当前位置:文档之家› 西门子PLC的SM322数字量输出模块的功能

西门子PLC的SM322数字量输出模块的功能

西门子PLC的SM322数字量输出模块的功能
西门子PLC的SM322数字量输出模块的功能

(1)DO模板的功能

数字量输出模块SM322将S7-300内部信号电平转换成过程所要求的外部信号电平,可直接用于驱动电磁阀、接触器、小型电动机、灯和电动机启动器等。

(2)DO模板的类型

按负载回路使用的电源不同分为:

直流输出模块、交流输出模块和交直流两用输出模块。

按输出开关器件的种类不同分为:

晶体管输出方式、晶闸管输出方式和继电器触点输出方式。

(3)DI模板的特点

晶体管输出模块只能带直流负载,属于直流输出模块;

晶闸管输出方式属于交流输出模块;

继电器触点输出方式的模块属于交直流两用输出模块。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

如需进一步了解台达PLC、西门子PLC、施耐德plc、欧姆龙PLC的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/337562609.html,/

YC1008数字量输入输出模块使用说明书V1.0

YC1008数字量输入输出模块 使用说明书V1.0 目录 一.模块介绍 二.技术参数 三.模块的型号 四.模块尺寸、模块引脚定义、隔离特性 五.模块使用说明 六.通讯协议 七.模块的MODBUS-RTU协议功能码与数据对应表 版本记录:V1.0 2011-11-20 版本创建 一.模块介绍 YC1008数字量输入输出模块广泛应用于工业控制系统,具有广泛的使用意义。YC1008模块的主要特点如下: 1. YC1008系列模块通过隔离变压器和隔离光耦实现了供电电路、数字量输入、数字量输出、通讯电路的相互隔离,模块具有很强的稳定性和抗干扰能力。 2.单电源供电,隔离在模块内部通过隔离变压器和隔离光耦实现,隔离电压2500V。 3. YC1008系列模块实现8路数字量的输入和8路数字量的输出功能。 4. 通讯接口为RS485或232,通讯波特率等参数可配置,通讯协议为MODBUS-RTU。二.技术参数 供电电源 1. 供电电压:DC12V或DC24V,电源反接保护。 2. 电流消耗:<35mA+继电器功耗。 数字量输入 1. 共有8个数字量输入通道,可以接收多种输入信号:无源开关信号(逻辑0表示断开,逻辑1表示闭合);输入信号可以接集电极开漏(OC)输出信号、接近开关信号;输入信号也可以是有源信号(逻辑0表示3~35V,逻辑1表示0~0.5V表示闭合)。 2. 内部采用隔离变压器和隔离光耦实现了输入信号和电源的隔离,隔离电压2500V。数字量输出 1.8路数字量输出信号。 2.数字量输出通过继电器(常开触点)或集电极开漏输出(OC)两种方式实现。 3.该模块配有两种继电器输出:1) 继电器触点负载容量10A/277V AC;2) 继电器触 点负载容量30A/240V AC。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 1.1具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 2.1参考图片

图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 2.2问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电

