当前位置:文档之家› 任意截面抗弯强度计算方法

任意截面抗弯强度计算方法

任意截面抗弯强度计算方法
任意截面抗弯强度计算方法

编号:2010-01

中铁二院科技研究开发计划项目

分报告一

截面抗弯强度验算原理

设计者:岳强

复核者:

报告单位:中铁二院工程集团有限责任公司

二〇一〇年一月

目录

第1章砼截面抗弯计算 (3)

1、砼截面抗弯公式 (3)

1.1 截面受力图示 (3)

1.2 公式推导 (3)

1.2.1 简化公式 (1) (3)

1.2.2 简化公式 (2) (4)

1.2.3合并公式(3-2)、(4-2) (4)

1.2.4 分析公式(5-1) (5)

1.3 特别情况 (7)

1.3.1 纯弯 (7)

1.3.2 大小偏心界线时 (7)

1.3.3 大小偏心界线时检查式(5) (7)

2、极限弯矩计算(砼应力最大时) (8)

2.1 荷载图示 (8)

2.2 极限应力时中性轴位置 (8)

3、极限弯矩计算(钢筋应力最大时) (9)

4、弯矩增加系数 (10)

第1章砼截面抗弯计算

1、砼截面抗弯公式

1.1 截面受力图示

截面作用单向荷载时,截面轴力N,弯矩为M,暂假定中性轴与弯矩方向平行,截面受力图示见图1-1,图中C 为全截面质心(含钢筋)。

图1-1 截面受力图示

1.2 公式推导

计算中性轴的位置,在局部坐标系(x ’,y ’,z ’)中推导。轴力的方向以Z 坐标轴正方向为正,弯矩M 方向以绕x 轴正向为负。

''

0,0z

z z g g g g F

N dA dA dA σσσ=+++=∑∑∑? ,⑴

∑?∑∑=?+?+?+-=0*0'

'y dA y dA y dA M y ,N

Mx g g g g z c σσσ,⑵

式中:N 为轴力,M 为弯矩;Ag 为钢筋面积,Az 为砼面积;Yc 为重心轴到

到z ’轴(截面底)距离,y 为截面砼或钢筋积分点到z ’轴距离。 1.2.1 简化公式 (1)

由式εσ?=E ,代入式(1)中,可得,

'''

0z z z g g g g g g N E dA E dA E dA εεε+?+?+?=∑∑?

,合并截面中受拉、受压钢筋,简化可得,0=?+?+∑?g g g z dA E dA E N εε 。

按应力、应变的平截面假定,即()z s k y H y ε=-+,()g s k y H y ε=-+,中心轴以上为正,k 为常数,由上式可得

0)()(=+-??++-??+∑?g s g s dA y H y k E dA y H y k E N ,加入积分范围得

()()0p

y z s z g s g N E k y H y dA E k y H y dA +??-++??-+=∑?

设S 为截面的面积矩,砼对中性轴面积矩S (中性轴以下为负),钢筋对中性轴面积矩Sg (中性轴以下为负,中性轴以上为正),截面或换算截面对中性轴的惯性矩I 。

则上式可得,

()()0z s z g s g g g N E k H y A E k S E k H y A E k S -??-?+??-??-?+??= (3-1)

式中S z 为受压区砼对中性轴的面积矩,S g 为钢筋对中性轴的面积矩。简化得

0)()(=?+?-?-?+?-?-g g g s g s S E A y H E S E A y H E k N

,即得 ()()z s z z g s g g g N

E H y A E S E H y A E S k

=?-?-?+?-?-? (3-2) 1.2.2 简化公式 (2)

由(2)式得 ?∑∑=?+?+?++-p

y g g g g z c y dA y dA y dA y e N 0''0)(*σσσ,再得,

?∑∑=??+??+??++-p

y g g g g g g z c y dA E y dA E y dA E y e N 0

'

''0)(*εεε,

?∑=??+??++-p

y g g g z c y dA E y dA E y e N 0

)(*εε?∑=?+-??+?+-??++-0)()()(*y dA y H y k E y dA y H y k E y e N g s g s c ,可得,?∑=?+-??+?+-??++-p

y g s g s c ydA y H y k E ydA y H y k E y e N 00)()()(*

上式得

0)()()(*=??+?-??-??+?-??-+-g g g s g s c I k E S y H k E I k E S y H k E y e N ⑷

可得,

0)()()(=?+?-?-?+?-?-+-?g g g s g s c I E S y H E I E S y H E y e k

N

,(4-2) 1.2.3合并公式(3-2)、(4-2)

由(3-2)式:

g g g s g s S E A y H E S E A y H E k

N

?-?-?+?-?-?=)()(, 代入(4-2)式可得,

()()()()()0s g s g g g c s g s g g g E H y A E S E H y A E S e y E H y S E I E H y S E I ???-?-?+?-?-??-+??-?-?+?-?-?+?= 设g

z E n E =,则上式可得, ()()()()()0

s z z s g g c s z s g g H y A S n H y A n S e y H y S I n H y S n I ??-?-+?-?-??-+??--?+-?-?+?=,

y s 为截面中性轴到截面上缘距离,y p 为截面中性轴到截面下缘距离,y p =H-y s ,分离出y s 得,

()(()())()()0s c g c g c g c g H y A e y n A e y S n S S e y n S e y I n I -??-++??-+--?-?-+-??-+++?='

()()()()z c g c z g

s z c g c z g

S e y n S e y I n I H y A e y n A e y S n S ?-++??-+--?-=

?-++??-+--?,再简化可得

')()()()(g

c g g c g s S

n S y e A n A I n I y e S n S y H ?--+-??+?--+-??+=

-,即

'

