Cu-18%Zn-11.5%Al。

3)分析图中Y合金的凝固过程。

图5-2

3 如图5-3是A-B-C三元系合金凝固时各相区,界面的投影图,A、B、C分别形成固溶体α、β、γ。

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

材料科学基础复习题

第一章原子结构 一判断题 1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。 3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。 4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。 5. 范德华力包括静电力、诱导力、但不包括色散力。 二、简答题 原子间的结合键对材料性能的影响 第二章晶体结构 一、填空 1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。 2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是 a ,b ,c ,α,β,γ。 3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。 4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的 方向在铁的(110)平面上。 5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。 6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。 7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为 8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。 9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和 连接。

二判断题 1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。 2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。 4.晶体物质的共同特点是都具有金属键。 5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。 7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。 8.面心立方与密排六晶体结构其致密度配位数间隙大小都是相同的,密排面上的堆垛顺序也是相同的。 9.柏氏矢量就是滑移矢量。 10.位错可定义为柏氏回路不闭合的一种缺陷,或说:柏氏矢量不为0的缺陷。 11.线缺陷通常指位错,层错和孪晶。 12实际金属中都存在着点缺陷,即使在热力学平衡状态下也是如此。 三选择题 1.经过1/2,1/2,1/2之[102]方向,也经过。 (a) 1,.0,2, (b) 1/2,0,1, (c) –1,0,-2, (d) 0, 0,0, (e) 以上均不是 2. 含有位置0,0,1之(112)平面也包含位置。 (a)1,0,0, (b)0,0,1/2, (c)1,0,1/2。 3.固体中晶体与玻璃体结构的最大区别在于。 (a)均匀性(b)周期性排列(c)各向异性(d)有对称性 4.晶体微观结构所特有的对称元素,除了滑移面外,还有 (a)回转轴(b)对称面(c)螺旋轴(d)回转-反映轴 5.按等径球体密堆积理论,最紧密的堆积形式是。 (a)bcc; (b)fcc; (c)hcp 6.在MgO离子化合物中,最可能取代化合物中Mg2+的正离子(已知各正离子半径 (nm)分别是:(Mg2+)0.066、(Ca2+)0.099、(Li+)0.066、(Fe2+)0.074)是_(c)____。 (a)Ca2+; (b)Li+; (c)Fe2+ 7.下对晶体与非晶体描述正确的是:

材料科学基础习题及答案

习题课

一、判断正误 正确的在括号内画“√”,错误的画“×” 1、金属中典型的空间点阵有体心立方、面心立方和密排六方三种。 2、位错滑移时,作用在位错线上的力F的方向永远垂直于位错线并指向滑移面上的未滑移区。 3、只有置换固溶体的两个组元之间才能无限互溶,间隙固溶体则不能。 4、金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减小,因此是一个自发过程。 5、固溶体凝固形核的必要条件同样是ΔG<0、结构起伏和能量起伏。 6三元相图垂直截面的两相区内不适用杠杆定律。 7物质的扩散方向总是与浓度梯度的方向相反。 8塑性变形时,滑移面总是晶体的密排面,滑移方向也总是密排方向。 9.晶格常数是晶胞中两相邻原子的中心距。 10.具有软取向的滑移系比较容易滑移,是因为外力在在该滑移系具有较大的分切应力值。11.面心立方金属的滑移面是{110}滑移方向是〈111〉。 12.固溶强化的主要原因之一是溶质原子被吸附在位错附近,降低了位错的易动性。13.经热加工后的金属性能比铸态的好。 14.过共析钢的室温组织是铁素体和二次渗碳体。 15.固溶体合金结晶的过程中,结晶出的固相成份和液相成份不同,故必然产生晶内偏析。16.塑性变形后的金属经回复退火可使其性能恢复到变形前的水平。 17.非匀质形核时液体内部已有的固态质点即是非均匀形核的晶核。 18.目前工业生产中一切强化金属材料的方法都是旨在增大位错运动的阻力。 19、铁素体是α-Fe中的间隙固溶体,强度、硬度不高,塑性、韧性很好。 20、体心立方晶格和面心立方晶格的金属都有12个滑移系,在相同条件下,它们的塑性也相同。 21、珠光体是铁与碳的化合物,所以强度、硬度比铁素体高而塑性比铁素体差。 22、金属结晶时,晶粒大小与过冷度有很大的关系。过冷度大,晶粒越细。 23、固溶体合金平衡结晶时,结晶出的固相成分总是和剩余液相不同,但结晶后固溶体成分是均匀的。 24、面心立方的致密度为0.74,体心立方的致密度为0.68,因此碳在γ-Fe(面心立方)中的溶解度比在α-Fe(体心立方)的小。 25、实际金属总是在过冷的情况下结晶的,但同一金属结晶时的过冷度为一个恒定值,它与冷却速度无关。 26、金属的临界分切应力是由金属本身决定的,与外力无关。 27、一根曲折的位错线不可能是纯位错。 28、适当的再结晶退火,可以获得细小的均匀的晶粒,因此可以利用再结晶退火使得铸锭的组织细化。 29、冷变形后的金属在再结晶以上温度加热时将依次发生回复、再结晶、二次再结晶和晶粒长大的过程。 30、临界变形程度是指金属在临界分切应力下发生变形的程度。 31、无限固溶体一定是置换固溶体。 32、金属在冷变形后可形成带状组织。 33、金属铅在室温下进行塑性成型属于冷加工,金属钨在1000℃下进行塑性变形属于热加工。

