当前位置:文档之家› 空气参数计算方法的分析研究

空气参数计算方法的分析研究

空气参数计算方法的分析研究
空气参数计算方法的分析研究

16种常用数据分析方法

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策 树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0 (常为理论值或标准值)有无差别; B 配对样本t 检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t 检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析用于分析离散变量或定型变量之间是否存在相关。对于二维表,可进行卡 方检验,对于三维表,可作Mentel-Hanszel 分层分析列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以

室内和室外空气设计参数

第四章室内和室外空气设计参数 4.1内空气设计参数 4.1.1舒适性空调室内空气设计参数 舒适性空调泛指生活环境中如居室、办公室、餐厅等对温度、湿度没有太高的精度要求的空调方式。舒适性空调室内空气的温度、相对湿度要求见表4-1所示。 表4-1 舒适性空调室内设计温湿度及风速 部分建筑的室内空气设计温、湿度见表4-2所示。民用建筑空气调节房间室内计算温度见表1-4-3所示。 表4-2 部分建筑的室内空气设计温、湿度 表4-3 民用建筑空气调节房间室内计算温度

4.1.2工艺性空调室内空气设计参数 工艺性空调室内空气设计参数见表4-4至表4-5所示。 表4-4 工艺性空调室内空气设计参数

表4-5 机械工业部分室内参数要求 4.1.3电子计算机房的温、湿度要求 电子计算机房的温、湿度标准值见表4-6所示。电子计算机房的温、湿度条件见表4-7所示。 表4-6 温、湿度标准值 表4-7 电子计算机房的温、湿度条件

4.2 室外空气设计参数 1、 夏季空调室外计算干球温度t K 室外气象参数可按下面简化公式计算 夏季空调室外计算干球温度 t K = 0.47 t x + 0.53 t r (℃) 式中 t x ——累年最热月平均温度 (℃) t r ——累年极端最高温度 (℃) 2、 夏季空调室的计算湿球温度t s (平均每年不保证50小时) 湿球温度t s 应分区计算 (1) 北部地区 黑龙江、吉林、辽宁、新疆、青海、甘肃、宁夏、内蒙和西藏等省、自治区计算公式如下 t s = 0.72 t sx + 0.28 t sr (℃) (2) 中部地区 陕西、山西、北京、天津、河北、河南、山东、上海、江苏、安徽和湖北的

热分析的基本参数与概念

R E P O R T Executive Summary

R E P O R T Table of Contents 1 Introduction .............................................................................................................. 3 1.1 基本参数介绍 . (3) 2 Activities ................................................................................................................... 4 2.1 Theta-ja (θja)Junction-to-Ambient (4) 2.1.1 测量方法 .................................................................................................... 4 2.1.2 节温计算公式 (6) 2.2 Theta-jc (θjc) Junction-to-Case (6) 2.2.1 测量方法 .................................................................................................... 6 2.2.2 节温计算公式 ............................................................................................. 6 2.2.3 θjc 与θja 的关系 .. (7) 2.3 Theta-jb (θjb) Junction-to-Board (7) 2.3.1 测量方法 .................................................................................................... 8 2.3.2 节温计算公式 ............................................................................................. 8 2.3.3 θjc 与θja 的关系 .. (8) 2.4 Ψ的含义 (9) 2.4.1 Ψjb ............................................................................................................. 9 2.4.2 Ψjc . (9) 2.5 各种封装的散热效果 (9) 2.5.1 TI PowerPAD 封装的使用注意事项 (10) 3 Results ................................................................................................................... 12 3.1 关于θja θjc ΨJB , ΨJT 使用问题 (12) 4 Discussion .............................................................................................................. 12 4.1 热仿真软件的使用 (12) 5 Conclusions ........................................................................................................... 12 5.1 ............................................................................................................................. 12 6 Abbreviations, Definitiones, Glossary ..................................................................... 13 6.1 ............................................................................................................................. 13 7 Version . (13)

