当前位置:文档之家› 现代控制理论-第7章

现代控制理论-第7章

现代控制理论-第7章
现代控制理论-第7章

第六次课小结

一、 Lyapunov 意义下的稳定性问题基本概念

● 平衡状态的概念

● Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等)

● 纯量函数的正定性,负定性,正半定性,负半定性,不定性 ● 二次型,复二次型(Hermite 型)

二、 Lyapunov 稳定性理论

● 第一方法 ● 第二方法

三、 线性定常系统的Lyapunov 稳定性分析

● 应用Lyapunov 方程

Q PA P A

H

-=+

来进行判别稳定性

四、 线性定常系统的稳定自由运动的衰减率性能估计

● 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。 ● 计算min η的关系式

五、 离散时间系统的状态运动稳定性及其判据

● 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用

六、 线性多变量系统的综合与设计的基本问题

●问题的提法

●性能指标的类型

●研究的主要内容七、极点配置问题

●问题的提出

●可配置条件

●极点配置算法

5.2.5 爱克曼公式(Ackermann ’s Formula) 考虑由式(5.1)给出的系统,重写为

Bu Ax x +=

假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21 。 利用线性状态反馈控制律

Kx u -=

将系统状态方程改写为

x BK A x )(-=

(5.14)

定义

BK A A -=~

则所期望的特征方程为

)

())((~

11

121=++++=---=-=+-*

*--*

n n n n

n a s a s

a s s s s A sI BK A sI μμμ

由于凯莱-哈密尔顿定理指出A ~

应满足其自身的特征

方程,所以

0~~~)~(*

*11*1*

=++++=--I a A a A a A A n n n n φ (5.15)

我们用式(5.15)来推导爱克曼公式。为简化推导,考虑n = 3的情况。需要指出的是,对任意正整数,下面

的推导可方便地加以推广。 考虑下列恒等式

22

3332

22~~)(~~)(~~

A

BK A ABK BK A A BK A A A BK ABK A BK A A BK

A A I I ---=-=--=-=-== 将上述方程分别乘以)1(,,,*

0*0*1*2*3=a a a a a ,

并相加,则可得

32

*1*

2*

3~~~A

A a A a I a +++

-+--+-+=3

2

*

1*

2*

3)~()(A A BK ABK A a BK A a I a

2

2~~A

BK A ABK BK A ---

-

----+++=BK A A BK a ABK a BK a A A a A a I a 2

*

1*

1*

23

2

*

1*

2*

3~2

~~A BK A ABK -- (5.16)

参照式(5.15)可得

0)~

(~~~*32*1*

2*

3==+++A A A a A a I a φ

也可得到

0)(*

3

2

*

1*

2*

3≠=+++A A A a A a I a φ

将上述两式代入式(5.16),可得

BK

A A ABK ABK a A BK A BK a BK a A A 2

*

12

*

1*2**

~

~~)()~

(------=φφ

由于0)~

(*

=A φ,故

BK

A A K K a A

B A K A K a K a B A 2

*12*

1*

2*

)~()~~()(+++++=φ????

??????+++=K A K K a A K A K a K a B A AB B ~~~][*

12*

1*22 (5.17)

由于系统是状态完全能控的,所以能控性矩阵

][2

B A AB B Q =

的逆存在。在式(5.17)的两端均左乘能控性矩阵Q 的逆,可得

????

??????+++=-K A K K a A K A K a K a A B A AB B ~~~)(][*

12

*

1*

2*12φ

上式两端左乘[0 0 1],可得

K

K A K K a A K A K a K a A B A AB B =????

??????+++=-~~~]100[)(]][100[*

12*

1*2*12φ

重写为

)(][]100[*

1

2

A B A AB B K φ-=

从而给出了所需的状态反馈增益矩阵K 。

对任一正整数n ,有

)

(]][1000

[*

1

1

A B A

AB B K n φ--= (5.18)

式(5.18)称为用于确定状态反馈增益矩阵K 的爱克曼方程。

------------------------------------------------- [例5.1] 考虑如下线性定常系统

Bu Ax x +=

式中

????

?

?????=????

??????---=100,

651100010

B A

利用状态反馈控制Kx u -=,希望该系统的闭环极点为s = -2±j 4和s = -10。试确定状态反馈增益矩阵K 。 首先需检验该系统的能控性矩阵。由于能控性矩阵为:

??

?

??

???

??--==3161

610

10

][2B A AB B Q

所以得出det Q = -1,因此,rank Q = 3。因而该系统是状态完全能控的,可任意配置极点。

下面,我们来求解这个问题,并用本章介绍的3种方法中的每一种求解。

方法1:第一种方法是利用式(5.13)。该系统的特征方程为:

15665

1

1

01||322

13

23=+++=+++=????

?

???

??+--=-a s a s a s s s s s s s

A sI

因此

1,5,6321===a a a

期望的特征方程为

200

6014)10)(42)(42(*

3*

22

*

13

2

3

=+++=+++=+++-+a s a s a s s s s s j s j s

因此

200,60,14*

3*

2*

1===a a a

参照式(5.13),可得

]

855

199

[]6145601200[=---= K

方法2:设期望的状态反馈增益矩阵为

][32

1

k k k K =

并使||BK A sI +-和期望的特征多项式相等,可得

??

?

???????----??????????=+-6511

00010000000||s s s BK A sI 321[100k k k ???

?

??????+ 200

60141)5()6(65110

012

3

122333

2

1

+++=++++++=++++--=s s s k s k s k s k s k k s

s

因此

2001,

605,

146123=+=+=+k k k

从中可得

8,

55,

199321===k k k

]855

199

[=K

方法3:第三种方法是利用爱克曼公式。参见式(5.18),可得

)(]][100

[*

1

2

A B A AB B K φ-=

由于

I A A A A 2006014)(2

3*+++=φ

????

?

???

??---=????

??????+??????????---+?????