材料科学基础作业

Fundamentals of Materials Science 1. Determine the Miller indices for the planes shown in the following unit cell: A:(2 1 -1) B:(0 2 -1) 2. Show that the atomic packing factor for HCP is 0.74. Solution: This problem calls for a demonstration that the APF for HCP is 0.74. Again, the APF is just the total sphere-unit cell volume ratio. For HCP, there are the equivalent of six spheres per unit cell, and thus Now, the unit cell volume is just the product of the base area times the cell height, c. This base area is just three times the area of the parallelepiped ACDE shown below.

The area of ACDE is just the length of CD times the height BC. But CD is just a or 2R, and 3. For both FCC and BCC crystal structures, the Burgers vector b may be expressed as

材料科学基础习题

查看文本 习题 一、名词解释 金属键; 结构起伏; 固溶体; 枝晶偏析; 奥氏体; 加工硬化; 离异共晶; 成分过冷; 热加工; 反应扩散 二、画图 1在简单立方晶胞中绘出()、(210)晶面及[、[210]晶向。 2结合Fe-Fe3C相图,分别画出纯铁经930℃和800℃渗碳后,试棒的成分-距离曲线示意图。 3如下图所示,将一锲形铜片置于间距恒定的两轧辊间轧制。试画出轧制后铜片经再结晶后晶粒大小沿片长方向变化的示意图。 4画出简单立方晶体中(100)面上柏氏矢量为[010]的刃型位错与(001)面上柏氏矢量为[010]的刃型位错交割前后的示意图。 5画图说明成分过冷的形成。 三、Fe-Fe3C相图分析 1用组织组成物填写相图。 2指出在ECF和PSK水平线上发生何种反应并写出反应式。 3计算相图中二次渗碳体和三次渗碳体可能的最大含量。 四、简答题 1已知某铁碳合金,其组成相为铁素体和渗碳体,铁素体占82%,试求该合金的含碳量和组织组成物的相对量。 2什么是单滑移、多滑移、交滑移?三者的滑移线各有什么特征,如何解释?。 3设原子为刚球,在原子直径不变的情况下,试计算g-Fe转变为a-Fe时的体积膨胀率;如果测得910℃时g-Fe和a-Fe的点阵常数分别为0.3633nm和0.2892nm,试计算g-Fe转变为a-Fe的真实膨胀率。 4间隙固溶体与间隙化合物有何异同? 5可否说扩散定律实际上只有一个?为什么? 五、论述题 τC 结合右图所示的τC(晶体强度)—ρ位错密度 关系曲线,分析强化金属材料的方法及其机制。 晶须 冷塑变 六、拓展题 1 画出一个刃型位错环及其与柏士矢量的关系。 2用金相方法如何鉴别滑移和孪生变形? 3 固态相变为何易于在晶体缺陷处形核? 4 画出面心立方晶体中(225)晶面上的原子排列图。 综合题一:材料的结构 1 谈谈你对材料学科和材料科学的认识。 2 金属键与其它结合键有何不同,如何解释金属的某些特性? 3 说明空间点阵、晶体结构、晶胞三者之间的关系。 4 晶向指数和晶面指数的标定有何不同?其中有何须注意的问题? 5 画出三种典型晶胞结构示意图,其表示符号、原子数、配位数、致密度各是什么? 6 碳原子易进入a-铁,还是b-铁,如何解释? 7 研究晶体缺陷有何意义? 8 点缺陷主要有几种?为何说点缺陷是热力学平衡的缺陷?