西门子 PLC中OB、FC、FB、SFC、SFB中功能块

西门子 PLC中OB、FC、FB、SFC、SFB中功能块使用概述 (2013-12-05 16:13:52) S7-300/400PLC程序采用结构化程序,把程序分成多个模块,各模块完成相应的功能。结合起来就能实现一个复杂的控制系统。就像高级语言一样,用子程序实现特定的功能,再通过主程序调用各子程序,从而能实现复杂的程序。 在S7-300/400PLC中写在OB1模块里和程序就是主程序,子程序写在功能(FC),功能块(FB)。 FC运行是产生临时变量执行结束后数据就丢失-----不具有储存功能 FB运行时需要调用各种参数,于是就产生了背景数据块DB。例如用FB 41来作PID控制,则它的PID控制参数就要存在DB里面。FB具有储存功能系统功能块(SFB)和系统功能(SFC)也是相当于子程序,只不过SFB 和SFC是集成在S7 CPU中的功能块,用户能直接调用不需自已写程序。 SFC与FC不具有储存功能,FB和SFB具有储存功能。 OB模块相当于子程序,负责调用其他模块。如果程序简单只需要OB就可以实现。 用西门子PLC编程时,可以用到功能块FB和功能FC(FB、FC都是组织块)资料上说FB与FC都可以作为用户编写的子程序,但是我不明白这两个组织块之间到底有什么区别阿?在应用上到底有什么不同之处吗? FB--功能块,带背景数据块 FC--功能,相当于函数 他们之间的主要区别是:FC使用的是共享数据块,FB使用的是背景数据块 举个例子,如果您要对3个参数相同的电机进行控制,那么只需要使用FB编程外加3个背景数据块就可以了,但是,如果您使用FC,那么您需要不断的修改共享数据块,否则会导致数据丢失。FB确保了3个电机的参数互不干扰。 FB,FC本质都是一样的,都相当于子程序,可以被其他程序调用(也可以调用其他子程序)。他们的最大区别是,FB与DB配合使用,DB中保存着F B使用的数据,即使FB退出后也会一直保留。FC就没有一个永久的数据块来存放数据,只在运行期间会被分配一个临时的数据区。 在实际编程中,是使用FB还是FC,要看实际的需要决定。 FB与FC没有太大的差别,FB带有背景数据块,而FC没有。所以FB 带上不同的数据块,就可以带上不同的参数值。这样就可以用同一FB和不同的背景数据块,被多个对象调用。 FC和FB像C中的函数,只不过FB可以生成静态变量,在下次函数调用

S7-200模拟量接线

S7-200模拟量模块系列 模拟信号是指在一定范围内连续的信号(如电压、电流),这个“一定范围”可 以理解为模拟量的有效量程。在使用S7-200模拟量时,需要注意信号量程范围,拨码开关设置,模块规范接线,指示灯状态等信息。 本文中,我们按照S7-200模拟量模块类型进行分类介绍: ?AI 模拟量输入模块? 1. ? 2. AO模拟量输出模块 3. AI/AO模拟量输入输出模块 4. 常见问题分析 首先,请参见“S7-200模拟量全系列总览表”,初步了解S7-200模拟量系列的基本信息,具体内容请参见下文详细说明: AI 模拟量输入模块 A. 普通模拟量输入模块: 如果,传感器输出的模拟量是电压或电流信号(如±10V或0~20mA),可以选用普通的模拟量输入模块,通过拨码开关设置来选择输入信号量程。注意:按照规范接线, 尽量依据模块上的通道顺序使用(A->D),且未接信号的通道应短接。具体请参看 《S7-200可编程控制器系统手册》的附录A-模拟量模块介绍。 4AI EM231模块: 首先,模拟量输入模块可以通过设置拨码开关来选择信号量程。开关的设置应用于 整个模块,一个模块只能设置为一种测量范围,且开关设置只有在重新上电后才能 生效。也就是说,拨码设置一经确定后,这4个通道的量程也就确定了。如下表所示:

注:表中0~5V和0~20mA(4~20mA)的拨码开关设置是一样的,也就是说,当拨码 开关设置为这种时,输入通道的信号量程,可以是0~5V,也可以是0~20mA。 ? 8AI EM231模块: 8AI的EM231模块,第0->5通道只能用做电压输入,只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当sw1=ON,通道6用做电流输入;sw2=ON 时,通道7用做电流输入。反之,若选择为OFF,对应通道则为电压输入。 注:当第6、7道选择为电流输入时,第0->5通道只能输入0-5V的电压。 B. 测温模拟量输入模块(热电偶TC;热电阻RTD): 如果,传感器是热电阻或热电偶,直接输出信号接模拟量输入,需要选择特殊的测 温模块。测温模块分为热电阻模块EM231RTD和热电偶模块EM231TC。注意:不同的信 号应该连接至相对应的模块,如:热电阻信号应该使用EM231RTD,而不能使用 EM231TC。且同一模块的输入类型应该一致,如:Pt1000和Pt100不能同时应用在一个热电阻模块上。 热电偶模块TC: EM231 TC支持J、K、E、N、S、T和R型热电偶,不支持B型热电偶。通过拨码设置,模块可以实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。另外, ?该模块具有断线检测功能,未用通道应当短接,或者并联到旁边的实际接线通道上。 热电阻模块RTD: 热电阻的阻值能够随着温度的变化而变化,且阻值与温度具有一定的数学关系,这 种关系是电阻变化率α。RTD模块的拨码开关设置与α有关,如下图所示,就算同是 Pt100,α值不同时拨码开关的设置也不同。在选择热电阻时,请尽量弄清楚α参数,按 照对应的拨码去设置。具体请参看《S7-200可编程控制器系统手册》的附录A-热电偶和 热电阻扩展模块介绍。