?????---+??????????---=11743

7715988

5519910

0010001

20065

1

100

01060651100010

1465

1100010

2

3

??

?

??

???

??--=3161

610

10

][2B A AB B

可得

]

855199[11743

7715988

55199001

016165]10

0[11743

7715988

5519931616

1010

0]10

0[1

=????

?

???

??---??????????=????

?

???

??---??

?

??

?????--=-K

显然,这3种方法所得到的反馈增益矩阵K 是相同的。使用状态反馈方法,正如所期望的那样,可将闭环极点配置在s = -2±j 4和s = -10处。

------------------------------------------------------------------------------

应当注意,如果系统的阶次n 等于或大于4,则推荐使用方法1和3,因为所有的矩阵计算都可由计算机实现。如果使用方法2,由于计算机不能处理含有未知参数

n k k k ,,,21 的特征方程,因此必须进行手工计算。

5.2.6 注释

对于一个给定的系统,矩阵K 不是唯一的,而是依赖

于选择期望闭环极点的位置(这决定了响应速度与阻尼),这一点很重要。注意,所期望的闭环极点或所期望状态方程的选择是在误差向量的快速性和干扰、测量噪声的灵敏性之间的一种折衷。也就是说,如果加快误差响应速度,则干扰和测量噪声的影响通常也随之增大。如果系统是2阶的,那么系统的动态特性(响应特性)正好与系统期望的闭环极点和零点的位置联系起来。对于更高阶的系统,期望的闭环极点位置不能和系统的动态特性(响应特性)联系起来。因此,在决定给定系统的状态反馈增益矩阵K 时,最好通过计算机仿真来检验系统在几种不同矩阵(基于几种不同的期望特征方程)下的响应特性,并且选出使系统总体性能最好的矩阵K 。

5.3 利用MATLAB 求解极点配置问题

用MATLAB 易于求解极点配置问题。现在我们来求解在例5.1中讨论的同样问题。系统方程为

Bu Ax x +=

式中

????

??????=??????????---=100651100010B A , 采用状态反馈控制Kx u -=,希望系统的闭环极点为

s =μi(i=1,2,3),其中

10,42,42321-=--=+-=μμμj j

现求所需的状态反馈增益矩阵K 。

如果在设计状态反馈控制矩阵K 时采用变换矩阵P ,则必须求特征方程|s I-A |=0的系数1a 、2a 、和3a 。这可通过给计算机输入语句

P = poly(A )

来实现。在计算机屏幕上将显示如下一组系数:

则)4(3),3(2),2(1321P a a P a a P a a ======。 为了得到变换矩阵P ,首先将矩阵Q 和W 输入计算机,其中

][2

B A AB B Q =

????

?

?????=00

1

0111

12a a a W 然后可以很容易地采用MATLAB 完成Q 和W 相乘。 其次,再求期望的特征方程。可定义矩阵J ,使得

??

?

??

?

?

???---+-=??????????=100004200

420

00

00

32

1

j j J μμμ

从而可利用如下poly(J )命令来完成,即

因此,有

)4(3),3(2),2(1*

3*

2*

1Q aa a Q aa a Q aa a ======

即对于*i a ,可采用aai 。

故状态反馈增益矩阵K 可由下式确定:

1

112233][-***---=P a a a a a a K

aa

a

a

a

aa

aa

=

-

-

K-

3

[P

(

inv

(

))

3

*

2

]

2

1

1

采用变换矩阵P求解该例题的MATLAB程序如MATLAB Program 5.1所示。

Q=[B A*B A^2*B];

%*****Check the rank of matrix Q*****

rank(Q)

ans=

3

%*****Since the rank of Q is 3, arbitrary pole placement is

% possible *****

%*****Obtain the coefficients of the characteristic polynomial

%|sI-A|. This can be done by entering statement poly(A)*****

JA=poly(A)

JA=

1.0000 6.0000 5.0000 1.0000

a1=JA(2);a2=JA(3);a3=JA(4);

%*****Define matrices W and P as follows*****

W=[a2 a1 1;a1 1 0;1 0 0];

P=Q*W;

%*****Obtain the desired chracteristic polynomial by defining

%the following matrix J and entering statement poly(J)*****

J=[-2+j*4 0 0;0 -2-j*4 0;0 0 -10];

JJ=poly(J)

JJ=

1 14 60 200

aa1=JJ(2);aa2=JJ(3);aa3=JJ(4);

%*****State feedback gain matrix K can be given by *****

K=[aa3-a3 aa2-a2 aa1-a1]*(inv(P))

K=

199 55 8

%*****Hence, k1,k2,and k3 are given by *****

k1=K(1),k2=K(2),k3=K(3)

如果采用爱克曼公式来确定状态反馈增益矩阵K ,必须首先计算矩阵特征方程φ(A )。 对于该系统

I a A a A a A A *

3*

22

*

13

)(+++=φ

在MATLAB 中,利用Polyvalm 可计算矩阵多项式φ(A )。对于给定的矩阵J ,如前所示,poly(J )可计算特征多项式的系数。对于

????

??????---=651100010

A

利用MATLAB 命令Polyvalm(Poly(J ), A ),可计算下列φ(A ),即

????

?

?????---=+++=11743

77

15988

551992006014)(2

3I A A A A φ 实际上,

利用爱克曼公式,MATLAB Program 5.2将求出状态反馈增益矩阵K 。

%*****Enter matrices A and B*****

A=[0 1 0;0 0 1; -1 -5 -6];

B=[0;0;1];

%*****Define the controllability matrix Q***** Q=[B A*B A^2*B];

%*****Check the rank of matrix Q*****

rank(Q)

ans=

3

%*****Since the rank of Q is 3, arbitrary pole placement is

现代控制理论第一章答案1

习题解答 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ??-??????????=+???? ???? -???????????? (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ????===?? ?????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 11i 221211011010 x x L U L x x C RC x y x R ??-?????????? =+????????-? ??????????? ??? ?=????? ???