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

材料科学基础练习题

练习题 第三章 晶体结构,习题与解答 3-1 名词解释 (a )萤石型和反萤石型 (b )类质同晶和同质多晶 (c )二八面体型与三八面体型 (d )同晶取代与阳离子交换 (e )尖晶石与反尖晶石 答:(a )萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b )类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c )二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构 三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d )同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e )正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a )在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四面体间隙位置数与氧离子数之比又为若干? (b )在氧离子面心立方密堆积结构中,对于获得稳定结构各需何种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a )参见2-5题解答。1:1和2:1 (b )对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO ; (2)填满所有的四面体空隙,1价阳离子,Li2O ; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO 。 3-3 MgO 晶体结构,Mg2+半径为0.072nm ,O2-半径为0.140nm ,计算MgO 晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO 的密度。并说明为什么其体积分数小于74.05%?

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料科学基础习题与答案

第二章思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al、α-Fe、Mg三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu的原子直径为A,求Cu的晶格常数,并计算1mm3Cu的原子数。 7. 已知Al相对原子质量Ar(Al)=,原子半径γ=,求Al晶体的密度。 8 bcc铁的单位晶胞体积,在912℃时是;fcc铁在相同温度时其单位晶胞体积是。当铁由bcc转变为fcc时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何

10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。 14. 在立方晶系中的一个晶胞内画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 15 在六方晶系晶胞中画出[1120],[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 16.在立方晶系的一个晶胞内同时画出位于(101),(011)和(112)晶面上的[111]晶向。 17. 在1000℃,有W C为%的碳溶于fcc铁的固溶体,求100个单位晶胞中有多少个碳原子(已知:Ar(Fe)=,Ar(C)=) 18. r-Fe在略高于912℃时点阵常数a=,α-Fe在略低于912℃时a=,求:(1)上述温度时γ-Fe和α-Fe的原子半径R;(2)γ-Fe→α-Fe转变时的体积变化率;(3)设γ-Fe→α-Fe转变时原子半径不发生变化,求此转变时的体积变