()()

()()

z g z g c s z g z g c I n I S n S e y H y S n S A n A e y +?-+??-+-=

+?-+??-+, (5)

)

()

(0000e y A S e y S I y H c c s -?--?-=

-,(5-1),I 0为换算截面对z 轴的惯性矩,S 0为换算截

面对z 轴面积矩,A 0为换算截面面积。

1.2.4 分析公式(5-1)

由式E=M/n,代入式(5-1):)

/()

/(0000N M y A S N M y S I y H c c s -?--?-=

-,

)

()

(0000M y N A S N M y N S I N y H c c s -??-?-??-?=

- ,(5-2),

中性轴位置 )

()

(0000M y N A S N M y N S I N H y c c s -??-?-??-?-

=

(5-3)

考虑程序计算把式(5-3)简化

[][]0000()()()0c c s N I S N y M N S A N y M y H ?-??-+?-??-?-= (5-4)

,即 000000(,)*[*(*)*()]*[*()]0

c c s s F N M N I S y S A y y H M S A y H =-+--++-=

00000(,)*[*()**()]*[*()]0

s c c s s F N M N I S y H y A y H y M S A y H =+--+-++-=

再得:00000(,)*[*()**()]*[*()]0s c c s s F N M N I S H y y A y H y M S A H y =--++-+--=

可得: 00000(,)*[*()**]*[*]0p c c p p F N M N I S y y A y y M A y S =-++--= (6)

00000()*[*()**]*[*]p p c c p p F y N I S y y A y y M A y S =-++--

(7)

程序采用式(7)迭代可得到中性轴位置y p 。

1.2.5 牛顿切线迭代法

{}00000(())*[*()**]*[*]p p c c p p d F y d N I S y y A y y M A y S =-++-- {}{}00000(())*[*()**]*[*]p p c c p p d F y N d I S y y A y y M d A y S =-++-- {}{}

00000000(())**()*()***(*) ***p p c p c c p c p p p d F y N dI dS y y S d y y dA y y A d y y M dA y A dy dS =-+-+++-+-

假定:2

0000

,,1。p

p

p

y y y p

p I y dA S y dA A dA =

==蝌

?0002

,*

,p p p

c c y dy dy S S y dy d

S A A A A =

==

+

000

22

00

0*。p p c p y A y S S dy dy dy A A A 轾+犏=+=犏犏臌 {

}{}

21

0011

0(())**()*()1***(*)

***p p p p p p c p c p c p c p p p

p p p p

d F y N y dy y dy y y S d y y dy y y A d y y M y dy

y A dy y dy =-+-+++-

+-

{

}{}

221

00021

0(())*******(*)

**p p p p p c p p p c c p p c p p

p

p p p

d F y N y dy y dy y y dy S dy S dy y y dy A d y y M y dy

A dy y dy =----++-

+-{

}

{}

221

000020(())******** *p p p p p c p p p c c p p p c c p

p

p p

d F y N y dy y dy y y dy S dy S dy y y dy A y dy A y dy M y

A y dy =----+++-

+-{}

0000221

000022002

0**(())****** *p p p p p c p c p p c p

p p p

A y S A y S d F y y y y y S S y y A y A y Ndy A A y A y Mdy 禳镲++镲=----+++睚镲镲镲铪

-+- {}

200'

2

00020002

0()** *p p

p p c p p S y S y S F y S y A y N

A A A y A y M 禳镲镲=---+++睚镲镲镲铪

-+- 化简得:2'

220

00020()***p p c p p S F y S y A y N y A y M A 轾犏轾=--++-+-犏犏臌犏臌

。 迭代计算式:1

'

().()

p n n

p p p F y y y F y +=

-

(8)

1.2.6 直接迭代

由式00000()*[*()**]*[*]0p p c c p p F y N I S y y A y y M A y S =-++--=,可得

yp = ((Ix - Ax * yc) * fN + Ax * fM) / (Ax - A * yc) * Fn + A * fM)

1.3 特别情况

作用荷载在截面重心轴时,轴力N ,弯矩M ,N

M

e =

;式中y A S ?=,y A S g g ?=。

1.3.1 纯弯

若N=0时,即纯弯,F(N,M)=0, 得 00*0p A y S -= ,中性轴 0

p S y A =。 1.3.2 大小偏心界线时

若0s y =时即大小偏心界线时,由(5-2)式得*c s c w y y y e =-,*

(1)s c w y y e

=?-,

式中w*为核心矩, w*为偏心矩。

1.3.3 大小偏心界线时检查式(5)

检查式(5)取临界大偏心时,即截面上缘刚受拉时,即Ys=0 求下缘受拉时的核心矩e 上 ,c

c

Ne y N A I =

上,得核心矩c c I e Ay =上(1.3-1),式中Ic 为换算截面惯性矩,可得。

式 c

c c Ay Ay I y e 2

'+=+,(S I y c =),I,S 为坐标系Z ’中的截面特性值 。

2、极限弯矩计算(砼应力最大时) 2.1 荷载图示

2.2 极限应力时中性轴位置 根据截面应力计算式

**c

t

M y N

Is A s M y N Is A s

s =+

=

(2-1),Is,As 为在新重心轴s 下的值。

由上式得*(1)c t

y N

A s y s =

+,再得*()c t t

y y N

A s y s +=

,截面Sx,Ax 为在x 坐标下特性

值,=t p c y y y -可得 *()p p c y N As y y s =

-,由式,c Sx

y Ax

=,可得 *(

)p p y N As Sx

y Ax

s =-,可得

**()*p p Sx As y N y Ax s -

=,可得F()= *****0p p p Sx

y As y As N y Ax

s s --= F()= ****0p p p y Ax y Sx N y s s --= (2-2)