现代控制理论1-8三习题库

信息工程学院现代控制理论课程习题清单

正确理解线性系统的数学描述,状态空间的基本概念,熟练掌握状态空间的表达式,线性变换,线性定常系统状态方程的求解方法。 重点容:状态空间表达式的建立,状态转移矩阵和状态方程的求解,线性变换的基本性质,传递函数矩阵的定义。要求熟练掌握通过传递函数、微分方程和结构图建立电路、机电系统的状态空间表达式,并画出状态变量图,以及能控、能观、对角和约当标准型。难点:状态变量选取的非唯一性,多输入多输出状态空间表达式的建立。 预习题 1.现代控制理论中的状态空间模型与经典控制理论中的传递函数有何区别? 2.状态、状态空间的概念? 3.状态方程规形式有何特点? 4.状态变量和状态矢量的定义? 5.怎样建立状态空间模型? 6.怎样从状态空间表达式求传递函数? 复习题 1.怎样写出SISO系统状态空间表达式对应的传递函数阵表达式 2.若已知系统的模拟结构图,如何建立其状态空间表达式? 3.求下列矩阵的特征矢量 ? ? ? ? ? ? ? ? ? ? - - = 2 5 10 2 2 1- 1 A 4.(判断)状态变量的选取具有非惟一性。 5.(判断)系统状态变量的个数不是惟一的,可任意选取。 6.(判断)通过适当选择状态变量,可将线性定常微分方程描述其输入输 出关系的系统,表达为状态空间描述。 7.(判断)传递函数仅适用于线性定常系统;而状态空间表达式可以在定 常系统中应用,也可以在时变系统中应用. 8.如果矩阵A 有重特征值,并且独立特征向量的个数小于n ,则只能化为 模态阵。 9.动态系统的状态是一个可以确定该系统______(结构,行为)的信息集 合。这些信息对于确定系统______(过去,未来)的行为是充分且必要 的。 10.如果系统状态空间表达式中矩阵A, B, C, D中所有元素均为实常数时, 则称这样的系统为______(线性定常,线性时变)系统。如果这些元素 中有些是时间t 的函数,则称系统为______(线性定常,线性时变)系 统。 11.线性变换不改变系统的______特征值,状态变量)。 12.线性变换不改变系统的______(状态空间,传递函数矩阵)。 13.若矩阵A 的n 个特征值互异,则可通过线性变换将其化为______(对 角阵,雅可比阵)。 14.状态变量是确定系统状态的______(最小,最大)一组变量。 15.以所选择的一组状态变量为坐标轴而构成的正交______(线性,非线性) 空间,称之为______(传递函数,状态空间)。

习题解答_现控理论_第6章

6-1 对线性系统 A B C D =+?? =+? x x u y x u 作状态反馈v x u +-=K ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型,则有 ()()()()A B K A BK B C D K C DK D =+-+=-+=+-+=-+x x x v x v y x x v x v 因此,闭环系统的状态空间模型和传递函数分别为 1()()()()()K A BK B C DK D G s C DK sI A BK B D -=-+?? =-+?=--++x x v y x v 6-2 对线性系统 A B C D =+?? =+? x x u y x u 作输出反馈u =-H y +v ,试推导出闭环系统的状态空间模型和传递函数。 解 将反馈律代入状态空间模型的输出方程,则有 () C D H C DH D =+-+=-+y x y v x y v 即 ()I DH C D +=+y x v 因此,当()I DH +可逆时,闭环系统输出方程为 11()()I DH C I DH D --=+++y x v 将反馈律和上述输出方程代入状态方程,则有 11() [()][()]A B A B H A BH I DH C BH I DH D B --=+=+-+=-++++x x u x y v x v 当闭环系统的状态空间模型和传递函数分别为 1111 11111[()][()]()()()()[()][()]()H A BH I DH C BH I DH D B I DH C I DH D G s I DH C sI A BH I DH C BH I DH D B I DH D ---------?=-++++?=+++?=+-++++++x x v y x v

现代控制理论习题解答(第四章)

1 v(x) a 1x 12 b 1x 22 c 1 x 32 2x 1x 2 4x 3 x 2 2X 1X 3 a 1 x T 1 1 b 1 2 (1) v(x) x 12 4x 22 x 32 2x 1x 2 6x 3x 2 2x 1x 3 (2) v(x) x 12 10x 22 4x 32 6x 1 x 2 2x 3x 2 2 2 2 (3) v(x) 10x 1 4x 2 x 3 2x 1x 2 2x 3x 2 4x 1 x 3 【解】: (1) 二次型函数不定。 ⑵ 二次型函数为负定。 ⑶ 二次型函数正定。 3-4-2 试确定下列二次型为正定时,待定常数的取值范围。 【解】: 3-4-1 第四章 控制系统的稳定性 试确定下列二次型是否正定。 1 1 1 1 1 1 1 1 1 4 3 , 1 0, 3 0, 1 4 3 1 1 1 1 4 1 3 1 1 1 3 1 P 4 10 0, 3 10 0, 10 10 P 1 2 1 , 10 1 1 10 1 2 10 1 39 0 1 4 1 1 4 2 1 1 0, 17

a 1 0 a 1 b 1 1 a 1b 1 c 1 4 b 1 4a 1 c 1 【解】: (1) 设 2 2 v(x) 0.5x 1 0.5X 2 V (X ) X 1X 1 X 2X 2 X 1X 2 X 1X 2 X2 x/ ° " °)为半负定。 0 (x 0) 又因为v(x) 0时,有X 2 0, 则X 2 0,代入状态方程得: X 1 0. 所以系统在X 0时,v(x)不恒为零。 则系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (2) 设 2 2 v(x) 0.5X 1 0.5X 2 v(x) X 1X 1 X 2X 2 X 1 ( X 1 X 2) X 2(2X 1 3X 2) X 12 3X 22 3X 1X 2 T 1 1.5 1 1 1 1.5 X x 1 0, 1.5 3 1 1 1 1.5 3 T … X Px P 负定,系统渐近稳定,又因为是线性系统,所以该系统是大范围渐近稳定。 (3) 0 1 1 1 (1) X X (2) x X ; 1 1 2 3 1 1 1 0 (3) x X (4) x X 1 1 0 1 3-4-3 满足正定的条件为: a i | of 1 1 b i a i 0, 1 1 1 1 b 1 2 0 2 C 1 试用李亚普诺夫第二法判断下列线性系统的稳定性。