西门子200SMART模拟量模块怎么接线

西门子200SMART模拟量模块怎么接线 1.普通模拟量模块接线 模拟量类型的模块有三种:普通模拟量模块、RTD模块和TC模块。 普通模拟量模块可以采集标准电流和电压信号。其中,电流包括:0-20mA、4-20mA 两种信号,电压包括:+/-2.5V、+/-5V、+/-10V三种信号。 注意: S7-200 SMART CPU普通模拟量通道值范围是0~27648或-27648~27648。 普通模拟量模块接线端子分布如下图 1 模拟量模块接线所示,每个模拟量通道都有两个接线端。 图1 模拟量模块接线 模拟量电流、电压信号根据模拟量仪表或设备线缆个数分成四线制、三线制、两线制三种类型,不同类型的信号其接线方式不同。 四线制信号指的是模拟量仪表或设备上信号线和电源线加起来有4根线。仪表或设备有单独的供电电源,除了两个电源线还有两个信号线。四线制信号的接线方式如下图2模拟量电压/电流四线制接线所示。

图2 模拟量电压/电流四线制接线 三线制信号是指仪表或设备上信号线和电源线加起来有3根线,负信号线与供电电源M线为公共线。三线制信号的接线方式如下图3 模拟量电压/电流三线制接线所示。 图3 模拟量电压/电流三线制接线 两线制信号指的是仪表或设备上信号线和电源线加起来只有两个接线端子。由于S7-200 SMART CPU模拟量模块通道没有供电功能,仪表或设备需要外接24V 直流电源。两线制信号的接线方式如下图4 模拟量电压/电流两线制接线所示。

图4 模拟量电压/电流两线制接线 不使用的模拟量通道要将通道的两个信号端短接,接线方式如下图 5 不使用的通道需要短接所示。 图5 不使用的通道需要短接 2. RTD模块接线 RTD热电阻温度传感器有两线、三线和四线之分,其中四线传感器测温值是最准确的。S7-200 SMART EM RTD模块支持两线制、三线制和四线制的RTD传感器信号,可以测量PT100、PT1000、Ni100、Ni1000、Cu100等常见的RTD温度传

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。

西门子PLC的几种编程语言

西门子PLC的几种编程语言 不同的商家的PLC有不同的编程语言,但就某个商家而言,PLC的编程语言也就那么几种。下面,以西门子PLC的编程语言为例,说明一下,各种编程语言的异同。 1、顺序功能图(SFC-Seauential Fuction Chart) 这是位于其它编程语言之上的图形语言,用来编程顺序控制的程序(如:机械手控制程序)。编写时,工艺过程被划分为若干个顺序出现的步,每步中包括控制输出的动作,从一步到另一步的转换由转换条件来控制,特别适合于生产制造过程。 西门子STEP7中的该编程语言是S7Graph。 2、梯形图(LAD-LAdder Diagram) 这是使用使用最多的PLC编程语言。因与继电器电路很相似,具有直观易懂的特点,很容易被熟悉继电器控制的电气人员所掌握,特别适合于数字量逻辑控制。 梯形图由触点、线圈和用方框表示的指令构成。触点代表逻辑输入条件,线圈代表逻辑运算结果,常用来控制的指示灯,开关和内部的标志位等。指令框用来表示定时器、计数器或数学运算等附加指令。 在程序中,最左边是主信号流,信号流总是从左向右流动的。 不适合于编写大型控制程序。 3、语句表(STL-STatement List) 是一种类似于微机汇编语言的一种文本编程语言,由多条语句组成一个程序段。语言表适合于经验丰富的程序员使用,可以实现某些梯形图不能实现的功能。 4、功能块图(FBD-Function Block Diagram) 功能块图使用类似于布尔代数的图形逻辑符号来表示控制逻辑,一些复杂的功能用指令框表示,适合于有数字电路基础的编程人员使用。功能块图用类似于与门、或门的框图来表示逻辑运算关系,方框的左侧为逻辑运算的输入变量,右侧为输出变量,输入、输出端的小圆圈表示“非”运算,方框用“导线”连在一起,信号自左向右。 5、结构化文本(ST-Structured Text) 结构化文本(ST)是为IEC61131-3标准创建的一种专用的高级编程语言。与梯形图相比,它实现复杂的数学运算,编写的程序非常简洁和紧凑。 STEP7的S7 SCL结构化控制语言,编程结构和C语言和Pascal语言相似,特别适合于习惯于使用高级语言编程的人使用。