最新材料科学基础-综合复习题

材料科学基础复习题 一、选择题 1. 原子结合键包括物理键和化学键, 下述结合键中属于化学键的是. (A) 金属键(B) 离子键(C) 分子键(D) 共价键 2. 原子结合键包括物理键和化学键, 下述结合键中属于物理键的是. (A) 氢键(B) 离子键(C) 分子键(D) 共价键 3. 工业用硅酸盐属于. (A) 金属材料(B) 陶瓷材料(C) 复合材料(D) 高分子材料 4. 布拉菲点阵共有中. (A) 8 (B) 10 (C) 12 (D) 14 5. BCC、FCC和HCP等三种典型晶体结构中, 单位晶胞的原子数分别为. (A) 2, 4, 6 (B) 4, 2, 6 (C) 3, 4, 5 (D) 6, 2, 4 6. 晶面间距表示相邻两个平行晶面之间的垂直距离, 其大小反映了晶面上原子排列的紧密程度, 一般规律是. (A) 在简单立方点阵中, 低指数的晶面间距较大 (B) 在简单立方点阵中, 高指数的晶面间距较大 (C) 晶面间距越大, 该晶面上原子排列越紧密 (D) 晶面间距越大, 该晶面上原子排列越稀疏 7. BCC、FCC和HCP等三种典型晶体结构中, 原子配位数依次为. (A) 8, 12, 8 (B) 8, 12, 10 (C) 12, 8, 6 (D) 8, 12, 12 8. 密堆积结构的致密度为. (A) 0.68 (B) 0.74 (C) 0.82 (D) 1.0 9. MgO陶瓷晶体具有NaCl型结构, 单位晶胞的离子数为. (A) 4 (B) 6 (C) 8 (D) 10 10. SiC陶瓷晶体具有金刚石型结构, 该结构一般特征是. (A) 原子结合键为共价键 (B) 原子配位数为4 (C) 单位晶胞包含8个原子 (D) 属于面心立方点阵, 为密堆积结构 11. 下述晶体缺陷中属于点缺陷的是. (A) 空位(B) 位错(C) 相界面(D) 间隙原子 12. 下述晶体缺陷中属于线缺陷的是. (A) 空位(B) 位错(C) 晶界(D) 间隙原子 13. 下述晶体缺陷中属于面缺陷的是. (A) 表面(B) 位错(C) 相界面(D) 空位 14. 下述界面中界面能最小的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 15. 下述界面中界面能最大的是. (A) 完全共格界面(B) 共格界面(C) 非共格界面(D) 半共格界面 16. 理想密排六方金属的c/a为. (A) 1.6 (B)(C) (D) 1

材料科学基础2复习题与参考答案

材料科学基础2复习题及部分参考答案 一、名词解释 1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶 粒的过程。 2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。 3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点 强度和节约材料为目的。(《笔记》聚合物拉伸时出现的细颈伸展过程。) 4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。(《书》晶体中某处一列或者若 干列原子发生了有规律的错排现象) 5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位 置有差别),形成所谓的“柯氏气团”。(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。) 6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。 7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。 8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。(《书》晶体开始滑移时,滑移方向上的分切应力。) 9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬 化。(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。) 10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。(《书》使金属在再结晶温度以上发生加 工变形的工艺。) 11、柏氏矢量:是描述位错实质的重要物理量。反映出柏氏回路包含的位错所引起点阵畸变的总积累。(《书》揭 示位错本质并描述位错行为的矢量。)反映由位错引起的点阵畸变大小的物理量。 12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。 13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为 层错面)两侧附近原子的错排的一种面缺陷。 14、位错的应变能:位错的存在引起点阵畸变,导致能量增高,此增量称为位错的应变能。 15、回复:发生形变的金属或合金在室温或不太高的温度下退火时,金属或合金的显微组织几乎没有变化,然而性能 却有程度不同的改变,使之趋近于范性形变之前的数值的现象。(《书》指冷变形金属加热时,尚未发生光学显微组织变化前(即再结晶前)的微观结构及性能的变化过程。) 16、全位错:指伯氏矢量为晶体点阵的单位平移矢量的位错。 17、弗兰克尔空位:当晶体中的原子由于热涨落而从格点跳到间隙位置时,即产生一个空位和与其邻近的一个间 隙原子,这样的一对缺陷——空位和间隙原子,就称为弗兰克尔缺陷。(《书》存在能量起伏的原子摆脱周围原子的约束而跳离平衡位置进入点阵的间隙中所形成的空位(原子尺度的空洞)。) 18、层错能:单位面积层错所增加的能量。(《书》产生单位面积层错所需要的能量。) 19、表面热蚀沟:金属长时间加热时,与表面相交处因张力平衡而形成的热蚀沟。(《书》金属在高温下长时间加热时, 晶界与金属表面相交处为了达到表面张力间的平衡,通过表面扩散产生的热蚀沟。) 20、动态再结晶:金属在热变形过程中发生的再结晶。 二、填空题 1、两个平行的同号螺位错之间的作用力为排斥力,而两个平行的异号螺位错之间的作用力为吸引力。 2、小角度晶界能随位向差的增大而增大;大角度晶界能与位向差无关。 3、柏氏矢量是一个反映由位错引起的点阵畸变大小的物理量;该矢量的模称为位错强度。 4、金属的层错能越低,产生的扩展位错的宽度越宽,交滑移越难进行。 5、螺型位错的应力场有两个特点,一是没有正应力分量,二是径向对称分布。 6、冷拉铜导线在用作架空导线时,应采用去应力退火,而用作电灯花导线时,则应采用再结晶退火。 7、为了保证零件具有较高的力学性能,热加工时应控制工艺使流线与零件工作时受到的最大拉应力的方向 一致,而与外加的切应力方向垂直。 8、位错的应变能与其柏氏矢量的模的平方成正比,故柏氏矢量越小的位错,其能量越低,在晶体中越稳定。 9、金属的层错能越高,产生的扩展位错的宽度越窄,交滑移越容易进行。