由式(2-2)可求得中性轴位置。

2.3 极限弯矩

由式(2-1)可得弯矩值,可得

*

c t

Is

M y y s =+,Ix=Is+A*yc^2,可得

2(I *)*

x x c c t

A y M y y s -=+,p c t y y y =+简化得2(I *)

*

x x c p

A y M y s -=,式中,c Sx

y Ax

=

3、极限弯矩计算(钢筋应力最大时)

**gg g M y n

N I

A

s =-+,(3-1),

*t

M y N

I

A

=

,(3-2)

由上两式得**(1)

gg g t

n y N

A y s =-+,(3-3),式中:,t p c p gg g S S

y y y y y y A A

=-=-

=-

再得,**(1)gg g p n y N

A S y A s =

-- , ***(1)gg g p n y A N S

y A

s =--

***

gg g p n y A N N S y A

s =--,**()*()**g p p gg S S A y N y N n y A

A

s -=--.

*(*)*()**g p p gg S

A y S N y N n y A

s -=-

-. 2()*(*)*()**p g p p gg S

F y A y S N y N n y A

s =---

+ ,

22()*(**)*(*)**(/)*p g p p g F y A y A S N A y S N A y S A n

s =---+-

22()*(**)*(*)*****p g p p g F y A y A S N A y S N A y n N S n s =---+- 22()*(**)*(****)p g p p g F y A y A S N A y S A y n S n s =----+ (3-8) 2()*(***(1)*)**(*)

p p g g p F y N A y A y n n S A S A y s =--+---2()*(*(*)(1)*)**(*)p g p g p F y N A y n y n S A A y S s =---+- (3-9)

(*)*()(*)

p c p Ix S y M N y S A y -=-

- ,

(3-10)

程序中极限弯矩计算式为:

Mmax = -N * (Ax * (yp + y01) - A * yp * y01 - Ix) / (A * yp - Ax)

()()()

0101

max

I -A *y + y +A *y *y M =N *

A *y

A x

x p p p

x -

4、弯矩增加系数

【09-8-10】 增加弯矩增大系数。

【10-01-12】修改公式。 η=1/(1-t), 220*t=

I a **E *c c k N L p 骣÷?÷?÷?÷?÷桫

,00.1a=

0.16e 0.2+h +骣÷?÷?÷?÷?桫

第三章__受弯构件正截面承载力计算

第三章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、对受弯构件,必须进行正截面承载力 、 抗弯,抗剪 验算。 2、简支梁中的钢筋主要有丛向受力筋 、 架立筋 、 箍筋 、 弯起 四种。 3、钢筋混凝土保护层的厚度与 环境 、 混凝土强度等级 有关。 4、受弯构件正截面计算假定的受压混凝土压应力分布图形中,=0ε 0.002 、=cu ε 0.0033 。 5、梁截面设计时,采用C20混凝土,其截面的有效高度0h :一排钢筋时ho=h-40 、两排钢筋时 ho=h-60 。 6、梁截面设计时,采用C25混凝土,其截面的有效高度0h :一排钢筋时 ho=h-35 、两排钢筋时 。 7、单筋梁是指 只在受拉区配置纵向受力筋 的梁。 8、双筋梁是指 受拉区和受拉区都配置纵向受力钢筋 的梁。 9、梁中下部钢筋的净距为 25MM ,上部钢筋的净距为 30MM 和1.5d 。 10、受弯构件min ρρ≥是为了防止 少梁筋 ,x a m .ρρ≤是为了防止 超梁筋 。 11、第一种T 型截面的适用条件及第二种T 型截面的适用条件中,不必验算的条件分别为 b ξξ≤ 和 m i n 0 ρρ≥= bh A s 。 12、受弯构件正截面破坏形态有 少筋破坏 、 适筋破坏 、 超筋破坏 三种。 13、板中分布筋的作用是 固定受力筋 、 承受收缩和温度变化产生的内力 、 承受分布板上局部荷载产生的内力,承受单向板沿长跨方向实际存在的某些弯矩 。 14、双筋矩形截面的适用条件是 b ξξ≤ 、 s a x '≥2 。

15、单筋矩形截面的适用条件是 b ξξ≤ 、 min 0 ρρ≥= bh A s 。 16、双筋梁截面设计时,当s A '和s A 均为未知,引进的第三个条件是 b ξξ= 。 17、当混凝土强度等级50C ≤时,HPB235,HRB335,HRB400钢筋的b ξ分别为 0.614 、 0.550 、 0.518 。 18、受弯构件梁的最小配筋率应取 %2.0m in =ρ 和 y t f f /45m in =ρ较大者。 19、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 。 二、判断题: 1、界限相对受压区高度b ξ与混凝土强度等级无关。( ) 2、界限相对受压区高度b ξ由钢筋的强度等级决定。( ) 3、混凝土保护层的厚度是从受力纵筋外侧算起的。( ) 4、在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。( ) 5、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大。( ) 6、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 7、在钢筋混凝土梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大。( ) 8、双筋矩形截面梁,如已配s A ',则计算s A 时一定要考虑s A '的影响。( ) 9、只要受压区配置了钢筋,就一定是双筋截面梁。( ) 10、受弯构件各截面必须同时作用有弯矩和剪力。( ) 11、混凝土保护层的厚度是指箍筋的外皮至混凝土构件边缘的距离。( ) 12、单筋矩形截面的配筋率为bh A s = ρ。( )