三菱FX系列PLC12位模拟量输入输出模块的特性

1. FX系列的12位模拟量输入/输出模块的公共特性 除FX2N-3A和FXlN–8AV–BD/FX2N–8AV–BD的分辨率是8位, FX2N–8AD是16位以外,其余的模拟量输入输出模块和功能扩展板均为12位。 电压输入时(如0~10V DC,0~5V DC)。模拟量输入电路的输入电阻为20kΩ,电流输入时(如4~20mA)模拟量输入电路的输入电阻为250Ω。 模拟量输出模块在电压输出时的外部负载电阻为2kΩ/~1MΩ,电流输出时小于500Ω。 12位模拟量输入在满量程时(如10V)的数字量转换值为4000。未专门说明时,满量程前总体精度为±1%。 功能扩展板的体积小巧,价格低廉,PLC内可安装一块功能扩展板,后者还可以和价格也很便宜的显示模块安装在一起。 2. 模拟量输入扩展板FX1N–2AD–BD FX1N–2AD–BD有两个12位的输入通道,输入为0~10V DC和4~20mA DC,转换速度。为1个扫描周期,没有隔离,不占用的I/O点,适用于FXlS和FX1N。 3. 模拟量输出扩展板FX1N–1 DA–BD FXlN–1DA–BD有1个12位的输出通道,输出为0~1OV、O~5V DC和 4~20mA DC,转换速度为1个扫描周期,没有隔离;不占用I/O点,适用于FX1S 和FX1N。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达PLC、西门子PLC、施耐德plc、欧姆龙PLC的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/337562609.html,/

西门子模拟量输入模块SM331接线方法总结

P L C 接法 西门子模拟量输入模块S M 331接线方法总结 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当P L C 的模板输入通道设定为连接四线制传感器时,P L C 只从模板通道的端子上采集模拟信号,而当P L C 的模板输入通道设定为连接二线制传感器时,P L C 的模拟输入模板的通道上还要向外输出一个直流24V 的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24v D C 电源的,输出信号为4-20M A ,电流)即+接24v d c ,负输出4-20m A 电流。 2、四线制(有自己的供电电源,一般是220v a c ,信号线输出+为4-20m a 正,-为4-20m a 负。 P L C : (以2正、3负为例)1、两线制时正极2输出24V D C 电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24v d c ;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M 为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,p l c 跳线 为4线制电流。 (以2 正、3负为例)3、四线制传感器与p l c 两线制跳线接法:信号线负与柜内M 线相连。将传感器正与p l c 的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,p l c 跳线为电压信号。 第 1 页4线制与2线制注意区别地是否相同? 这2个为2线制的解释。 传感器,变送器 此时plc 跳线为4线制。 跳线为2线制。

西门子模拟量输入输出模块235编程手册

本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量

程和分辨率。(后面将详细介绍) 量的单/双极性、增益和衰减。 时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置