《材料科学基础》习题与思考题电子教案

《材料科学基础》习题与思考题

《材料科学基础教程》复习题与思考题 一、选择与填空 1-1下列组织中的哪一个可能不是亚稳态,即平衡态组织? a)马氏体+残余奥氏体b)上贝氏体c)铁素体+珠光体d)奥氏体+贝氏体 1-2下列组织中的哪一个可能不是亚稳态? a)铁碳合金中的马氏体b)铁碳合金中的珠光体+铁素体 c)铝铜合金中的a +GPZ d铁碳合金中的奥氏体+贝氏体 1-3单相固溶体在非平衡凝固过程中会形成成分偏析: a)若冷却速度越大,则成分偏析的倾向越大; b)若过冷度越大,则成分偏析的倾向越大; c)若两组元熔点相差越大,则成分偏析的倾向越小; d)若固相线和液相线距离越近,贝U成分偏析的倾向越小。 1-4有两要平等右螺旋位错,各自的能量都为E1,当它们无限靠近时,总能量为—a)2E1 b) 0 c) 4E1 1-13两根具有反向柏氏矢量的刃型位错在一个原子面间隔的两个平行滑移面上相向运动以后,在相遇处___________ 。 a)相互抵消b)形成一排间隙原子c)形成一排空位 1-15位错运动方向处处垂直于位错线,在运动过程中是可变的,晶体做相对滑动的方向—。 a)随位错线运动方向而改变b)始终是柏氏矢量方向c)始终是外力方向 1-16位错线张力是以单位长度位错线能量来表示,则一定长度位错的线张力具有— 纲。 a)长度的b)力的c)能量的 1-17位错线上的割阶一般通过—形成。

a)位错的交割b)共格界面c)小角度晶界 1-7位错上的割阶一般通过 _形成。 a)孪生b)位错的交滑移c)位错的交割 1-23刃形位错的割阶部分—。 a)为刃形位错b)为螺形位错c)为混合位错 1-24面心立方晶体中Frank不全位错最通常的运动方式是 _。 a)沿{111}面滑移b)沿垂直于{111}的面滑移c)沿{111}面攀移 1-25位错塞积群的一个重要效应是在它的前端引起______ 。 a)应力偏转b)应力松弛c)应力集中 1-26面心立方晶体中关于Shcockley分位错的话,正确的是_____ 。 a)Shcockle y分位错可以是刃型、螺型或混合型; b)刃型Shcockley分位错能滑移和攀移; c)螺型Shcockley分位错能交滑移。 1-27汤普森四面体中罗-罗向量、不对应罗-希向量、希-希向量分别有个。 a)12, 24, 8,12 b)24, 24, 8,12 c)12,24, 8,6 1-32 ______ ,位错滑移的派—纳力越小。 a)相邻位错的距离越大b)滑移方向上的原子间距越大c)位错宽度越大 1 —33层错和不全位错之间的关系是__ 。 a)层错和不全位错交替出现;b)层错和不全位错能量相同; c)层错能越高,不全位错柏氏矢量模越小;d)不全位错总是出现在层错和完整晶体的交界处。 1 —34位错交割后原来的位错线成为折线,若—。