现代控制理论第4章教学要求(第四章)

现代控制理论第4章教学要求 按章节,打*号的部分为本科不要求的内容,另外在一些未打*的部分有些内容也不要求,请按下面要求的内容组织本科教学。 第4 章动态系统的结构分析 4.1 引言 4.1.1 能控性与能观性物理现象——从例子谈起 从物理角度理解能控性与能观性的重要性。 4.1.2 能控性与能观性的数学描述 从数学角度理解能控性与能观性的状态方程特点。 4.2 连续线性系统能控性与能观性定义 4.2.1 能控性定义 理解能控性的定义包含的丰富内涵。 能利用定义解决与系统能控性相关的问题。 4.2.2 能观性定义 理解能观性的定义包含的丰富内涵。 能利用定义解决与系统能观性相关的问题。 4.3 连续线性系统能控性与能观性判据 4.3.1 定常系统的能控性判据与能控性指数 掌握定常系统的Gram矩阵能控性判据。 掌握Jordan标准型的能控性判据,并能依此进行相应计算。 掌握能控性矩阵秩判据,并能依此进行相应计算。 了解能控性PBH判据,包括PBH秩判据和PBH特征向量判据。 了解定常系统的能控性指数,并基此减小能控性矩阵的规模。 4.3.2 定常系统的能观性判据与能观性指数 掌握定常系统的Gram矩阵能观性判据。 掌握Jordan标准型的能观性判据,并能依此进行相应计算。。 掌握能观性矩阵秩判据,并能依此进行相应计算。 了解能观性PBH判据,包括PBH秩判据和PBH特征向量判据。。 了解定常系统的能观性指数,并基此减小能观性矩阵的规模。 4.3.3 时变系统的能控性判据 了解时变系统的 Gram矩阵能控性判据。 了解时变系统的能控性秩判据。 4.3.4 时变系统的能观性判据 了解时变系统的 Gram矩阵能观性判据。 了解时变系统的能观性秩判据。 4.3.5 时变系统的能控、能观性判据与其定常情况的关系 理解时变系统的能控、能观性判据与其定常情况的关系。 4.4 连续线性系统输出能控性和输出函数能控性及判据 4.4.1 输出能控性定义及其判定* 本科不要求此节内容。 4.4.2 输出函数能控性定义及其判定* 本科不要求此节内容。 4.5 连续线性系统的对偶关系 4.5.1 定常情况下的对偶关系 理解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.5.2 时变情况下的对偶关系 了解定常情况下的对偶关系,燕能利用对偶关系解决相关问题。 4.6 定常连续线性系统的能控型与能观型 4.6.1 SISO 系统的能控标准型与能观标准型 掌握SISO系统的能控标准型与能观标型以及变换方法,能计算标准型。 4.6.2 MIMO 类SISO 的能控标准型与能观标准型 了解MIMO 类SISO 的能控标准型与能观标准型。 4.6.3 MIMO 系统的Wonham 规范型与Luenberger 规范型* 本科不要求此节内容。 4.7 连续线性系统的结构分解

现代控制理论-第7章

第六次课小结 一、 Lyapunov 意义下的稳定性问题基本概念 平衡状态的概念 Lyapunov 意义下的稳定性定义(稳定,一致稳定,渐进稳定,一致渐进稳定,大范围渐进稳定等) 纯量函数的正定性,负定性,正半定性,负半定性,不定性 二次型,复二次型(Hermite 型) 二、 Lyapunov 稳定性理论 第一方法 第二方法 三、 线性定常系统的Lyapunov 稳定性分析 应用Lyapunov 方程 Q PA P A H -=+ 来进行判别稳定性 四、 线性定常系统的稳定自由运动的衰减率性能估计 衰减系数,一旦定出min η,则可定出)(x V 随时间t 衰减上界。 计算min η的关系式 五、 离散时间系统的状态运动稳定性及其判据 离散系统的大范围淅近稳定判据,Lyapunov 稳定判据在离散系统中的应用

六、线性多变量系统的综合与设计的基本问题 问题的提法 性能指标的类型 研究的主要内容 七、极点配置问题 问题的提出 可配置条件 极点配置算法

爱克曼公式(Ackermann’s Formula) 考虑由式()给出的系统,重写为 Bu Ax x +=& 假设该被控系统是状态完全能控的,又设期望闭环极点为n s s s μμμ===,,,21Λ。 利用线性状态反馈控制律 Kx u -= 将系统状态方程改写为 x BK A x )(-=& 定义 BK A A -=~ 则所期望的特征方程为 ) ())((~ 11121=++++=---=-=+-* *--*n n n n n a s a s a s s s s A sI BK A sI ΛΛμμμ 由于凯莱-哈密尔顿定理指出A ~ 应满足其自身的特征 方程,所以