暖通空调设计中关于室外气象参数的文献综述

关于室外气象参数的文献综述 通过对《建筑热过程》这门课程的学习,使我体会到在做暖通空调设计时,室外气象参数的重要性。所以,需要对室外气象参数的来源、处理、计算方法、使用等等做进一步学习。 空调设计气象参数,包括设计干球温度、湿球温度和太阳辐射,是建筑空调系统设计必要和基本的数据。它们同时作用于建筑物,.是导致围护结构的传热和通过渗透和通风直接进行质交换的驱动势。在空调系统中同时发生的设计气象条件是确定空调系统容量的峰值冷负荷所必需的条件。不适当的设计气象数据将造成容量过大或偏小的HV AC系统,会导致不必要的额外初投资和较低的部分负荷效率,或者经常不能提供充足的制冷量。 1.室外空气计算参数的数据来源及分析比较 原始数据来源于中国气象局气象信息中心气象室编制的我国地面气象资料数据集和气象辐射资料数据集。我国地面气象资料数据集由我国地面气候观测网国家基准气候站和国家基本气象站连续定时探测大气变化所记录的各种气象要素资料组成。基准气候站每天进行24次定时观测,基本气象站每天进行4次定时观测,分别为02:00、08:00、14:00、20:00。 采用国家气象信息中心气象资料室提供的26城市1978年1月1月至2007年12月31日的地面气候资料为观测基础数据,按我国规范的确定方法和国外不保证率的方法为基础,对室外空气计算参数的确定方法进行讨论,并更新了部分城市的主要室外空气计算参数,主要结论如下: (1)分别计算统计年限为10年、15年、20年及30年的室外空气计算参数,参考气象学上的规定并综合冬夏室外空气计算参数的变化与累年气温的变化规律,认为30年是比较适宜的统计期。 (2)我国空调室外空气计算参数与ASHRAE相比,数值处于保证级别比较高的水平,只是形式不够灵活,不能让设计师在设计时根据建筑的不同用途、实际需要来选择对应的设计值。而且我国现在还不能提供满足统计要求的逐时气温数据,使用不保证率的方法条件还不够成熟。 (3)与GBJ19一87相比,夏季空调干球计算温度变化不大,大部分城市温度增长在1℃以内,个别城市如乌鲁木齐、徐州的夏季空调设计温度甚至低于原规范的设计参数;采暖城市30年统计期的采暖室外计算温度增幅较为明显,大部分上升了2一3℃,部分北方城市10年统计期的冬季采暖及空调设计参数呈现出下降趋势,有的甚至与30年的统计数据持平。 (4)对负荷计算方法进行分析并对比新老30年的计算参数,我国北方地区采暖室外计

LOGIT模型参数估计方法研究_金安

第4卷第1期2004年2月 交通运输系统工程与信息 Jo ur nal of T r anspo rt atio n Sy stems Eng ineer ing and Infor matio n T echno lo gy Vo l.4No.1Febr uar y 2004 文章编号:1009-6744(2004)01-0071-05 LOGIT 模型参数估计方法研究 金 安 (广州市规划局交通研究所,广州510030) 摘要: 离散选择模型,特别是L OG IT 模型在交通需求模型建立过程中,应用非常广泛,许多实际的交通政策问题都涉及到方式选择,然而L OG IT 模型的建立非常困难,尤其是效用函数及参数估计.本文重点就L O GIT 模型参数估计的有关问题进行讨论,特别是运用统计方法如何对效用函数的变量进行选取及比较不同形式效用函数. 关键词: L O GI T 模型;参数估计;t 检验;似然率检验中图分类号: N 945.12 On Methodology of Parameter Estimation in L OGIT Model JIN An (Instit ute o f T r aspo r tatio n,G uang zho u P la nning Bur eau,Guang zho u 510030,China ) Abstract : Disagg reg ate choice mo del ,especially L O GIT m odel ,hav e been used w idely in dev elo pment of tr avel demand mo del ,many pr actical tr anspor tation policy issues ar e concerned w ith mode choice.But pro cedure o f development of L OG IT mo del is difficult,especially mo del calibr atio n and for m of utility functio n.T his paper discuss r elat ional pr oblems o n development of L OG IT model,P articular emphasis is placed o n pr actical pr ocedur es for selection the co rr ect ex planato ry var iables and on compar ing differ ent ver sions of utility functio n using st atistical metho ds.Keywords : L OG IT mo del;par ameter est imation;t -test;likeliho od test CLC number : N 945.12 收稿日期:2003-11-24 金安:广州市规划局交通研究所工程师,工学硕士.研究方向为交通规划及交通需求模型. 1 引 言 实践过程中,LOGIT 模型效用函数不可能预先知道,模型师在建立LOGIT 模型最初阶段几乎没有效用函数任何信息,最多认为在效用函数中会有哪些可能的变量,但也不能确定所有的变量是否都需要,更不可能知道哪些变量需要进行函数变换或效用函数参数的具体数值是多少.这些问题只有通过拟合合适的观测数据,并检验这些模型来确定哪一个最能够描述观测数据.本文主要介绍拟合和测试LOGIT 模型方法. 2 数据的要求 估计和检验过程的第一步是选择合适的观测数据,用于建立LOGIT 方式选择模型所需的数据有: (1)对个体实际方式选择行为的观测.例如, 要建立工作出行方式选择模型,需要对上班出行者方式选择进行观测的数据. (2)所有被选择和没有被选择方式的相关属性值.这些属性可能作为模型中的变量.例如,假设总出行时间被认为是模型中的一个变量,则对于样本中每一个个体而言,所需数据包括每一种可能方式的总出行时间.如果属性数据仅包含被选择方式,LOGIT 模型就不能建立. (3)任何可能作为变量的个体属性值.例如,汽车拥有水平,则需要样本中每个个体家庭汽车拥有水平数. 3 模型的设定 所需数据收集后,下一步工作是设定一种或多种效用函数形式.设定步骤包括确定效用函数中变量、属性的函数变换以及效用函数的形式.这个步