西门子PLC-SIM使用说明

计算机仿真技术把现代仿真技术与计算机发展结合起来,通过建立系统的数学模型,以计算机为工具,以数值计算为手段,对存在的或设想中的系统进行实验研究。随着计算机技术的高速发展,仿真技术在自动控制、电气传动、机械制造等工程技术领域也得到了广泛应用。与传统的经验方法相比,计算机仿真的优点是: (1) 能提供整个计算机域内所有有关变量完整详尽的数据; (2) 可预测某特定工艺的变化过程和最终结果,使人们对过程变化规律有深入的了解; (3) 在测量方法有困难情况下是唯一的研究方法。此外,数字仿真还具有高效率、高精度等优点。 大型企业每年都需要对电气控制人员进行技术培训,每次培训都需要大量的准备工作,购买大量各种不同类型PLC、变频器、接触器、电缆等。如果采用传统的经验方法:购买大量的控制器件,特别PLC、变频器等器件昂贵,很容易造成浪费;此外需要专门的培训地点。所以,如果对控制人员进行技术培训能够采用计算机仿真技术,能极大地降低成本。 S7-PLCSIM Simulating Modules由西门子公司推出,可以替代西门子硬件PLC的仿真软件,当培训人员设计好控制程序后,无须PLC硬件支持,可以直接调用仿真软件来验证。 2 S7-PLCSIM软件的功能 (1) 模拟PLC的寄存器。可以模拟512个计时器(T0-T511);可以模拟131072位(二进制)M寄存器;可以模拟131072位I/O寄存器;可以模拟4095个数据块;2048个功能块(FBs)和功能(FCs);本地数据堆栈64K字节;66 个系统功能块 (SFB0-SFB65);128个系统功能(SFC0-SFB127);123个组织块(OB0-OB122)。(2) 对硬件进行诊断。对于CPU,还可以显示其操作方式,如图1示。SF(system fault)表示系统报警;DP (distributed peripherals, or remote I/O)表示总线或远程模块报警;DC(power supply) 表示CPU有直流24伏供给;RUN 表示系统在运行状态;STOP表示系统在停止状态。 图1 CPU的操作方式 (3) 对变量进行监控。用菜单命令Insert>input variable监控输入变 量;Insert>output variable监控输出变量,Insert>memory variable监控内部变量;Insert>timer variable监控定时器变量;Insert>counter variable监控计数器变量。图2表示上述变量表。这些变量可以用二进制、十进制、十六进制

西门子PLC各种模块分类选型及用途

CPU 6ES7 211-0AA23-0XB0 CPU221 DC/DC/DC,6输入/4输出 6ES7 211-0BA23-0XB0 CPU221 继电器输出,6输入/4输出 6ES7 212-1AB23-0XB8 CPU222 DC/DC/DC,8输入/6输出 6ES7 212-1BB23-0XB8 CPU222 继电器输出,8输入/6输出 6ES7 214-1AD23-0XB8 CPU224 DC/DC/DC,14输入/10输出 6ES7 214-1BD23-0XB8 CPU224 继电器输出,14输入/10输出 6ES7 214-2AD23-0XB8 CPU224XP DC/DC/DC,14DI/10DO,2AI/1AO(PNP) 6ES7 214-2AS23-0XB8 CPU224XPsi DC/DC/DC,14DI/10DO,2AI/1AO(NPN) 6ES7 214-2BD23-0XB8 CPU224XP 继电器输出,14DI/10DO,2AI/1AO 6ES7 216-2AD23-0XB8 CPU226 DC/DC/DC,24输入/16输出 6ES7 216-2BD23-0XB8 CPU226 继电器输出,24输入/16输出 扩展模块 6ES7 221-1BH22-0XA8 EM221 16入 24VDC,开关量 6ES7 221-1BF22-0XA8 EM221 8入 24VDC,开关量 6ES7 221-1EF22-0XA0 EM221 8入 120/230VAC,开关量 6ES7 222-1BF22-0XA8 EM222 8出 24VDC,开关量 6ES7 222-1EF22-0XA0 EM222 8出 120V/230VAC,0.5A 开关量 6ES7 222-1HF22-0XA8 EM222 8出继电器 6ES7 222-1BD22-0XA0 EM222 4出 24VDC 固态-MOSFET 6ES7 222-1HD22-0XA0 EM222 4出继电器干触点 6ES7 223-1BF22-0XA8 EM223 4入/4出 24VDC,开关量 6ES7 223-1HF22-0XA8 EM223 4入 24VDC/4出继电器 6ES7 223-1BH22-0XA8 EM223 8入/8出 24VDC,开关量 6ES7 223-1PH22-0XA8 EM223 8入 24VDC/8出继电器 6ES7 223-1BL22-0XA8 EM223 16入/16出 24VDC,开关量 6ES7 223-1PL22-0XA8 EM223 16入 24VDC/16出继电器 6ES7 223-1BM22-0XA8 EM223 32入/32出 24VDC,开关量 6ES7 223-1PM22-0XA8 EM223 32入 24VDC/32出继电器 6ES7 231-0HC22-0XA8 EM231 4入*12位精度,模拟量 6ES7 231-0HF22-0XA0 EM231 8入*12位精度,模拟量 6ES7 231-7PB22-0XA8 EM231 2入*热电阻,模拟量 6ES7 231-7PC22-0XA0 EM231 4入*热电阻,模拟量 6ES7 231-7PD22-0XA8 EM231 4入*热电偶,模拟量 6ES7 231-7PF22-0XA0 EM231 8入*热电偶,模拟量 6ES7 232-0HB22-0XA8 EM232 2出*12位精度,模拟量 6ES7 232-0HD22-0XA0 EM232 4出*12位精度,模拟量 6ES7 235-0KD22-0XA8 EM235 4入/1出*12位精度,模拟量 6ES7 277-0AA22-0XA0 EM277 PROFIBUS-DP接口模块 6ES7 253-1AA22-0XA0 EM253 位控模块 6GK7 243-1EX01-0XE0 CP243-1 工业以太网模块