(完整版)材料科学基础练习题

练习题 第三章晶体结构,习题与解答 3-1 名词解释 (a)萤石型和反萤石型 (b)类质同晶和同质多晶 (c)二八面体型与三八面体型 (d)同晶取代与阳离子交换 (e)尖晶石与反尖晶石 答:(a)萤石型:CaF2型结构中,Ca2+按面心立方紧密排列,F-占据晶胞中全部四面体空隙。 反萤石型:阳离子和阴离子的位置与CaF2型结构完全相反,即碱金属离子占据F-的位置,O2-占据Ca2+的位置。 (b)类质同象:物质结晶时,其晶体结构中部分原有的离子或原子位置被性质相似的其它离子或原子所占有,共同组成均匀的、呈单一相的晶体,不引起键性和晶体结构变化的现象。 同质多晶:同一化学组成在不同热力学条件下形成结构不同的晶体的现象。 (c)二八面体型:在层状硅酸盐矿物中,若有三分之二的八面体空隙被阳离子所填充称为二八面体型结构三八面体型:在层状硅酸盐矿物中,若全部的八面体空隙被阳离子所填充称为三八面体型结构。 (d)同晶取代:杂质离子取代晶体结构中某一结点上的离子而不改变晶体结构类型的现象。 阳离子交换:在粘土矿物中,当结构中的同晶取代主要发生在铝氧层时,一些电价低、半径大的阳离子(如K+、Na+等)将进入晶体结构来平衡多余的负电荷,它们与晶体的结合不很牢固,在一定条件下可以被其它阳离子交换。 (e)正尖晶石:在AB2O4尖晶石型晶体结构中,若A2+分布在四 面体空隙、而B3+分布于八面体空隙,称为正尖晶石; 反尖晶石:若A2+分布在八面体空隙、而B3+一半分布于四面体空 隙另一半分布于八面体空隙,通式为B(AB)O4,称为反尖晶石。 3-2 (a)在氧离子面心立方密堆积的晶胞中,画出适合氧离子位置 的间隙类型及位置,八面体间隙位置数与氧离子数之比为若干?四 面体间隙位置数与氧离子数之比又为若干? (b)在氧离子面心立方密堆积结构中,对于获得稳定结构各需何 种价离子,其中: (1)所有八面体间隙位置均填满; (2)所有四面体间隙位置均填满; (3)填满一半八面体间隙位置; (4)填满一半四面体间隙位置。 并对每一种堆积方式举一晶体实例说明之。 解:(a)参见2-5题解答。1:1和2:1 (b)对于氧离子紧密堆积的晶体,获得稳定的结构所需电价离子 及实例如下: (1)填满所有的八面体空隙,2价阳离子,MgO; (2)填满所有的四面体空隙,1价阳离子,Li2O; (3)填满一半的八面体空隙,4价阳离子,TiO2; (4)填满一半的四面体空隙,2价阳离子,ZnO。 3-3 MgO晶体结构,Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体中离子堆积系数(球状离子所占据晶胞的体积分数);计算MgO的密度。并说明为什么其体积分数小于74.05%?

材料科学基础习题及答案

《材料科学基础》习题及答案 第一章 结晶学基础 第二章 晶体结构与晶体中的缺陷 1 名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。 晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应. 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH 值等),结晶成为两种以上不同结构晶体的现象。 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论 图2-1 MgO 晶体中不同晶面的氧离子排布示意图 2 面排列密度的定义为:在平面上球体所占的面积分数。 (a )画出MgO (NaCl 型)晶体(111)、(110)和(100)晶面上的原子排布图; (b )计算这三个晶面的面排列密度。 解:MgO 晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a )(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b )在面心立方紧密堆积的单位晶胞中,r a 220= (111)面:面排列密度= ()[] 907.032/2/2/34/222==?ππr r