楼板强度的计算.doc

楼板强度的计算 (1)计算楼板强度说明 验算楼板强度时按照最不利考虑,楼板的跨度取8.400m,梁板承受的荷载按照线均布考虑。 宽度范围内配筋2级钢筋,配筋面积A s=3696.0mm2,f y=300.0N/mm2。 板的截面尺寸为 b×h=5600mm×220mm,截面有效高度 h0=200mm。 按照楼板每12天浇筑一层,所以需要验算12天、24天、36天...的 承载能力是否满足荷载要求,其计算简图如下: (2)计算楼板混凝土12天的强度是否满足承载力要求 楼板计算长边7.00m,短边7.00×0.80=5.60m, 楼板计算范围内摆放8×7排脚手架,将其荷载转换为计算宽度内均布荷载。 第2层楼板所需承受的荷载为

q=1×1.20×(0.20+25.10×0.22)+ 1×1.20×(0.50×8×7/7.00/5.60)+ 1.40×(0.00+ 2.50)=11.22kN/m2 计算单元板带所承受均布荷载q=5.60×11.22=62.83kN/m 板带所需承担的最大弯矩按照四边固接双向板计算 M max=0.0664×ql2=0.0664×62.82×5.602=130.82kN.m 按照混凝土的强度换算 得到12天后混凝土强度达到74.57%,C40.0混凝土强度近似等效为C29.8。 混凝土弯曲抗压强度设计值为f cm=14.22N/mm2 则可以得到矩形截面相对受压区高度: ξ= A s f y/bh0f cm = 3696.00×300.00/(5600.00×200.00×14.22)=0.07 查表得到钢筋混凝土受弯构件正截面抗弯能力计算系数为 αs=0.067 此层楼板所能承受的最大弯矩为: M1=αs bh02f cm = 0.067×5600.000×200.0002×14.2×10-6=213.4kN.m 结论:由于∑M i = 213.38=213.38 > M max=130.82 所以第12天以后的各层楼板强度和足以承受以上楼层传递下来的荷载。 第2层以下的模板支撑可以拆除。 钢管楼板模板支架计算满足要求!

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

受弯构件正截面受弯承载力计算.

第4章受弯构件正截面受弯承载力计算 一、判断题 1.界限相对受压区高度ξb与混凝土等级无关。 ( √ 2.界限相对受压区高度ξb由钢筋的强度等级决定。 ( √ 3.混凝土保护层是从受力钢筋外侧边算起的。 ( √ 4.在适筋梁中提高混凝土强度等级对提高受弯构件正截面承载力的作用很大。 ( × 5.在适筋梁中增大截面高度h对提高受弯构件正截面承载力的作用不明显。 ( × 6.在适筋梁中其他条件不变时ρ越大,受弯构件正截面承载力也越大。√ 7.梁板的截面尺寸由跨度决定。 ( × 8,在弯矩作用下构件的破坏截面与构件的轴线垂直,即正交,故称其破坏为正截面破坏。( √ 9.混凝土保护层厚度是指箍筋外皮到混凝土边缘的矩离。 ( × 10.单筋矩形截面受弯构件的最小配筋率P min=A s,min/bh0。 ( × 11.受弯构件截面最大的抵抗矩系数αs,max由截面尺寸确定。 ( × 12.受弯构件各截面必须有弯矩和剪力共同作用。 ( × 13.T形截面构件受弯后,翼缘上的压应力分布是不均匀的,距离腹板愈远,压应力愈小。( √ 14.第一类T形截面配筋率计算按受压区的实际计算宽度计算。 ( × 15.超筋梁的受弯承载力与钢材强度无关。 ( × 16.以热轧钢筋配筋的钢筋混凝土适筋粱,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入强化阶段。(×) 17.与素混凝土梁相比钢筋混凝土粱抵抗混凝土开裂的能力提高很多。(×) 18.素混凝土梁的破坏弯矩接近于开裂弯矩。(√) 19.梁的有效高度等于总高度减去钢筋的保护层厚度。(×) 二、填空题 1.防止少筋破坏的条件是___ρ≥ρmin_______,防止超筋破坏的条件是__ρ≤ρmax____。

钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

受弯构件正截面承载力计算练习题

第四章受弯构件正截面承载力计算 一、一、选择题(多项和单项选择) 1、钢筋混凝土受弯构件梁内纵向受力钢筋直径为( B ),板内纵向受力钢筋直径为( A )。 A、6—12mm B、12—25mm C、8—30mm D、12—32mm 2、混凝土板中受力钢筋的间距一般在( B )之间。 A、70—100mm B、100---200mm C、200---300mm 3、梁的有效高度是指( C )算起。 A、受力钢筋的外至受压区混凝土边缘的距离 B、箍筋的外至受压区混凝土边缘的距离 C、受力钢筋的重心至受压区混凝土边缘的距离 D、箍筋的重心至受压区混凝土边缘的距离 4、混凝土保护层应从( A )算起。 A、受力钢筋的外边缘算起 B、箍筋的外边缘算起 C、受力钢筋的重心算起 D、箍筋的重心算起 5、梁中纵筋的作用( A )。 A、受拉 B、受压 C、受剪 D、受扭 6、单向板在( A )个方向配置受力钢筋。 A、1 B、2 C、3 D、4 7、结构中内力主要有弯矩和剪力的构件为( A )。 A、梁 B、柱 C、墙 D、板 8、单向板的钢筋有( B )受力钢筋和构造钢筋三种。 A、架力筋 B、分布钢筋 C、箍筋 9、钢筋混凝土受弯构件正截面的三种破坏形态为( A B C ) A、适筋破坏 B 、超筋破坏 C、少筋破坏 D、界线破坏 10、钢筋混凝土受弯构件梁适筋梁满足的条件是为( A )。