(整理)参数估计方法.

第七章 参数估计 第一节 基本概念 1、概念网络图 {}???? ??? ?? ???????????????????→??????单正态总体的区间估计区间估计一致性有效性无偏性估计量的评选标准极大似然估计矩估计点估计从样本推断总体

2、重要公式和结论

例7.1:设总体),(~b a U X ,求对a, b 的矩估计量。 例7.2:设n x x x ,,,,21 是总体的一个样本,试证 (1);21 10351321x x x ++= ∧ μ (2);12541313212x x x ++=∧μ (3).12 143313213x x x -+=∧μ 都是总体均值u 的无偏估计,并比较有效性。 例7.3:设n x x x ,,,,21 是取自总体),(~2 σμN X 的样本,试证 ∑=--=n i i x x n S 1 22 )(11 是2 σ的相合估计量。

第二节 重点考核点 矩估计和极大似然估计;估计量的优劣;区间估计 第三节 常见题型 1、矩估计和极大似然估计 例7.4:设0),,0(~>θθU X ,求θ的最大似然估计量及矩估计量。 例7.5:设总体X 的密度函数为 ?????≥=--. , 0,1)(/)(其他μθ θμx e x f x 其中θ>0, θ,μ为未知参数,n X X X ,,,21 为取自X 的样本。试求θ,μ的极大似然估计量。 2、估计量的优劣 例7.6:设n 个随机变量n x x x ,,,21 独立同分布, ,)(11,1,)(1 22 12 1∑∑==--===n i i n i i x x n S x n x x D σ 则 (A )S 是σ的无偏估计量; (B )S 是σ的最大似然估计量; (C )S 是σ的相合估计量; (D )x S 与2 相互独立。 例7.7:设总体X 的密度函数为 ?????<<-=, , 0,0),(6)(3 其他θθθx x x x f n X X X ,,,21 是取自X 的简单随机样本。 (1) 求θ的矩估计量∧ θ;

16种常用数据分析方法

一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W险验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数口与已知的某一总体均数口0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在 可能会影响处理效果的各种条件方面扱为相似; C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A虽然是连续数据,但总体分布形态未知或者非正态; B体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析 用于分析离散变量或定型变量之间是否存在相关。 对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。 五、相关分析 研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相 关程度。 1、单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量; 2、复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个 以上的自变量和因变量相关;

采暖通风设计规范·室内外计算参数·室外空气计算参数

暖通知识 第2.2.1条采暖室外计算温度,应采历年平均不保证5天的日平均温度。 注:本条及本节其他文中所谓"不保证"。系针对室外空气温度状况而言,"历年平均不保证",系针对累年不保证总天数或小时数的历年平均值而言。 第2.2.2条冬季通风室外计算温度,应采用累年最冷月平均温度。 第2.2.3条夏季通风室外计算温度,应采用历年最热月14时的月平均温度的平均值。 第2.2.4条夏季通风室外计算相对湿度,应采用历年最热月14时的月平均相对湿度的平均值。 第2.2.5条冬季空气调节室外计算温度,应采用历年平均不保证1天的日平均温度。 第2.2.6条冬季空调节室外计算相对湿度,应采用累年最冷月平均相对湿度。 第2.2.7条夏季空气调节室外计算干球温度,应采用历年平均不保证50h的干球温度。 注:统计干温球温度时,宜采用当地气象台站每天4次的定时温度记录,并以每次记录值代表6h的温度值核算。第2.2.8条夏季空气调节室外计算湿球温度,应采用历年平均不保证50h的湿球温度。 第2.2.9条夏季空气调节室外计算日平均温度,应采用历年平均不保证5天的日平均温度。 第2.2.10条夏季空气调节室外计算逐时温度,可按下式确定: tsh=twp+βΔtr(2.2.10-1)

