当前位置:文档之家› 利用导数解不等式及参数的取值范围

利用导数解不等式及参数的取值范围

利用导数解不等式及参数的取值范围
利用导数解不等式及参数的取值范围

专题能力训练8利用导数解不等式及参数的取值范围

一、能力突破训练

1.设f(x)=x ln x-ax2+(2a-1)x,a∈R.

(1)令g(x)=f'(x),求g(x)的单调区间;

(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

2.(优质试题全国Ⅲ,理21)已知函数f(x)=(2+x+ax2)·ln(1+x)-2x.

(1)若a=0,证明:当-10时,f(x)>0;

(2)若x=0是f(x)的极大值点,求a.

3.已知函数f(x)=ax+x ln x的图象在x=e(e为自然对数的底数)处的切线的斜率为3.

(1)求实数a的值;

(2)若f(x)≤kx2对任意x>0成立,求实数k的取值范围;

(3)当n>m>1(m,n∈N*)时,证明:.

4.设函数f(x)=ax2-a-ln x,其中a∈R.

(1)讨论f(x)的单调性;

(2)确定a的所有可能取值,使得f(x)> -e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).

5.设函数f(x)=a ln x,g(x)=x2.

(1)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]内有解,求实数a的取值范围;

(2)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值.

6.已知函数f(x)=-2(x+a)ln x+x2-2ax-2a2+a,其中a>0.

(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;

(2)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

二、思维提升训练

7.已知函数f(x)= x3+x2+ax+1(a∈R).

(1)求函数f(x)的单调区间;

(2)当a<0时,试讨论是否存在x0∈,使得f(x0)=f.

专题能力训练8利用导数解不等式及参数的取值范围

一、能力突破训练

1.解(1)由f'(x)=ln x-2ax+2a,

可得g(x)=ln x-2ax+2a,x∈(0,+∞).

则g'(x)=-2a=,

当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;

当a>0时,x时,g'(x)>0,函数g(x)单调递增,x时,函数g(x)单调递减.

所以当a≤0时,g(x)的单调增区间为(0,+∞);

当a>0时,g(x)单调增区间为,单调减区间为

(2)由(1)知,f'(1)=0.

①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.

当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.

所以f(x)在x=1处取得极小值,不合题意.

②当01,由(1)知f'(x)在区间内单调递增,

可得当x∈(0,1)时,f'(x)<0,x时,f'(x)>0.

所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.

③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,

所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.

④当a>时,0<<1,当x时,f'(x)>0,f(x)单调递增,

当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,

所以f(x)在x=1处取极大值,合题意.

综上可知,实数a的取值范围为a>

2.解(1)当a=0时,f(x)=(2+x)ln(1+x)-2x,f'(x)=ln(1+x)-,

设函数g(x)=f'(x)=ln(1+x)-,则g'(x)=,

当-10时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.

所以f(x)在(-1,+∞)内单调递增.

又f(0)=0,故当-10时,f(x)>0.

(2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)·ln(1+x)-2x>0=f(0),这与x=0是f(x)的极大值点矛盾.

②若a<0,设函数h(x)= =ln(1+x)-

由于当|x|0,故h(x)与f(x)符号相同.

又h(0)=f(0)=0,故x=0是f(x)的极大值点当且仅当x=0是h(x)的极大值点.

h'(x)=

若6a+1>0,则当00,故x=0不是h(x)的极大值点.

若6a+1<0,则a2x2+4ax+6a+1=0存在根x1<0,故当x∈(x1,0),且

|x|

若6a+1=0,则h'(x)=

则当x∈(-1,0)时,h'(x)>0;当x∈(0,1)时,h'(x)<0.

所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点.

综上,a=-

3.解(1)∵f(x)=ax+x ln x,∴f'(x)=a+ln x+1.

又f(x)的图象在点x=e处的切线的斜率为3,

∴f'(e)=3,即a+ln e+1=3,∴a=1.

(2)由(1)知,f(x)=x+x ln x,

若f(x)≤kx2对任意x>0成立,则k对任意x>0成立.

令g(x)=,则问题转化为求g(x)的最大值,g'(x)==-

令g'(x)=0,解得x=1.

当00,

∴g(x)在区间(0,1)内是增函数;

当x>1时,g'(x)<0,

∴g(x)在区间(1,+∞)内是减函数.

故g(x)在x=1处取得最大值g(1)=1,∴k≥1即为所求.

(3)证明:令h(x)=,则h'(x)=

由(2)知,x≥1+ln x(x>0),∴h'(x)≥0,

∴h(x)是区间(1,+∞)内的增函数.

∵n>m>1,∴h(n)>h(m),即,

∴mn ln n-n ln n>mn ln m-m ln m,

即mn ln n+m ln m>mn ln m+n ln n,

∴ln n mn+ln m m>ln m mn+ln n n.

整理,得ln(mn n)m>ln(nm m)n.

∴(mn n)m>(nm m)n,

4.解(1)f'(x)=2ax-(x>0).

当a≤0时,f'(x)<0,f(x)在区间(0,+∞)内单调递减.

当a>0时,由f'(x)=0,有x=

此时,当x时,f'(x)<0,f(x)单调递减;

当x时,f'(x)>0,f(x)单调递增.

(2)令g(x)=,s(x)=e x-1-x.

则s'(x)=e x-1-1.

而当x>1时,s'(x)>0,

所以s(x)在区间(1,+∞)内单调递增.

又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.

当a≤0,x>1时,f(x)=a(x2-1)-ln x<0.

故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.

当01.

由(1)有f0,

所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.

当a时,令h(x)=f(x)-g(x)(x≥1).

当x>1时,h'(x)=2ax--e1-x>x->0.