A、p min≤p≤p max B、p min>p C、p≤p max 11、双筋矩形截面梁,当截面校核时,2αsˊ/h0≤ξ≤ξb,则此时该截面所能承担的弯矩是( C )。 A、M u=f cm bh02ξb(1-0.5ξb); B、M u=f cm bh0ˊ2ξ(1-0.5ξ); C、M u= f cm bh02ξ(1-0.5ξ)+A sˊf yˊ(h0-αsˊ); D、Mu=f cm bh02ξb(1-0.5ξb)+A sˊf yˊ(h0-αsˊ) 12、第一类T形截面梁,验算配筋率时,有效截面面积为( A )。 A、bh ; B、bh0; C、b fˊh fˊ; D、b fˊh0。 13、单筋矩形截面,为防止超筋破坏的发生,应满足适用条件ξ≤ξb。与该条件等同的条件是( A )。 A、x≤x b; B、ρ≤ρmax=ξb f Y/f cm; C、x≥2αS; D、ρ≥ρmin。 14、双筋矩形截面梁设计时,若A S和A Sˊ均未知,则引入条件ξ=ξb,其实质是( A )。 A、先充分发挥压区混凝土的作用,不足部分用A Sˊ补充,这样求得的A S+A Sˊ较小; B、通过求极值确定出当ξ=ξb时,(A Sˊ+A S)最小; C、ξ=ξb是为了满足公式的适用条件; D、ξ=ξb是保证梁发生界限破坏。 15、两类T形截面之间的界限抵抗弯矩值为( B )。 A、M f=f cm bh02ξb(1-0.5ξb); B、M f=f cm b fˊh fˊ(h0-h fˊ/2) ; C、M=f cm(b fˊ-b)h fˊ(h0-h fˊ/2); D、M f=f cm(b fˊ-b)h fˊ(h0-h fˊ/2)+A Sˊf Yˊ(h0-h fˊ/2)。 16、一矩形截面受弯构件,采用C20混凝土(f C=9.6Ν/mm2)Ⅱ级钢筋(f y=300N/mm2,ξb=0.554),该截面的最大配筋率是ρmax( D )。 A、2.53% ; B、18% ; C、1.93% ; D、1.77% 。 17、当一单筋矩形截面梁的截面尺寸、材料强度及弯矩设计值M确定后,计算时发现超筋,那么采取( D )措施提高其正截面承载力最有效。 A、A、增加纵向受拉钢筋的数量; B、提高混凝土强度等级; C、加大截截面尺寸; D、加大截面高度。 二、判断题 1、当截面尺寸和材料强度确定后,钢筋混凝土梁的正截面承载力随其配筋率ρ的提高而提高。(错) 2、矩形截面梁,当配置受压钢筋协助混凝土抗压时,可以改变梁截面的相对界限受压区高度。(对) 3、在受弯构件正截面承载力计算中,只要满足ρ≤ρmax的条件,梁就在适筋范围内。(错) 4、以热轧钢筋配筋的钢筋混凝土适筋梁,受拉钢筋屈服后,弯矩仍能有所增加是因为钢筋应力已进入了强化阶段。(错) 5、整浇楼盖中的梁,由于板对梁的加强作用,梁各控制截面的承载力均可以按T形截面计算。(错)

钢筋混凝土受弯构件正截面承载力的计算

钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的 两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎

钢筋配筋时,其受力钢筋的间距:当板厚度h ≤150mm 时,不应大于200mm ,当板厚度h ﹥150mm 时,不应大 于1.5h ,且不应大于250mm 。板中受力筋间距一般不 小于70mm ,由板中伸入支座的下部钢筋,其间距不应 大于400mm ,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as 不应小于5d 。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm 。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm ,直径不宜小于8mm (包括弯起钢筋在内),其伸出墙边的长度不应小于l 1/7(l 1为单向板的跨度或双向板的短边跨度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l 1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm ,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布钢筋的间距不宜大于250mm ,直经不宜小于6mm ,对于集中荷载较大的情况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm ,当按双向板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm ,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm ,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用 0h 表示,板通常取200-=h h mm 。

受弯构件的正截面承载力计算

第4章受弯构件的正截面承载力计算 1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点? 答:第Ⅰ阶段:混凝土开裂前的未裂阶段 当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。 随着荷载的增加,截面上的应力和应变逐渐增大。受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。 第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段 受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。 在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。 还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。这与平截面假定发生了矛盾。但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。因此,各受力阶段的截面应变均假定呈三角形分布。 第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段 随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。 在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。 2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系? 答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。 3.何谓配筋率?配筋率对梁破坏形态有什么的影响? 答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即

混凝土抗压强度计算方法

计算方法:(个人 总结) 1、混凝土(砂浆)试块试验结果汇总表中的达到强度%:用混凝土(砂浆)的强度宁标准强度X 100% (即试压结果宁强度等级X 100%) 2、混凝土抗压强度计算表 mfcu ------同一验收批混凝土强度的平均值 fcu——抗压强度 fcu,k ------设计的混凝土强度标准值(即:C25=25兆帕,C30=30兆帕) fcu,min——同一验收批混凝土强度最小值 Sfcu------同一验收批混凝土强度的标准值 m2fcu-----同一验收批混凝土强度平均值的平方 Sfcu 二 n 刀fcu,i 2—nm2fcu i =1 如下: n — 1 同一验收批混凝十强度平方数的和- 组数X强度平均数的平方 组数—1 Sfcu二 A 3、砂浆抗压强度计算表 Ri -----砂浆强度的平均 值 砂浆设计强度等级(即M5=5 Mp a, = Mpa) R min ---- 砂浆强度最小值 混凝土抗压强度计算表 说明(书本) 1.混凝土强度验收批应符合下列规定(GB 50204-92)