式中:tsh---室外计算逐时温度(℃) twp---夏季空气调节室外计算日平均温度(℃),按本规范第2.2.9条采用。 β---室外温度逐时变化系数,按2.2.10采用; Δtr---夏季室外计算平均日较差,应按下式计算:室外温度逐时变化系数 560)this.width=560"> 式中:Δtr---夏季空气调节室外计算干球温度(℃),按本规范第2.2.7条采用。其他符号意义同式(2.2.10-1)。 第2.2.11条当室内温湿度必须全年保证时,应另行确定空气调节室外计算参数。 更多文章https://www.doczj.com/doc/3318219078.html,/ 长沙地暖 cscnwk 仅在部分时间(如夜间)工作的空气调节系统,可不遵守本规范第2.2.7条至第2.2.10条的规定。 第2.2.12条冬季室外平均风速,应采用累年最冷三个月各月平均风速的平均值。冬季室外最多风向的平均风速,应采用累年最冷三个月最多风向(静风除外)的各月平均风速的平均值。 夏季室外平均风速,应采用累年最热三个月各月平均风速的平均值。 第2.2.13条冬季最多风向及其频率,应采用累年最冷三个月的最多风向及其平均频率。 夏季最多风向及其频率,应采用累年最热三个月的最多风向及其平均频率。 年最多风向及其频率,应采用累年最多风向及其平均频率。 第2.2.14条冬季室外大气压力,应采用累年最冷三个月各月平均大气压力的平均值。 第2.2.15条冬季日照百分率,应采用累年最冷三个月各月月

非线性模型参数估计方法步骤

EViews非线性模型参数估计方法步骤 1.新建EViews工作区,并将时间序列X、P1和P0导入到工作区; 2.设定参数的初始值全部为1,其方法是在工作区中其输入下列命令 并按回车键 param c(1) 1 c(2) 1 c(3) 1 c(4) 1 3.估计非线性模型参数,其方法是在工作区中其输入下列命令并按 回车键 nls q=exp(c(1))*x^c(2)*p1^c(3)*p0^c(4) 4.得到结果见table01(91页表3. 5.4结果)(案例一结束) Dependent Variable: Q Method: Least Squares Date: 03/29/15 Time: 21:44 Sample: 1985 2006 Included observations: 22 Convergence achieved after 9 iterations Q=EXP(C(1))*X^C(2)*P1^C(3)*P0^C(4) Coefficient Std. Error t-Statistic Prob. C(1) 5.567708 0.083537 66.64931 0.0000 C(2) 0.555715 0.029067 19.11874 0.0000 C(3) -0.190154 0.143823 -1.322146 0.2027 C(4) -0.394861 0.159291 -2.478866 0.0233 R-squared 0.983631 Mean dependent var 1830.000 Adjusted R-squared 0.980903 S.D. dependent var 365.1392 S.E. of regression 50.45954 Akaike info criterion 10.84319 Sum squared resid 45830.98 Schwarz criterion 11.04156 Log likelihood -115.2751 Hannan-Quinn criter. 10.88992 Durbin-Watson stat 0.672163 (92页表3.5.5结果)(案例二过程) 5.新建EViews工作区,并将时间序列X、P1和P0导入到工作区;