现代控制理论第2章l

第2章 线性系统理论 线性系统是实际系统的一类理想化模型,通常用线性的微分方程或差分方程描述。其基本特征是满足叠加原理,可分为线性定常系统和线性时变系统。 现代控制理论中,采用状态变量法描述系统,它既能反映系统内部变化情况,又能考虑初始条件,也为多变量系统的分析、综合提供了强有力的工具。 2.1 基本概念 输入:外部施加到系统上的全部激励。 输出:能从外部测量到的来自系统的信息。 状态变量:确定动力学系统状态的最小的一组变量。 状态向量:若n 个状态变量)(1t x ,)(2t x ,…,)(t x n 是向量)(t x 的各个分量,即 )(t x 为状态向量。 状态空间:以各状态变量作为基底组成的n 维向量空间。在特定的时间,状态向量)(t x 在状态空间中只是一个点。 状态轨迹:状态向量)(t x 在状态空间中随时间t 变化的轨迹。 连续时间系统:)(t x 的定义域为某时间域],[f 0t t 内一切实数。 离散时间系统:)(t x 的自变量时间t 只能取到某实数域内的离散值。 状态方程:描述系统状态变量与输入变量之间动态关系的一阶微分方程

组或一阶差分方程组。一般形式为 或 式中 u ——输入向量; k ——采样时刻。 状态方程表征了系统由输入引起的内部状态的变化。 输出方程:描述输出变量与系统输入变量和状态变量间函数关系的代数方程,具有形式 它是一个代数变换过程。 状态空间表达式:状态方程与输出方程联立,构成对动态系统的完整描述,总称为系统的状态空间表达式,又称动态方程。 线性系统的状态空间表达式具有下列一般形式: 1)连续时间系统 ? ??+=+=)()()()()()()()()()(t t t t t t t t t t u D x C y u B x A x & (2–1) 式中 A (t )——系统矩阵或状态矩阵,n ?n 矩阵; B (t )——控制矩阵或输入矩阵,n ?p 矩阵; C (t )——观测矩阵或输出矩阵,q ?n 矩阵; D (t )——输入输出矩阵,q ?p 矩阵; x ——状态向量,n 维; u ——控制作用,p 维; y ——系统输出,q 维。 2)离散时间系统

王金城现代控制理论第一章知识题目解析

王金城化工出版社第1章习题参考答案: 1-1(a )选123123,,,,,y y y v v v 为状态变量,根据牛顿定律, 对1M ,有()1 1112121 dv M g K y K y y M dt ---= 对2M ,有()()2 22123232dv M g K y y K y y M dt +---= 对3M ,有()3 3323433dv M g K y y K y M dt +--= 令312112233415263,,,,,dy dy dy x y x y x y x v x v x v dt dt dt ===== ====,整理得 ()()()122214253641 11 23342332 51262322233 ,,,, ,K K K x x x x x x x x x g M M K K K K K x K K x x x g x x x g M M M M M +====-++++= -++=-+ () ()() 122 11 23222 22 3433 3 000100000010000000100000 01100010000K K K M M x x g K K K K M M M K K K M M ? ????? ??????? ? ??+??-????=+??????+?? ??- ? ? ???? ??? ? +- ?? ??? ? 100000010000001000y x ?? ??=?? ???? (b )选12,12,,y y v v 为状态变量,根据牛顿定律, 对1M ,有()1 1121111 dv M g B v v K y M dt +--= 对2M ,有()2 2221212dv f M g B v B v v M dt +---= 令1211223142,,,dy dy x y x y x v x v dt dt === ===,整理得 11113243134111 ,,K B B x x x x x x x x g M M M ===--++, 112434222 B B B f x x x g M M M +=-++

(完整word版)现代控制理论习题解答(第二章)

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010A (6)? ???? ? ??? ???=λλλλ000100010000A 【解】: (1) ???? ? ? ????? ?++=?? ????+-=-=Φ-----)2(10)2(11}201{])[()(11 111s s s s L s s L A sI L t ??? ? ????-=????? ? ??????++-=---t t e e s s s s L 22105.05.01)2(10)2(5.05.01 (2) ?? ? ???-=???? ? ? ??????+++- +=?? ????-=-=Φ-----t t t t s s s s s s L s s L A sI L t 2cos 2sin 22sin 5.02cos 44 441 4}41{])[()(222211 111 (3) ??? ? ? ?????? ?++-+++=?? ????+-=-=Φ-----222211 111)1()1(1)1(1 )1(2 }211{])[()(s s s s s s L s s L A sI L t ??? ? ????--+=Φ------t t t t t t te e te te e te t )( (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为

现代控制理论基础第二章习题答案

第二章 状态空间表达式的解 3-2-1 试求下列矩阵A 对应的状态转移矩阵φ(t )。 (1) ???? ??-=2010A (2) ?? ? ???-=0410A (3) ??????--=2110 A (4) ???? ??????-=452100010A (5)?? ??????? ???=000010000100 0010 A (6)? ???? ? ??????=λλλλ000100010000A 【解】: (1) (2) (3) (4) 特征值为:2,1321===λλλ。 由习题3-1-7(3)得将A 阵化成约当标准型的变换阵P 为 ???? ??????=421211101P ,??????????----=-1211321201 P 线性变换后的系统矩阵为: (5) 为结构四重根的约旦标准型。 (6) 虽然特征值相同,但对应着两个约当块。 或}0 100010000{ ])[()(1 111----?? ??? ????? ??------=-=Φλλλλs s s s L A sI L t 3-2-2 已知系统的状态方程和初始条件 (1)用laplace 法求状态转移矩阵; (2)用化标准型法求状态转移矩阵; (3)用化有限项法求状态转移矩阵; (4)求齐次状态方程的解。 【解】:

(1) (2) 特征方程为: 特征值为: 2,1321===λλλ。 由于112==n n ,所以1λ对应的广义特征向量的阶数为1。 求满足0)(11=-P A I λ的解1P ,得: 0110000000312111=????????????????????--P P P ,???? ? ?????=0011P 再根据0)(22=-P A I λ,且保证1P 、2P 线性无关,解得: 对于当23=λ的特征向量,由0)(33=-P A I λ容易求得: 所以变换阵为: []??????????-==11001000132 1 P P P P ,???? ??????=-1100100011P 线性变换后的系统矩阵为: (3) 特征值为: 2,1321===λλλ。 即 (4) 3-2-3 试判断下列矩阵是否满足状态转移矩阵的条件,如果满足,试求对应的矩阵A 。 (1)??? ???????-=Φt t t t t sin cos 0cos sin 0001 )((2)????????-=Φ--t t e e t 220)1(5.01)( (3)???? ??? ?+--+--=Φ--------t t t t t t t t e e e e e e e e t 22222222)((4)? ??? ??? ?++-+-+=Φ----t t t t t t t t e e e e e e e e t 33335.05.025.025.05.05.0)( 【解】: (1) ∴不满足状态转移矩阵的条件。 (2) ∴满足状态转移矩阵的条件。 由)()(t A t Φ=Φ &,得A A =Φ=Φ)0()0(&。

现代控制理论第4章答案

现代控制理论第四章习题答案 4-1判断下列二次型函数的符号性质: (1)222 123122313()31122Q x x x x x x x x x x =---+-- (2)222123122313()4262v x x x x x x x x x x =++--- 解:(1)由已知得 []1123 123 1232311 2 3231 1()3112 2111113211112x Q x x x x x x x x x x x x x x x x x x ?? ? ???=-+------???? ? ????? ? ? ??--??? ?????=--???????????? ---?? 110?=-<,211 2013 -?= =>-,31111711 3 024 1 1112 --?=--=-<-- - 因此()Q x 是负定的 (2)由已知得 [][]112312312323112323()433111143131x Q x x x x x x x x x x x x x x x x x x ????=---+---+?????? --???? ????=--???? ????--???? 110?=>,211 3014 -?= =>-,3111 143160131 --?=--=-<-- 因此()Q x 不是正定的 4-2已知二阶系统的状态方程:

11122122a a x x a a ??= ??? 试确定系统在平衡状态处大范围渐进稳定的条件。 解:方法(1):要使系统在平衡状态处大范围渐进稳定,则要求满足A 的特征值均具有负实部。 即: 11 12 2122 2112211221221()0 a a I A a a a a a a a a λλλλλ---= --=-++-= 有解,且解具有负实部。 即:1122112212210a a a a a a +<>且 方法(2):系统的原点平衡状态0e x =为大范围渐近稳定,等价于T A P PA Q +=-。 取Q I =,令11 121222P P P P P ??=???? ,则带入T A P PA Q +=-,得到 11 2111121122 211212 2222220100 221a a P a a a a P a a P -???? ????????+=????????????-?????? 若 112112 1122 2111221122122112 22 220 4()()0022a a a a a a a a a a a a a a +=+-≠,则此方程组有唯一解。即 22 21221222211122 1222211111121122()1 ()2()A a a a a a a P a a a a A a a a a A ??++-+=-??-++++?? 其中11221221det A A a a a a ==- 要求P 正定,则要求 22 2122 111112202()A a a P a a A ++?== >-+ 22 1122122121122()()0 4() a a a a P a a ++-?==>-+

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 解:系统的模拟结构图如下: 系统的状态方程如下: 令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流与电容上的电压作为状态变量的状态方程,与以电阻2R 上的电压作为输出量的输出方程。 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为: 1-4 两输入1u ,2u ,两输出1y ,2y 的系统,其模拟结构图如图1-30所示,试求其状态空间表达式与传递函数阵。 解:系统的状态空间表达式如下所示: 1-5系统的动态特性由下列微分方程描述 列写其相应的状态空间表达式,并画出相应的模拟结构图。 解:令.. 3. 21y x y x y x ===,,,则有 相应的模拟结构图如下: 1-6 (2)已知系统传递函数2 )3)(2() 1(6)(+++= s s s s s W ,试求出系统的约旦标准型的实现,并画出相应的模拟结构图 解:s s s s s s s s s W 31 233310)3(4)3)(2()1(6)(22++++- ++-=+++= 1-7 给定下列状态空间表达式 []??? ? ? ?????=???? ??????+????????????????????----=??????????321321321100210311032010x x x y u x x x x x x ‘ (1) 画出其模拟结构图 (2) 求系统的传递函数

现代控制理论基础_周军_第二章状态空间分析法

2.1 状态空间描述的基本概念 系统一般可用常微分方程在时域内描述,对复杂系统要求解高阶微分方程,这是相当困难的。经典控制理论中采用拉氏变换法在复频域内描述系统,得到联系输入-输出关系的传递函数,基于传递函数设计单输入-单输出系统极为有效,可从传递函数的零点、极点分布得出系统定性特性,并已建立起一整套图解分析设计法,至今仍得到广泛成功地应用。但传递函数对系统是一种外部描述,它不能描述处于系统内部的运动变量;且忽略了初始条件。因此传递函数不能包含系统的所有信息。由于六十年代以来,控制工程向复杂化、高性能方向发展,所需利用的信息不局限于输入量、输出量、误差等,还需要利用系统内部的状态变化规律,加之利用数字计算机技术进行分析设计及实时控制,因而可能处理复杂的时变、非线性、多输入-多输出系统的问题,但传递函数法在这新领域的应用受到很大限制。于是需要用新的对系统内部进行描述的新方法-状态空间分析法。 第一节基本概念 状态变量指描述系统运动的一组独立(数目最少的)变量。一个用阶微分方程描述含有个独立变量的系统,当求得个独立变量随时间变化的规律时,系统状态可完全确定。若变量数目多于,必有变量不独立;若少于, 又不足以描述系统状态。因此,当系统能用最少的个变量 完全确定系统状态时,则称这个变量为系统的状态变量。 选取状态变量应满足以下条件:给定时刻的初始值, 以及的输入值,可唯一确定系统将来的状态。而时 刻的状态表示时刻以前的系统运动的历史总结,故状态变量是对系统过去、现在和将来行为的描述。 状态变量的选取具有非唯一性,即可用某一组、也可用另一组数目最少的变量。状态变量不一定要象系统输出量那样,在物理上是可测量或可观察的量,但在实用上毕竟还是选择容易测量的一些量,以便满足实现状态反馈、改善系统性能的需要。