混凝土强度按单位工程同一验收批规定,但单位工程仅有一组试块,其强度不应低于,k,当单位工程试块数量在2~9组时,按非统计方法评定; 单位工程试块数量在10组及其以上时,按统计方法进行评定。 2.混凝土试样应在混凝土浇筑地点随机抽取,取样频率应符合下列规定 (GB 50204-92; (1)每拌制100盘,且不超过100m3的同配合比混凝土,取样不得少于 一次 (2)每工作班拌制的同配合经的混凝土不足100盘时,其取样不得少 于一次。 (3)对现浇混凝土结构。 1)每一层配合比的混凝土,其取样不得少于一次。 2)同一单位工程同配合比的混凝土,其取样不得少于一次。 注:预拌混凝土应在预拌混凝土厂内按上述规定取样,混凝土运到 施工现场后,尚应按上述规定留置试件。 3.判定标准: mfcu - ?1Sfcu>,k 、fcu,min A 尢fcu,k 统计方法 ” mfcu A ,k 、fcu,min A,k 非统计方法 式中mfcu ------同一验收批混凝土强度的平均值(N/mm2); fcu,k——-设计的混凝土强度标准值(N/mm2); fcu,min——同一验收批混凝土强度最小值(N/mm2);

型钢截面计算例题

【例 5-1】试确定截面尺寸及配钢如下图所示的型钢混凝土梁所能承受的最大极限弯矩。混凝土C30,钢筋为HPB235级钢筋,型钢Q235钢。 解 选择I22a 计算受压区高度:当中和轴在型钢翼缘上通过时,有 属于第二种情况,即中和轴不通过型钢,此时 所以,不考虑型钢上翼缘的作用,重新 计算x 此截面所能承受的极限弯矩 【例5-2】计算截面尺寸及配钢如下图所示的型钢混凝土梁所能承受的最大极限弯矩。混凝土C30,钢筋为HPB235级钢筋,型钢为Q235钢。 解 选择I40a 计算受压区高度:当中和轴在型钢上冀缘通过时,有 属于第一种情况,即中和轴通过型钢腹板,此时 此截面所能承受的极限弯矩 【例5-3】型钢混凝土简支梁,计算跨度为7.5m ,承受均布荷载,其中永久荷载的设计值为13.11kN /m(包括梁的自重),可变荷载的设计值为15kN /m 。根据正截面抗弯强度计算,确定截面尺寸为460 mm ×250 mm(由于空间高度限制)。选用HPB235级钢4φ16为上下架立钢筋。内配型钢I 25a 普通热轧工字钢Q235。混凝土强度等级为C30。试验算其斜截面剪切承载能力。 习题4-3图 解 查C30混凝土强度得,214.3/c f N mm =,21.43/t f N mm =。 I25a 工字钢 250,8,13s w t h mm mm mm δδ===,所以 梁上永久荷载设计值与可变荷裁设计值之和为 梁中最大剪力设计值为 则 【例5-4】有一型钢混凝土简支梁,计算跨度为9m ,承受均布荷载,其中永久荷载设汁值为12.22kN /m(包括梁自重),可变荷裁设计值为16kN /m 。由于空间高度限制,截面尺寸拟取为460 mm × 250 mm 。经正截面抗弯强度计算,拟配I36a 普通热轧工字钢Q235,梁的上下共配4φ16架立钢筋。混凝土强度等级为C30。试验算其斜截面抗剪承载力,并配置钢箍。 解 查C30混凝土强度得 2214.3/, 1.43/c t f N mm f N mm ==。 I36a 工字钢27630,360,10,s s w A mm h mm mm δ=== 梁上永久荷载设计值与可变荷载设计值 之和为 梁中最大剪力为 所以,截面尺寸符合要求。 则 剪切承载力满足要求,所以钢箍可按构造选配,拟配双肢箍φ8@200。 【例5-5】有一框架柱截面如习题4-5图所示,设计轴力N =1350 kN ,弯矩M=500 kN m ,计算高度l 0=6m ,混凝土采用C30.钢筋为HPB235钢,型钢为Q235钢。验算其正截面强度。 习题4-1图 习题4-2图 习题 4-4图