西门子PLC考试试题库完整

西门子PLC考试题库 一、选择题 1.MW0是位存储器中的第1个字,MW4是位存储器中的第(C ) 个字。 A.1 B.2 C.3 D.4 2.WORD(字)是16位 ( B ) 符号数,INT(整数)是16位 ( ) 符号数。 A.无,无 B.无,有 C. 有,无 D.有,有 3. ( D ) 是MD100中最低的8位对应的字节。 A.MB100 B.MB101 C. MB102 D.MB103 4.PLC在线状态下,在变量表(VAT)窗口,单击图标( D)可以每个扫描周期都刷新变量。A.监视 B.离线 C. 强制 D.变量触发 5.图标表示( A ) 。 A.可以刷新变量一次 B.可以每个扫描周期刷新变量一次 C.可以激活修改的值一次 D.每个扫描周期激活修改值 6.“S5T#5s_200ms”表示( A ) 。 A.16位S5TIME型数据 B.16位TIME型数据 C.32位S5TIME型数据 D.32位TIME型数据 7.“TOD#21:23:45.12”表示( D ) 。 A.16位TIME型数据 B.16位TIME-OF-DAY型数据 C.32位TIME型数据 D.32位TIME-OF-DAY型数据 8.S7系列PLC的状态字(STW)中,表示逻辑运算结果的是( B )。 A. RF B.RLO C. STA D.BR 9.S7系列PLC的状态字(STW)的( D )位与指令框的使能输出ENO的状态相同。 A. RF B.RLO C. OR D.BR 10.不能以位为单位存取的存储区是( D )。 A.输入映像 B.输出映像 C.内部存储器 D.外设I/O区 11.下列输出模块可以交直流两用的是( B ) A. 光电耦合输出模块 B. 继电器输出模块 C. 晶体管输出模块 D. 晶闸管输出模块 12.输入采样阶段,PLC的CPU对各输入端子进行扫描,将输入信号送入 C 。 A. 外部I存储器(PI) B. 累加器(ACCU) C. 输入映像寄存器(PII) D. 数据块(DB/DI) 13.每一个PLC控制系统必须有一台 A ,才能正常工作。 A. CPU模块 B. 扩展模块 C. 通信处理器 D. 编程器 14.S7-300 PLC通电后,CPU面板上“BATF”指示灯亮,表示 B 。 A. 程序出错 B. 电压低 C. 输入模块故障 D. 输出模块故障 15.S7-300 PLC驱动的执行元件不工作,PLC的CPU面板上指示灯均正常,而输入、输出指示灯不亮,这时可判断故障出在 C 。 A. 程序错误 B. CPU模块上 C. 输入线路上 D. 输出线路上 16.S7-300/400 PLC在启动时要调用的组织块是 D 。 A. OB1 B. OB35 C. OB82 D. OB 100 16.S7-300 PLC可以扩展多达 B 个机架,个模块。 A. 1,7 B. 4,32 C. 4,44 D. 21,300 17.背板总线集成在模块内的S7系列PLC是 C 。