第七章---现场控制盘

第七章现场控制盘 在海上平台,一个大的处理系统,经常包含有多个子系统,如注水系统、分子筛干燥再 生系统、热油炉供热系统、丙烷制冷系统、三甘醇脱水及再生系统等。这些子系统规模较小,控制简单且相对独立,这些子系统的控制因此也常常采用现场控制PLC来实现子系统的控制,子控制系统PLC经过通讯方式与主控制系统相连,把它的数据信息传递给主控制系统,主控制系统又可将ESD信号通过硬线送到就地控制盘,实施对就地盘的关断,从而实现整个控制系统的集中管理与监视。也实现了平台控制系统的控制分散和危险分散的概念。 一、现场控制盘所用的控制系统 许多子系统都采用了性能好、可靠性高的A-B公司P LC的S LC500系列控制器,下面主要 介绍由SLC500系列控制器组成的现场控制系统。 1. 结构 SLC500系列控制器是为小规模应用而设计的可编程控制器,该系列有两种硬件结构:一种是用于固定式控制器,电源、CPU,I/O卡等都连为一体,不能随意配置;另一种用于模块式控制器,由于该系列可提供各种各样I/O模块,可以随意地、很经济地配置其控制系统。 一个SLC500系列的现场控制系统包括S LC硬件、显示终端、寻址、软件等。模块式现场 控制系统的结构如图4-1所示。 图7-1 模块式现场控制系统结构图 2. 硬件 SLC硬件包括安装框架、处理器模块、I/O模块、电源块等。 SLC安装框架均需要电源向处理器CPU及每个I/O槽供电。 处理器模块是现场控制系统的核心部分,它负责整个控制系统的数据处理、通讯、工作方式等。在处理器模块上有一个钥匙开关,使用钥匙开关可以改变处理器的操作方式。在处理器上有三种操作模式:运行(RUN)、编程(PROG)、远程(REM)。如表7-1 162

习题解答_现控理论_第2章

2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出 量。试列写状态空间模型。 题图2-1 解: (1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()() 1()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t ≥t 0 时刻后的输入量U i (t ),则电路中各部分的电压、电流在t ≥t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 12212 1111i dx x U dt L L dx x x dt C RC =-+ =- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110 110x x L U L x x C RC ?? - ?? ????????=+???????? -???????? ???? (4) 列写描述输出变量与状态变量之间关系的输出方程, 12211 10C x y U x x R R R ?? ??= = =???????? (5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式

《现代控制理论》第3版课后习题答案

《现代控制理论参考答案》 第一章答案 1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。 图1-27系统方块结构图 解:系统的模拟结构图如下: 图1-30双输入--双输出系统模拟结构图 系统的状态方程如下: u K x K x K x X K x K x x x x J K x J x J K x J K x x J K x x x p n p b 161116613153 46 1 5141313322211 +-- =+-==++--== =??? ?? ?

令y s =)(θ,则1x y = 所以,系统的状态空间表达式及输出方程表达式为 []????? ? ??? ? ??????????=??????? ???????????????+?????? ??????????????? ????????????? ??????????? ?-----=????????????????????????????? ?654321165432111111112654321000001000000 000000010010000000000010x x x x x x y u K K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p p p n p b 1-2有电路如图1-28所示。以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。 U 图1-28 电路图 解:由图,令32211,,x u x i x i c ===,输出量22x R y = 有电路原理可知:? ? ? +==+=++3 213 222231111x C x x x x R x L u x x L x R 既得 2 221332 2222131111111111x R y x C x C x x L x L R x u L x L x L R x =+- =+-=+-- =? ? ? 写成矢量矩阵形式为:

上海交大杜秀华老师《现代控制理论》第四章 线性系统的能控性和能观性4

4.4 时变系统的能控性和能观性 一、能控性判据 1、有关线性系统能控性的几点说明 1)允许控制u(t),其元在时间[t 0,t f ]上绝对平方可积。 2)能控状态和控制作用的关系式 τ ττττ τττττττd )(u )(B ),t (d )(u )(B ),t ()t ,t (X 0 d )(u )(B ),t (X )t ,t ()t (X f f f t t 0t t f 0f 1 0t t f 00f f ???-=-==+=-ΦΦΦΦΦ ) 8.3.4(d )(u )(B ),t (X f t t 00τ τττ?-=∴Φ 3)非奇异变换不改变系统的能控性 设系统在变换前是能控的,它必满足(4.3.8) 即 ττττd )(u )(B ),t (X f t t 00?-=Φ 若取变换矩阵P ,对X 进行线性变换 X P X = 则有 B P B AP P A 11 --== 即 B P B P A P A 1 ==- 将上述关系式代入(4.3.8)式,有

τ τττφ-=τ τττφ-=τ τττφ-=???-d )(u )(B ),t (X d )(u )(B P ),t (P X d )(u )(B P ),t (X P f f f t t 00t t 010t t 00 上式表明非奇异变换不改变系统的能控性 4)如果0X 是能控状态,则0X α也是能控状态,α是任意非零实数。 5)如果01X 和02X 是能控状态,则0201X X +也是能控状态。 6)由线性代数关于线性空间的定义可知,系统中所有的能控状态构成状态空间中的一个子空间,此子空间称为系统的能控子空间,记为c X 。 例:u 11x x 1001x x 2121??????+????????????=?????? 解:系统的能控状态为21x x =的状态,为两维状态空间中的一条450斜线。 2、线性连续时变系统的能控性判据 1)【定理】时变系统的状态方程为 )t (U )t (B )t (X )t (A )t (X += 系统在[t 0,t f ]上状态完全能控的充分必要条件是格拉姆矩阵 ?φφ=f t t 0T T 0f 0c dt )t ,t ()t (B )t (B )t ,t ()t ,t (W