受弯构件正截面承载力问题详解

第五章 钢筋混凝土受弯构件正截面承载力计算 一、填空题: 1、钢筋混凝土受弯构件,随配筋率的变化,可能出现 少筋、 超筋 和 适筋 等三种沿正截面的破坏形态. 2、受弯构件梁的最小配筋率应取 %2.0min =ρ 和 y t f f /45min =ρ 较大者. 3、钢筋混凝土矩形截面梁截面受弯承载力复核时,混凝土相对受压区高度b ξξ ,说明 该梁为超筋梁 . 4.受弯构件min ρρ≥是为了____防止产生少筋破坏_______________;max ρρ≤是为了___防止产生超筋破坏_. 5.第一种T 形截面梁的适用条件及第二种T 形截面梁的试用条件中,不必验算的条件分别是____b ξξ≤___及__min ρρ≥_______. 6.T 形截面连续梁,跨中按 T 形 截面,而支座边按 矩形 截面计算. 7、混凝土受弯构件的受力过程可分三个阶段,承载力计算以Ⅲa 阶段为依据,抗裂计算以Ⅰa 阶段为依据,变形和裂缝计算以Ⅱ阶段为依据. 8、对钢筋混凝土双筋梁进行截面设计时,如s A 与 ' s A 都未知,计算时引入的补充条件为 b ξξ=. 二、判断题: 1、界限相对受压区高度b ξ由钢筋的强度等级决定.( ∨ ) 2、混凝土保护层的厚度是从受力纵筋外侧算起的.( ∨ ) 3、在适筋梁中增大梁的截面高度h 对提高受弯构件正截面承载力的作用很大.( ∨ ) 4、在适筋梁中,其他条件不变的情况下,ρ越大,受弯构件正截面的承载力越大.( ∨ ) 5.梁中有计算受压筋时,应设封闭箍筋(√ ) 6.f h x '≤的T 形截面梁,因为其正截面抗弯强度相当于宽度为f b '的矩形截面,所以配筋率ρ也用f b '来表示,即0/h b A f s '=ρ( ? )0/bh A s =ρ 7.在适筋围的钢筋混凝土受弯构件中,提高混凝土标号对于提高正截面抗弯强度的作用不是很明显的( √ ) 三、选择题: 1、受弯构件正截面承载力计算采用等效矩形应力图形,其确定原则为( A ). A 保证压应力合力的大小和作用点位置不变 B 矩形面积等于曲线围成的面积 C 由平截面假定确定08.0x x = D 两种应力图形的重心重合 2、钢筋混凝土受弯构件纵向受拉钢筋屈服与受压混凝土边缘达到极限压应变同时发生的破坏属于( C ). A 适筋破坏 B 超筋破坏 C 界限破坏 D 少筋破坏 3、正截面承载力计算中,不考虑受拉混凝土作用是因为( B ). A 中和轴以下混凝土全部开裂 B 混凝土抗拉强度低 C 中和轴附近部分受拉混凝土围小且产生的力矩很小 D 混凝土退出工作

正截面受弯计算的方法及步骤

正截面受弯计算的方法及步骤 受弯计算涉及构件类型主要为梁、板,本次讲解专门说梁;从截面类型不同,可分为矩形截面、T 形界面,其中矩形截面又有单筋梁、双筋梁之分。 计算类型题分两类:配筋计算、承载力计算(也叫截面复核)。 一、矩形截面受弯计算 公式: 1001()()2 u c y s s c y s y s x M M f bx h f A h a f bx f A f A αα'''≤=-+-''+= (1) 注意:对于单筋梁,上式中, y s f A ''=。 公式变为: 101() 2 u c c y s x M M f bx h f bx f A αα≤=-= (2) 1、单筋梁正截面受弯计算 配筋计算 一般情况下,材料强度(f c 、f y )及截面尺寸b 、h 都已确定,根据已知的外部荷载效应M(设计弯矩)计算钢筋截面面积A s 。

计算步骤: ①根据10 ()2c x M f bx h α≤-求得 0x h =0 b x h ζ≤; 按照第②步继续,若0 b x h ζ>,说明会发生超筋破坏,则按照双筋梁配筋计算方法进行。 注意,增大构件截面尺寸、提高混凝土强度等级、配置受压钢筋(即采用双筋梁),都可以解决0b x h ζ>问题,但实际计算中,构件截面尺寸、混凝土强度等级一般已确定,所以,通常采用双筋梁的方式解决。 ②当0 b x h ζ≤,由1c y s f bx f A α=,求得:1/s c y A f bx f α=。 ③验算最小配筋:,min s s A A ≥(或者min h h ρρ ≥)。若满 足,min s s A A ≥,则s A 按实际计算值来取,若不满足, 则取,min min s s A A bh ρ==。 承载力计算 一般情况下,根据已知的截面尺寸b 、h 及材料强度c f 和钢筋面积s A ,求得截面的最大承载能力u M ,判断u M 与已知的弯矩设计值M 间关系,若u M M ≥,即表示构件满足安全性要求,反之,不安全。 计算步骤: ①因为s A 已知,先验算,min s s A A >(或min h h ρρ ≥)。

抗压强度计算2015讲解

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算 公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/)

Rmn ——瓦楞芯纸环压强度测试值(N/) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的(cm)为测定原纸环压强度时的试样长度。Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表 类纸箱抗压强度计算公式:

P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式:

包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N);Pm ——瓦楞纸板边压强度(N/m)a——常数 b——常数 ⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。 a——箱面分类系数;

混凝土抗压强度计算方法

计算方法:(个人总结) 1混凝土(砂浆)试块试验结果汇总表中的达到强度%:用混凝土(砂浆)的强度宁标准强度X 100% (即试压结果宁强度等级X 100%) 2、混凝土抗压强度计算表 mfcu ------同一验收批混凝土强度的平均值 feu ----- 抗压强度 fcu,k ------设计的混凝土强度标准值(即:C25=25兆帕,C30=30兆帕) feu,min——同一验收批混凝土强度最小值 Sfeu ------同一验收批混凝土强度的标准值 m2fcu-----同一验收批混凝土强度平均值的平方 n — 2 刀fcu,i 2—nm2fcu Sfcu= i =1 如下: N n —1 Sfcu= 同一验收批混凝十强度平方数的和 - 组数X强度平均数的平方 组数- 3、砂浆抗压强度计算表 R -----砂浆强度的平均值 R标-----砂浆设计强度等级(即M5=5Mpa, M7.5=7.5 Mpa) Rnin -----砂浆强度最小值