材料科学基础试题库答案

Test of Fundamentals of Materials Science 材料科学基础试题库 郑举功编

东华理工大学材料科学与工程系 一、填空题 0001.烧结过程的主要传质机制有_____、_____、_____ 、_____,当烧结分别进行四种传质时,颈部增长x/r 与时 间t 的关系分别是_____、_____、_____ 、_____。 0002.晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、 _____ 。 0003.晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是_____、_____ 、_____ 、 _____ 、_____ 、_____ 。 0004.晶体有两种理想形态,分别是_____和_____。 0005.晶体是指内部质点排列的固体。 0006.以NaCl 晶胞中(001)面心的一个球(Cl- 离子)为例,属于这个球的八面体空隙数为,所以属于这个球的四面体空隙数为。 0007.与非晶体比较晶体具有自限性、、、、和稳定性。 0008. 一个立方晶系晶胞中,一晶面在晶轴X 、Y 、Z 上的截距分别为2a、1/2a 、2/3a,其晶面的晶面指数是。 0009.固体表面粗糙度直接影响液固湿润性,当真实接触角θ时,粗糙度越大,表面接触角,就越容易湿润;当θ,则粗糙度,越不利于湿润。 0010.硼酸盐玻璃中,随着Na2O(R2O)含量的增加,桥氧数,热膨胀系数逐渐下降。当Na2O 含量达到15%—16%时,桥氧又开始,热膨胀系数重新上升,这种反常现象就是硼反常现象。 2+进入到KCl 间隙中而形成0011.晶体结构中的点缺陷类型共分、和三种,CaCl2中Ca 点缺陷的反应式为。 0012.固体质点扩散的推动力是________。 0013.本征扩散是指__________,其扩散系数D=_________,其扩散活化能由________和_________ 组成。 0014.析晶过程分两个阶段,先______后______。 0015.晶体产生Frankel 缺陷时,晶体体积_________,晶体密度_________;而有Schtty 缺陷时,晶体体积_________, 晶体密度_________。一般说离子晶体中正、负离子半径相差不大时,_________是主要的;两种离子半径相差大 时,_________是主要的。 0016.少量CaCl2 在KCl 中形成固溶体后,实测密度值随Ca2+离子数/K+离子数比值增加而减少,由此可判断其 缺陷反应式为_________。 0017.Tg 是_________,它与玻璃形成过程的冷却速率有关,同组分熔体快冷时Tg 比慢冷时_________ ,淬冷玻璃比 慢冷玻璃的密度_________,热膨胀系数_________。 0018.同温度下,组成分别为:(1) 0.2Na2O-0.8SiO2 ;(2) 0.1Na2O-0.1CaO-0.8SiO2 ;(3) 0.2CaO-0.8SiO2 的 三种熔体,其粘度大小的顺序为_________。 0019.三T 图中三个T 代表_________, _________,和_________。 0020.粘滞活化能越_________ ,粘度越_________ 。硅酸盐熔体或玻璃的电导主要决定于_________ 。 0021.0.2Na2O-0.8SiO2 组成的熔体,若保持Na2O 含量不变,用CaO 置换部分SiO2 后,电导_________。 0022.在Na2O-SiO2 熔体中加入Al2O3(Na2O/Al2O3<1), 熔体粘度_________。 0023.组成Na2O . 1/2Al2O3 . 2SiO2 的玻璃中氧多面体平均非桥氧数为_________。 0024.在等大球体的最紧密堆积中,六方最紧密堆积与六方格子相对应,立方最紧密堆积与_______ 相对应。0025.在硅酸盐晶体中,硅氧四面体之间如果相连,只能是_________方式相连。 2

材料科学基础作业解答分析

第一章 1.简述一次键与二次键各包括哪些结合键?这些结合键各自特点如何? 答:一次键——结合力较强,包括离子键、共价键和金属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。 ①离子键:由于正、负离子间的库仑(静电)引力而形成。特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大; ②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。 ③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。 ④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。也称为分子键。特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。 2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。 答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。 ②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。 ③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。 3. 晶体与非晶体的区别?稳态与亚稳态结构的区别? 晶体与非晶体区别: 答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。

相关主题
文本预览
相关文档 最新文档