设计用全国主要城市室外气象参数资料汇编

省份山东北京北京上海天津设计用室外气象参数单位济南北京密云上海天津拔海高度m 170.331.371.8 5.5 2.5 常年大气压pa 100813101169100847101618101677采暖室外计算温度℃-5.2 -7.5-8.9 1.2-7.0冬季通风室外计算温度℃-3.6 -7.6-8.7 3.5-6.5夏季通风室外计算温度℃30.9 29.929.930.829.9夏季通风室外计算相对湿度%56 58596962冬季空气调节室外计算温度℃-7.7 -9.8-11.7-1.2-9.4冬季空气调节室外计算相对湿 度% 45 37567473夏季空气调节室外计算干球温 度℃ 34.8 33.633.734.633.9夏季空气调节室外计算湿球温 度℃ 27.0 26.326.428.226.9夏季空气调节室外计算日平均 温度℃ 31.2 29.128.831.329.3冬季室外平均风速m/s 2.7 2.7 2.6 3.3 2.1冬季室外最多风向的平均风速m/s 3.5 4.5 3.2 3.0 5.6夏季室外平均风速m/s 2.8 2.2 2.2 3.4 1.7冬季最多风向——ENE NNW NE N NNW 冬季最多风向的频率%18 14211315夏季最多风向——SSW SE SSW S S 夏季最多风向的频率%19 12121411年最多风向——SSW SSW ENE ESE SSW 年最多风向的频率%15 101699冬季室外大气压力Pa 101853 102573102083102647102960夏季室外大气压力Pa 99727 9998799523100573100287冬季日照百分率%53 57533848设计计算用采暖期日数日100 12213140121 设计计算用采暖期初日——11月 26日 11月 14日 11月8 日 12月 31日 11月15 日 设计计算用采暖期终日——3月5 日 3月15 日 3月18 日 2月8 日 3月15 日 极端最低温度℃-14.9 -18.3-23.3-7.7-17.8极端最高温度℃42.0 41.940.739.640.5

空气物性参数表

空气物性参数表 湿空气热物性计算示例A ●分子量 Maw=Ma-(Ma-Mw)pw/paw 式中,Maw为湿空气分子量,g/mol;Ma为干空气的分子量,28.97g/mol;Mw为水蒸气的分子量,18.02g/mol;pw为湿空气中水蒸气的分压力,Pa;paw为湿空气的总压力,Pa。 计算示例:设湿空气总压力为101325Pa,其中水蒸气的分压力为3000Pa,则此时湿空气的分子量为: Maw=28.97-(28.97-18.02)*3000/101325 =28.65 g/mol ●湿空气中水蒸气分压力

pw=φps 式中,pw为湿空气中水蒸气的分压力,Pa;φ为湿空气的相对湿度,无因次;ps为湿空气温度下纯水的饱和蒸气压力(也为湿空气温度下饱和湿空气中水蒸气的分压力),Pa。 纯水的饱和蒸气压力的估算式为(0~100℃): ln(ps)=25.4281-5173.55/(Ts+273) 式中,ps为水的饱和蒸气压,Pa;Ts为水的温度,℃。 计算示例:设湿空气温度为36℃,相对湿度为70%,则湿空气中水蒸气分压力的计算过程为: 该温度下纯水的饱和蒸气压为: ln(ps)=25.4281-5173.55/(36+273)=8.6852 ps =e8.6852=5915 Pa

湿空气中的水蒸气分压力为: pw=φps=0.7*5915=4140.5Pa ●湿空气的露点温度 湿空气中水蒸气开始凝结的温度为其露点温度,等于其湿空气中水蒸气分压力下纯水的饱和温度,其估算式为(0~80℃): Td=5266.77/(25.7248-ln(pw))-273 式中,Td为湿空气的露点温度,℃;pw为湿空气中水蒸气的分压力,Pa。 计算示例:接上例,温度为36℃,相对湿度为70%的湿空气,其露点温度计算过程为: 湿空气中水蒸气分压力为4140.5Pa,则其对应的露点温度为:

常用生化检测项目分析方法及参数设置

常用生化检测项目分析方法及参数设置 一、常用生化检测项目分析方法举例 1.终点法检测常用的有总胆红素(氧化法或重氮法)、结合胆红素(氧化法或重氮法)、血清总蛋白(双缩脲法)、血清白蛋白(溴甲酚氯法)、总胆汁酸(酶法)、葡萄糖(葡萄糖氧化酶法)、尿酸(尿酸酶法)、总胆固醇(胆固醇氧化酶法)、甘油三酯(磷酸甘油氧化酶酶法)、高密度脂蛋白胆固醇(直接测定法)、钙(偶氮砷Ⅲ法)、磷(紫外法)、镁(二甲苯胺蓝法)等。以上项目中,除钙、磷和镁基本上还使用单试剂方式分析因而采用一点终点法外,其它测定项目都可使用双试剂故能选用两点终点法,包括总蛋白、白蛋白测定均已有双试剂可用。 2.固定时间法苦味酸法测定肌酐采用此法。 3.连续监测法对于酶活性测定一般应选用连续监测法,如丙氨酸氨基转移酶、天冬氨酸氨基转移酶、乳酸脱氢酶、碱性磷酸酶、γ谷氨氨酰基转移酶、淀粉酶和肌酸激酶等。一些代谢物酶法测定的项目如己糖激酶法测定葡萄糖、脲酶偶联法测定尿素等,也可用连续监测法。 4.透射比浊法透射比浊法可用于测定产生浊度反应的项目,多数属免疫比浊法,载脂蛋白、免疫球蛋白、补体、抗"O"、类风湿因子,以及血清中的其他蛋白质如前白蛋白、结合珠蛋白、转铁蛋白等均可用此法。 二、分析参数设置 分析仪的一些通用操作步骤如取样、冲洗、吸光度检测、数据处理等,其程序均已经固化在存储器里,用户不能修改。各种测定项目的分析参数(analysis paramete)大部分也已设计好,存于磁盘中,供用户使用;目前大多数生化分析仪为开放式,用户可以更改这些参数。生化分析仪一般另外留一些检测项目的空白通道,由用户自己设定分析参数。因此必须理解各参数的确切意义。 一、分析参数介绍 (一)必选分析参数 这类参数是分析仪检测的前提条件,没有这些参数无法进行检测。 1.试验名称试验名称(test code)是指测定项目的标示符,常以项目的英文缩写来表示。

参数估计方法

参数估计的方法 矩法 一、矩的概念 矩(moment )分为原点矩和中心矩两种。对于样本n y y y ,,, 21,各观测值的k 次方的平均值,称为样本的k 阶原点矩,记为k y ,有∑==n i k i k y n y 1 1,例如,算术 平均数就是一阶原点矩;用观测值减去平均数得到的离均差的k 次方的平均数称为样本的k 阶中心矩,记为k y y ) (-或k μ ?,有∑-= -=n i k i k y y n y y 1 ) (1)(,例如,样本 方差 ∑-=n i i y y n 1 2 ) (1就是二阶中心矩。 对于总体N y y y ,,, 21,各观测值的k 次方的平均值,称为总体的k 阶原点矩,记为)(k y E ,有∑= =N i k i k y N y E 1 1)(;用观测值减去平均数得到的离均差的k 次方 的平均数称为总体的k 阶中心矩,记为 ] )[(k y E μ-或 k μ,有 ∑-= -=N i k i k y N y E 1 ) (1])[(μμ。 二、矩法及矩估计量 所谓矩法就是利用样本各阶原点矩来估计总体相应各阶原点矩的方法,即 ∑= =n i k i k y n y 1 1→)(k y E (8·6) 并且也可以用样本各阶原点矩的函数来估计总体各阶原点矩同一函数,即若 ))(,),(),((k y E y E y E f Q 2= 则 ),,,(k y y y f Q 2?= 由此得到的估计量称为矩估计量。 [例8.1] 现获得正态分布),(2σμN 的随机样本n y y y ,,, 21,要求正态分布),(2σμN 参数μ和2σ的矩估计量。 首先,求正态分布总体的1阶原点矩和2阶中心矩: ?=?? ? ???--? =?=∞ +∞-∞ +∞-μσμσπdy y y dy y yf y E 2 2 exp 2)(21)()( (此处?? ? ???--2 2exp σμ2)(y 表示自然对数底数e 的?? ? ???--2 2σμ2)(y 的指数式,即] [2)(22 σμ--y e )