赵明旺版习题解答_现控理论_第2章

习题解答 2-1 如题图2-1所示为RLC 电路网络,其中()i U t 为输入电压,安培表的指示电流)(t i o 为输出量。试列写状态空间模型。 题图2-1 解:?(1) 根据回路电压和节点电流关系,列出各电压和电流所满足的关系式. ()()()1 ()()()()() i L C L C R C C d U t L i t U t dt d i t i t i t C U t U t dt R =+=+=+ (2) 在这个电路中,只要给定了储能R 元件电感L 和电容C 上的i L 和U C 的初始值,以及t?t 0时 刻后的输入量U i (t ),则电路中各部分的电压、电流在t?t 0时刻以后的值就完全确定了。也就是说,i L 和U C 可构成完整的描述系统行为的一组最少个数的变量组,因此可选i L 和为U C 状态变量,即 x 1(t )=i L , x 2(t )=u C (3) 将状态变量代入电压电流的关系式,有 1221211 11 i dx x U dt L L dx x x dt C RC =-+=- 经整理可得如下描述系统动态特性的一阶矩阵微分方程组--状态方程 11i 22110110x x L U L x x C RC ?? -??????????=+????????-? ????? ?????? && (4) 列写描述输出变量与状态变量之间关系的输出方程, 1221110C x y U x x R R R ?? ? ?= ==????? ???

(5) 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间表达 式 1 1 i 221211011010 x x L U L x x C RC x y x R ??-?? ????????=+???????? -? ???????????????=????? ??? &&

现代控制理论第二章

一: 基本概念 1:系统:所谓系统,是由相互制约的各个部分有机结合,且具有一定功能的整体。 2:静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。 3:动态系统:对于任意时刻t,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)) 4:状态变量:是构成系统状态的变量,是指能完全描述系统行为的最小变量组中的每个变量。 5:系统变量:输入变量、状态变量、输出变量统称为系统变量。6:状态方程:是描述系统状态变量与输入变量之间关系的一阶微分方程组(连续时间系统)或一阶差分方程组(离散时间系统)。 7:输出方程:是描述系统输出变量与系统状态变量和输入变量之间关系的代数方程。 8:状态:动态系统的状态是完全地描述动态系统运动状况的信息,系统在某一时刻的运动状况可以用该时刻系统运动的一组信息表征,定义系统运动信息的集合为状态。例如,由做直线运动的质点所构成的系统,它的状态就是质点的位置和速度。 9:状态向量:设系统的状态变量为x1(t),x2(t),………,x n(t),那么用它们作为分量所构成的向量就称为状态向量,记作

10:状态空间:以状态变量x 1(t),x 2(t),………,x n (t)为坐标轴构成的n 维空间称为状态空间。 11:状态轨迹:状态向量的端点在状态空间中的位置代表了某一特定时刻系统的状态。 二:状态方程形式:系统的状态方程表征了系统由输入引起的内部状态变化的规律。连续时间系统和离散时间系统状态方程的一般形式可分别表示为 和 式中,x(t)-连续时间系统的n 维状态向量; x(k)-离散时间系统在k 时刻的的n 维状态向量; u(t)-连续时间系统的r 维输入(控制)向量; u(k)-离散时间系统在k 时刻的r 维输入向量; f[.]-n 维向量函数,f[.]=[f 1(.),f 2(.),…,f n (.)]T . 三:输出方程形式:连续时间系统和离散时间系统输出方程的一般形式可分别表示为 y(t)=g[x(t),u(t),t] ()()()12n x t x t .()..x t x t ??????????=?? ??????????[] . ()(),(),x t f x t u t t =[] (1)(),(),x k f x k u k k +=

现代控制理论基础第四章

现代控制理论基础
Elements of Modern Control Theory
主讲:董霞 西安交通大学机械工程学院

第四章 控制系统的李亚普诺夫稳定性分析
控制系统的稳定性分析是系统分析的重要组成部分。系统稳 定是控制系统正常工作的前提条件。 对单输入-单输出的线性定常系统,以传递函数或频率特性为 其数学模型,采用劳斯-胡尔维茨(Routh-Hurwitz)判据和乃 奎斯特(Nyquist)判据等来判别系统的稳定性是比较简便的。
对于多变量系统,特别是时变系统和非线性系统,以状态空间 表达式为数学模型,分析其稳定性采用的方法是李亚普诺夫 (A.M. Lyapunov)提出的稳定性理论。
1

本章主要内容
4.1 引言 4.2 李亚普诺夫意义下的稳定性 4.3 判别系统稳定的李亚普诺夫方法 4.4 线性系统的Lyapunov稳定性分析
2

4.1 引言
对于线性定常SISO系统,其稳定性分析可以通过经典控制理 论的Routh-Hurwitz判据和Nyquist判据来解决。 在航空、航天以及其它科技领域发展中,控制系统日益向非线 性、时变、MIMO系统延伸,其稳定性分析无法利用经典控制理论 解决,于是李亚普诺夫稳定性分析理论诞生。 1892年,李亚普诺夫发表了《运动稳定性一般问题》论文, 建立了运动稳定性的一般理论和方法。 他把稳定性分析方法归纳为两种:
3

一种是通过求出微分方程的解来分析系统的稳定性,是一 种间接方法,由于求解非线性时变微分方程的解是非常困难 甚至不可能的,因而此方法的应用受到一定限制。 另一种是不需要求解微分方程而给出系统稳定性的信息, 是一种直接方法。它根据系统在其平衡状态渐近稳定时,其 能量必将随时间的增长而衰减,直至达到平衡状态而使能量 趋于最小值的原理,只要找到这样的能量函数(李亚普诺夫 函数)即可判断系统的稳定性。 由于李亚普诺夫第二法可以避开求解微分方程的困难,因而 更具重要性。
4

相关主题
文本预览
相关文档 最新文档