混凝土抗压强度计算表 说明(书本) 1. 混凝土强度验收批应符合下列规定(GB 50204-92) 混凝土强度按单位工程同一验收批规定,但单位工程仅有一组试块,其强度不应低于1.15fcu,k,当单位工程试块数量在2~9组时,按非统计方法评定;单位工程试块数量在10组及其以上时,按统计方法进行评定。 2. 混凝土试样应在混凝土浇筑地点随机抽取,取样频率应符合下列规定(GB 50204-92); (1)每拌制100盘,且不超过100m3的同配合比混凝土,取样不得少于一次(2)每工作班拌制的同配合经的混凝土不足100盘时,其取样不得少于一次。 (3)对现浇混凝土结构。 1)每一层配合比的混凝土,其取样不得少于一次。 2)同一单位工程同配合比的混凝土,其取样不得少于一次。 注:预拌混凝土应在预拌混凝土厂内按上述规定取样,混凝土运到施工 现场后,尚应按上述规定留置试件。 3. 判定标准: mfcu -入Sfcu》0.9fcu,k { fcu,mi n A h fcu,k 统计方法 mfcu A 1.15fcu,k -fcu,min A0.95fcu,k 非统计方法 式中mfcu --------- 同一验收批混凝土强度的平均值(N/mm2);

混凝土抗压强度标准值计算

1 总则 1.0.1~本规范系根据国家标准《水利水电工程结构可靠度设计统一标准(GB50199—94)》(简称《水工统标》)的规定,对《水工钢筋混凝土结构设计规范(SDJ20—78)》(简称原规范)的设计基本原则进行了修改,并依据科学研究和工程实践增补有关内容后,编制而成。其适用范围扩大到预应力混凝土结构和地震区的结构,其它与原规范相同。但不适用于混凝土坝的设计,也不适用于碾压混凝土结构。 当结构的受力情况、材料性能等基本条件与本规范的编制依据有出入时,则需要根据具体情况,通过专门试验或分析加以解决。 1.0.4 本规范的施行,必须与按《水工统标》制订、修订的水工建筑物荷载设计规范等各种水工建筑物设计标准、规范配套使用,不得与未按《水工统标》制订、修订的各种水工建筑物设计标准、规范混用。 3 材料 混凝土 按照国际标准(ISO3893)的规定,且为了与其它规范相协调,将原规范混凝土标号的名称改为混凝土强度等级。在确定混凝土强度等级时作了两点重大修改; (1)混凝土试件标准尺寸,由边长200mm的立方体改为边长150mm的立方体; (2)混凝土强度等级的确定原则由原规范规定的强度总体分布的平均值减去倍标准差(保证率90%),改为强度总体分布的平均值减去倍标准差(保证率95%)。用公式表示,即: f cu,k=μfcu, 15-σfcu =μfcu, 15 (1-δfcu) (3.1.2-1)

式中 f cu,k ──混凝土立方体抗压强度标准值,即混凝土强度等级值(N /mm 2); μfcu,15──混凝土立方体(边长150mm )抗压强度总体分布的平均值; σfcu ──混凝土立方体抗压强度的标准差; δfcu ──混凝土立方体抗压强度的变异系数。 混凝土强度等级由立方体抗压强度标准值确定,立方体抗压强度标准值是本规范混凝土 其他力学指标的基本代表值。 R (原规范的混凝土村号)与C (本规范的混凝土强度等级)之间的换算关系为: )1.0() 27.11(95.0645.1115,15,R C fcu fcu δδ--= (3.1.2-2) 式中为试件尺寸由200mm 立方体改为150mm 立方体的尺寸效应影响系数;为计量单位换算系数。 由此可得出R 与C 的换算关系如表3.1.2所列 表3.1.2 R 与C 换算表

受弯构件正截面承载力计算

选择题 1. ( C )作为受弯构件正截面承载力计算的依据。 A. I 状态; II 。状态; C.IlI. 状态; D.第II阶段; 2. ( A ) 作为受弯构件抗裂计算的依据。 A. Ia 状态; B. IIa 状态; C. III a 状态; D. 第II阶段; 3. ( D ) 作为受弯构件变形和裂缝验算的依据。 A. Ia 状态; B. IIa 状态; C. II. 状态; D. 第I阶段; 4. ( B )受弯构件正截面承载力计算基本公式的建立是依据哪种破坏形态建立的 A. 少筋破坏; B.适筋破坏; C.超筋破坏; D.界限破坏; 5. ( C ) 下列那个条件不能用来判断适筋破坏与超筋破坏的界限 A. E —; B. x < E gho; C. x < 2aj; D. p < Pmax 6. ( A )受弯构件正截面承载力计算中,截面抵抗矩系数 a.取值为: A. E (1-0.5 E ); B. E (1+0.5 E ); C. 1- 0.5 E ; D. 1+0.5 E ; 7. ( C )受弯构件正截面承载力中,对于双筋截面,下面哪个条件可以满足受压钢筋的屈服 A. x < E gho; B. x> E ho; C. x >2a; D. x< 2a; 8. ( D )受弯构件正截面承载力中,T形截面划分为两类截面的依据是。 A. 计算公式建立的基本原理不同; B. 受拉区与受压区截面形状不同; C. 破坏形态不同; D. 混凝士受压区的形状不同; 9. ( C ) 提高受弯构件正截面受弯能力最有效的方法是。 A. 提高混凝士强度等级; B 增加保护层厚度;

相关主题
文本预览
相关文档 最新文档