空气处理机组选择计算说明

空气处理机组选择计算 1 电算表格内容、适用范围和使用说明 1.1 空气状态点计算表 已知某空气状态点的任意2个常用参数,求其他参数: 1、已知干、湿球温度; 2、已知干球温度、相对湿度; 3、已知干球温度、含湿量; 4、已知干球温度、焓值; 5、已知含湿量、焓值。 1.2 一次回风空气处理机组的选择计算表 基本已知数据:冬夏季室内热湿负荷、人员所需新风量、冬夏季新风状态、冬季加湿方式(仅限于“等焓”或“等温”加湿) 注:冬季当室内热湿负荷低于设计工况时,空气处理机组则需要较大的加热和加湿量,因此冬季工况表中填入的热湿负荷值应适当考虑开机时室内较低负荷的数值。 1.2.1夏季工况计算表 1、表1:已知室内温湿度,求空气处理机组的送风量、送风参数、冷却量、冷凝水量等。适用于 允许采用最大送风温差的一般典型空气处理机组的选型计算。见图1.2.1-1处理过程1(实线)。 2、表2:已知室内温度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、冷凝水 量和室内相对湿度等。可用于要求较小送风温差、但又不采用二次加热或二次回风的空调系统 能否满足要求。见图1.2.1-1(例如下送风舒适性空调),可根据计算结果校核室内相对湿度 2 处理过程2(虚线)。 100% 图1.2.1-1 采用最大送风温差的一次回风系统夏季处理过程 3、表3:已知室内温湿度、允许送风温差,求空气处理机组的送风量、送风参数、冷却量、再热 量、冷凝水量等。适用于要求较小的送风温差,不再热不能满足室内湿度要求的情况,以及热湿比较小,采用再热才能将送风状态点处理至热湿比线上的情况等。见图1.2.1-2处理过程。

岩土参数的分析与选取

,, 的制 不

(一)工程地质单元体的划分 由于自然界中的岩土体成生条件和所处环境的不同,导致岩土体的性质具有明显的非均一性和各向异性。不同工程地质单元体的岩土参数具有较大的变异性,是一个随机变量。而对于同一工程地质单元体来说, 其值域的分布具有相同或相似的规律,可以用数理统计的方法进行分析 与处理。因此,在进行岩土参数的统计分析之前,首先应根据拟建场地 所处的地貌单元、岩性、成因类型、堆积年代等,对勘探深度范围内所 涉及的岩土初步划分工程地质单元(即工程地质层),然后按工程地质 单元体进行岩土参数的统计分析。 (二)各工程地质单元岩土参数的统计分析 岩土工程参数统计的特征值可分为两类:一类是反映资料分布的集中情况或中心趋势的,它们作为某批数据的典型代表,用算术平均值来 表示;另一类是反映参数分布的离散程度的,用标准差和变异系数来表征。各工程地质单元的平均值f m,标准差σf(和变异系数 (σ)分别按式(9-1)、式(9-2)、式(9-3)计算。其计算公式如 下: (9-1) (9-2) (9-3) 式中f i————岩土参数数据; n——参加统计的数据个数。 (三)岩土参数的变异性等级与变异系数(σ) 标准差虽然可以用来衡量参数离散程度,但由于它是有量纲的,只能用于同一参数的比较,而对于不同参数的离散性则无法进行比较。因此,

《岩土工程勘察规范》引入了变异性等级以及变异系数的概念来评价岩土参数的变异特征。 1.岩土参数的变异性等级 为了定量地判别和评价岩土参数的变异特性,以便提出可靠的设计参数值。《岩土工程勘察规范》对其变异性进行了等级划分,见表9-1 变异系数(σ) 岩土参数沿深度变化的特点,可划分为相关型和非相关型两种。 1)相关型:岩土参数随深度呈有规律的变化。正相关表示参数随深度的增加而增大,负相关表示参数随深可采用回归分析法求得。由于回归统度的增加而减小。相关系数计作用,减小了参数的随机变异性,提高了预估参数的可靠性。其变异系数可按式(9-4)和式(9-5)确 定。 目前国内外关于变异系数的研究成果见9-2表和表9-3

中央空调室内外空气计算参数

中央空调室、内外空气计算参数 中央空调空气计算-夏季空调室外计算干、湿球温度 夏季空调室外计算干球温度,应采用历年平均不保证50h的干球温度;夏季空调室外计算湿球温度,应采用历年平均不保证50h的湿球温度。 中央空调空气计算-夏季空调室外计算日平均温度和逐时温度 夏季计算经围护结构传入室内的热量时,应按不稳定传热过程计算,因此,必须已知室外设计日的室外平均温度和逐时温度。夏季空调室外计算日平均温度应采用历年平均不保证5天的日平均温度。 中央空调空气计算-冬季空调室外计算温度、湿度的确定 1、由于冬季空调系统加热、加湿所需费用,小于夏季冷却、减湿的费用,为便于计算,冬季围护结构传热按稳定传热计算,不考虑室外气温的波动。冬季采用空调设备送热风时,计算其围护结构传热和计算冬季新风负荷,采用同一冬季空调室外计算温度。 2、冬季空调室外计算温度,应采用历年平均不保证一天的日平均温度。 3、若冬季不使用空调设备送热风,仅采用采暖装置补偿房间失热时,计算围护结构传热应采用采暖室外计算温度。 4、由于冬季室外空气含湿量低于夏季,且变化量很小,不必给出湿球温度,只给出冬季室外计算相对湿度值。 5、冬季空调室外计算相对湿度应采用累年最冷月平均相对湿度。 中央空调空气计算-舒适性空调室内温、湿度标准 根据《采暖通风与空气调节设计规范》规定,舒适性空调室内计算参数如下:夏季温度24-28度,相对湿度40%-65%,风速不大于0.3m/s;冬季温度18-22度,相对湿度40%-60%,风速不大于0.2m/s。 如果在中央空调空气计算过程中,出现任何一点误差,或误差超出了规定范围,特别是将高温季节中罕见的高温或高湿的数值,按这种方式计算出的结果去配置设备的话,则会因为设备各项指标过高而形成浪费,所以参数计算这一环节的重要性则不言而喻了。可以咨询柯伊梅尔。