二、数字量输入输出

第二部分数字量I/O 目录 1 DO、DI硬件原理 2 2.1 CPC板的电路图 3 2.1.1 所用I\O口 4 2.1.2 485通讯口7 2.1.3 显示电路的设计8 2.1.4 晶振模块8 2.1.5 上层板的原件清单9 2.2 输入板I/O原理图 10 2.2.1 电路原理11 2.2.2 输入底板的原件清单12 2.3 输出板I/O电路图 13 2.3.1 反向驱动器ULN2003 芯片 14 2.3.2 输出底板的原件清单14 2.4 通讯部分15 3 DI、DO软件部分设计 16 3.1 通讯方式16 3.1.1 Modbus 协议 16 3.1.2 CRC校验17 3.1.3 莫尼康RTU 17 3.1.4 看门狗程序19 3.2 计算机界面的设计20 3.3 输入板的程序设计21 3.4 输出板的程序设计24 4 DI、DO的应用26 4.1 数字输入板的应用26 4.2 数字输出板的应用32 5. 数字量输入程序清单37 6.数字量输出程序清单 49

硬件部分由程序下载口,状态显示,复位,信息通信,I/O口,AD,DA等几部分组成,软件部分采用MODBUS通信协议,CRC校验,看门狗程序,数据传送等部分组成。 1.DO、DI硬件原理 输入板电路分为上层板电路和底板电路,其中上层板电路以Atmega128为核心,主要实现显示状态、控制端口、数据处理和通讯的功能。设计如下:

1.1 CPU 板硬件原理图 图2-2 输入输出上层板电路 1 234567816 1514131211109S1 5.1K Rs 1 5.1K Rs 25.1K Rs 35.1K Rs 45.1K Rs 55.1K Rs 65.1K Rs 75.1K Rs 8P A 3 P A 4P A 5P A 6P A 7P D 5P D 6P D 7VCC

西门子300PLC所有模拟量模块接线问题汇总情况——精编

抓住一点,模拟量接线问题迎刃而解(一)——确定基准电位点很重要 今天,一个新来的热线同事找我讨论模拟量模块的问题,他在热线上遇到了一些麻烦,用户打电话反映在现场的S7 300模拟量模块读数不变化,怎么折腾都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。翻了翻手边的资料,似乎没有系统讲解这个问题的,于是把自己的经验归纳总结一下。既然是经验,放在下载中心似乎不太合适,就放在自己的故事里吧。故事写完,想必也会有个比较正式的版本放在下载中心。 在我看来,想解决这样的问题,最根本的是要抓住一点。有的用户可能迫不及待地想知道哪一点了,但是这一点涉及的知识面还是有些宽。平时也忙,我会断断续续的写,大家耐心看完这个系列,就可以抓住这一点了。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是M ANA ,所有的接线都与之有关。在接下来的故事中,咱们就仔细讲讲接线的问题。 抓住一点,模拟量接线问题迎刃而解(二):隔离与非隔离问题系 列 2013-03-11 这里的隔离是指模拟量模块的基准电位点M ANA 与地(也是PLC的数据地)隔离。 隔离模块M ANA 与地M可以不连接,以M ANA 作为测量端的参考电位;非隔离模 块M ANA 与地M必须连接,这样地M 变为M ANA 作为测量端的参考电位。隔离模 块的好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下: M +:测量导线(正) M -:测量导线(负) M ANA :模拟量模块基准电位点 这里需要注意M ANA ,不同的接线方式都是以M ANA 为参考基准电位。

(完整版)西门子S7-1200PLC的IEC格式的定时器属于功能块介绍

西门子S7-1200PLC的IEC格式的定时器属于功能块。在插入定时器指令时,要求创建一个16字节的IEC_Timer数据类型的DB结构(即背景数据块),来保存有关的数据。在功能块中,可以事先创建一个 IEC_Timer数据类型的静态变量(多重背景),然后将它指定给定时器指令。 CPU没有给任何特定的定时器指令分配专门的资源。每个定时器使用DB结构和一个连续运行的内部CPU定时器(我的理解是一个硬件定时器)来执行定时。 在定时器指令的输入IN的上升沿启动定时器时,连续运行的内部CPU定时器的值将被复制到为该定时器指令分配的DB结构的元素START(起始值)中。 该起始值在定时器继续运行期间将保持不变,以后将在每次更新定时器时使用。以下条件时将会执行定时器更新: 1)执行定时器指令(TP、TON、TOF 或 TONR); 2)定时器结构的元素ELAPSED(经过的时间)或位输出Q作为其它指令的参数,该指令被执行。 更新定时器时,将从内部CPU定时器的当前值中减去上述起始值,得到经过的时间ELAPSED。再将ELAPSED与预设值PT进行比较,以确定

定时器的位输出Q的状态。然后更新该定时器的DB结构的元素ELAPSED 和Q。达到预设值PT后,定时器不会继续累加经过的时间ELAPSED。 STEP 7 Basic的V11版与V10.5版相比,增加了类似于S7-300/400的定时器线圈指令。 从上述的定时器内部的定时机制可知,在使用定时器时,其定时精度与CPU的扫描周期有很大的关系。在CPU两次更新定时器之间,定时器的输入、输出参数保持不变。 为了验证上述结论,在FB1中调用定时器指令TP,在OB1中用I0.1作为调用条件,调用FB1。用监视表格监视定时器的输出Q和经过的时间ET,用输入IN的上升沿启动定时器后,如果I0.1为0状态,没有调用FB1和执行定时器指令,定时器的输出Q和经过的时间ET保持不变。只有在调用FB1,执行定时器指令时,ET的值才会变化。 北京天拓四方科技有限公司

西门子模拟量输入SM331的接线方法

介绍西门子模拟量输入模块SM331的接线方法 我们在这里介绍下西门子模拟量输入模块SM331的接线方法,下面我们就分别来介绍两线制和四线制 两线制 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC 的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 四线制有自己的供电电源,一般是220vac ,信号线输出+为 4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3 接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 “传感器正与plc的3相连,2悬空,跳线为两线制电流。”此条在四线制和二线制传感器均适用,大家可以自己试验,好用的顶起来。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

PLC数字量输入电路形式

PLC 数字量输入模块电路的形式 摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,并结合传感器常见的NPN和PNP输出,给出了和不同的PLC电路形式连接时的接线方法。 关键词:PLC 源输入漏输入NPN输出PNP输出 1 引言 PLC 控制系统的设计中,虽然接线工作占的比重较小,大部分工作还是PLC 的编程设计工作,但它是编程设计的基础,只要接线正确后,才能顺利地进行编程设计工作。而保证接线工作的正确性,就必须对PLC 内部的输入输出电路有一个比较清楚的了解。 我们知道,PLC 数字输入模块为了防止外界线路产生的干扰(如尖峰电压,干扰噪声等)引起PLC 的非正常工作甚至是元器件的损坏,一般在PLC 的输入侧都采用光耦,来切断PLC 内部线路和外部线路电气上的联系,保证PLC 的正常工作。并且在输入线路中都设有RC 滤波电路,以防止由于输入点抖动或外部干扰脉冲引起的错误信号。 2 输入电路的形式 2.1 分类 PLC 的输入电路,按外接电源的类型分,可以分为直流输入电路和交流输入电路;按PLC 输入模块公共端(COM 端)电流的流向分,可分为源输入电路和漏输入电路;按光耦发光二极管公共端的连接方式可分为共阳极和共阴极输入电路。如下图1所示: 图1 PLC输入电路的分类 2.2 按外接电源的类型分类 2.2.1 直流输入电路

图2 为直流输入电路的一种形式(只画出一路输入电路)。当图1 中外部线路的开关闭合时,PLC 内部光耦的发光二极管点亮,光敏三极管饱和导通,该导通信号再传送给处理器,从而CPU 认为该路有信号输入;外界开关断开时,光耦中的发光二极管熄灭,光敏三极管截止,CPU 认为该路没有信号。 图2 直流输入电路 2.2.2 交流输入电路 交流输入电路如图3 所示,可以看出,与直流输入电路的区别主 要就是增加了一个整流的环节。 交流输入的输入电压一般为AC120V 或230V。交流电经过电阻R的限流和电容C的隔离(去除电源中的直流成分),再经过桥式整流为直流电,其后工作原理和直流输入电路一样,不再缀述。

西门子200模拟量模块

西门子S7-200模拟量编程 PLC 2009-09-16 20:05 阅读77 评论0 字号:大中小 西门子S7-200模拟量编程 韩耀旭 本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端; 未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量 程和分辨率。(后面将详细介绍)

量的单/双极性、增益和衰减。 模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟 量的衰减选择。

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输 入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据 值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据 值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置 图2

相关主题
文本预览
相关文档 最新文档