参数法

六、参数法 参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。 辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。 1、常见题型: 1. 设2x =3y =5z >1,则2x 、3y 、5z 从小到大排列是________________。 2. (理)直线x t y t =--=+?????2232上与点A(-2,3)的距离等于2的点的坐标是________。 (文)若k<-1,则圆锥曲线x 2-ky 2=1的离心率是_________。 3. 点Z 的虚轴上移动,则复数C =z 2+1+2i在复平面上对应的轨迹图像为____________________。 4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。 5. 设函数f(x)对任意的x 、y ∈R ,都有f(x +y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R 上是______函数。(填“增”或“减”) 6. 椭圆 x 2 16 + y 2 4 =1上的点到直线x +2y -2=0的最大距离是_____。 A. 3 B. 11 C. 10 D. 22 【简解】1小题:设2x =3y =5z =t ,分别取2、3、5为底的对数,解出x 、y 、z ,再用“比较法”比较2x 、3y 、5z ,得出3y<2x<5z ; 2小题:(理)A(-2,3)为t =0时,所求点为t =±2时,即(-4,5)或(0,1); (文)已知曲线为椭圆,a =1,c =11+k ,所以e =-1k k k 2 +; 3小题:设z =b i,则C =1-b 2+2i,所以图像为:从(1,2)出发平行于x 轴向右的射线; 4小题:设三条侧棱x 、y 、z ,则 12 xy =6、 12 yz =4、 12 xz =3,所以xyz =24,体积为4。 5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减; 6小题:设x =4sin α、y =2cos α,再求d = |sin cos | 4425 αα+- 的最大值,选C 。

第三章参数估计

第三章参数估计 重点: 1.总体参数与统计量 2.样本均值与样本比例及其标准误差 难点: 1.区间估计 2.样本量的确定 知识点一:总体分布与总体参数 统计分析数据的方法包括:描述统计和推断统计(第一章) 推断统计是研究如何利用样本数据来推断总体特征的统计学方法,包括参数估计和假设检验两大类。 总体分布是总体中所有观测值所形成的分布。 总体参数是对总体特征的某个概括性的度量。通常有 总体平均数(μ) 总体方差(σ2) 总体比例(π) 知识点二:统计量和抽样分布 总体参数是未知的,但可以利用样本信息来推断。

统计量是根据样本数据计算的用于推断总体的某些量,是对样本特征的某个概括性度量。 统计量是样本的函数,如样本均值()、样本方差(s2)、样本比例(p)等。 构成统计量的函数中不能包括未知因素。 由于样本是从总体中随机抽取的,样本具有随机性,由样本数据计算出的统计量也就是随机的。统计量的取值是依据样本而变化的,不同的样本可以计算出不同的统计量值。 [例题·单选题]以下为总体参数的是( ) a.样本均值b.样本方差 c.样本比例d.总体均值 答案:d 解析:总体参数是对总体特征的某个概括性的度量。通常有总体平均数、总体方差、总体比 例题·判断题:统计量是样本的函数。 答案:正确 解析:统计量是样本的函数,如样本均值()、样本方差()、样本比例(p)等。构成统计量的函数中不能包括未知因素。 [例题·判断题]在抽样推断中,作为推断对象的总体和作为观察对象的样本都是确定的、唯一的。 答案:错误 解析:作为推断对象的总体是唯一的,但作为观察对象的样本不是唯一的,不同的样本可以计算出不同的统计量值。。

相关主题
文本预览
相关文档 最新文档