因此,h(x)在区间(1,+∞)单调递增.

又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.

综上,a

5.解(1)不等式f(x)+2g'(x)≤(a+3)x-g(x),

即a ln x+2x≤(a+3)x-x2,

化简,得a(x-ln x)x2-x.

由x∈[1,e]知x-ln x>0,

因而a设y=,

则y'=

∵当x∈(1,e)时,x-1>0,x+1-ln x>0,

∴y'>0在x∈[1,e]时成立.

由不等式有解,可得a≥y min=-,

即实数a的取值范围是

(2)当a=1时,f(x)=ln x.

由m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,得mg(x1)-x1f(x1) >mg(x2)-x2f(x2)恒成立,

设t(x)=x2-x ln x (x>0).

由题意知x1>x2>0,则当x∈(0,+∞)时函数t(x)单调递增,

∴t'(x)=mx-ln x-1≥0恒成立,即m恒成立.

因此,记h(x)=,得h'(x)=

∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,

∴函数h(x)在x=1处取得极大值,并且这个极大值就是函数h(x)的最大值.

由此可得h(x)max=h(1)=1,故m≥1,结合已知条件m∈Z,m≤1,可得m=1.

6.(1)解由已知,函数f(x)的定义域为(0,+∞),

g(x)=f'(x)=2(x-a)-2ln x-2,

所以g'(x)=2-

当0

在区间内单调递减;

当a时,g(x)在区间(0,+∞)内单调递增.

(2)证明由f'(x)=2(x-a)-2ln x-2=0,解得a=

令φ(x)=-2ln x+x2-2x-2

则φ(1)=1>0,φ(e)=--2<0.

故存在x0∈(1,e),使得φ(x0)=0.

令a0=,u(x)=x-1-ln x(x≥1).

由u'(x)=1-0知,函数u(x)在区间(1,+∞)内单调递增.

所以0==a0<<1.

即a0∈(0,1).

当a=a0时,有f'(x0)=0,f(x0)=φ(x0)=0.

由(1)知,f'(x)在区间(1,+∞)内单调递增,

故当x∈(1,x0)时,f'(x)<0,从而f(x)>f(x0)=0;

当x∈(x0,+∞)时,f'(x)>0,从而f(x)>f(x0)=0.

所以,当x∈(1,+∞)时,f(x)≥0.

综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

二、思维提升训练

7.解(1)f'(x)=x2+2x+a,方程x2+2x+a=0的判别式为Δ=4-4a,

①当a≥1时,Δ≤0,则f'(x)≥0,此时f(x)在R上是增函数;

②当a<1时,方程x2+2x+a=0两根分别为x1=-1-,x2=-1+,

解不等式x2+2x+a>0,解得x<-1-或x>-1+,

解不等式x2+2x+a<0,解得-1-

此时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),

单调递减区间为(-1-,-1+).

综上所述,当a≥1时,函数f(x)的单调递增区间为(-∞,+∞);

当a<1时,函数f(x)的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-,-1+).

(2)f(x0)-f+ax0+1--a-1

=+a

=

+a+x0+(4+ 14x0+7+12a).

若存在x0,使得f(x0)=f,则4+14x0+7+12a=0在内有解.

由a<0,得Δ=142-16(7+12a)=4(21-48a)>0,

故方程4+14x0+7+12a=0的两根为

x1'=,x'2=

由x0>0,得x0=x'2=,

依题意,0<<1,即7<<11,所以49<21-48a<121,即-

又由得a=-,

故要使满足题意的x0存在,则a≠-

综上,当a时,存在唯一的x0满足

f(x0)=f,当a时,不存在x0满足f(x0)=f

利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围一?已知函数单调性,求参数的取值范围类型1 ?参数放在函数表达式上 例1. 设函数f(x) 2x33(a 1)x2 6ax 8其中a R ? ⑴若f (x)在x 3处得极值,求常数a的值. ⑵若f(x)在(,0)上为增函数,求a的取值范围 二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上 2 例3.已知f (x) x3 ax2 bx c在x —与x 1时都取得极值 3 (1 )求a、b的值及函数f (x)的单调区间. (2)若对x [ 1,2],不等式f (x) c—恒成立,求c的取值范围. 2 3. 已知函数f (x) x3— 2x 5,若对任意x [ 1,21都有f (x) m则实数m的取值范围是2 类型2.参数放在区间上 例4 .已知三次函数f(x) ax3 5x2 cx d图象上点(1,8)处的切线经过点(3,0),并且f(x)在x=3处有极值. (1 )求f (x)的解析式.(2)当x (0, m)时,f (x) >0恒成立,求实数m的取值范围. 分析:(1) f (x) x3 5x2 3x 9 ' 2 (2).f (x) 3x 10x 3 (3x 1)(x 3) 由f (x) 0 得x1 i,x2 3 当x (0,1)时f'(x) 0, f(x)单调递增,所以f (x) f (0) 9 3 3 当x (】,3)时f '(x) 0, f (x)单调递减,所以f (x) f(3) 0 3 所以当m 3时f(x) 0在(0,m)内不恒成立,当且仅当m (0,3]时f (x) 0在(0,m)内恒成立 所以m的取值范围为(0,3] 基础训练: 4. 若不等式x4 4x3 _________________________________________ 2 a对任意实数x都成立,则实数a的取值范围是________________________________________________________ .

利用导数研究不等式问题

1.已知函数f (x )=x 2-ax -a ln x (a ∈R ). (1)若函数f (x )在x =1处取得极值,求a 的值; (2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116 . 2.(优质试题·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是????12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.

3.(优质试题·山西四校联考)已知f (x )=ln x -x +a +1. (1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围; (2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12 成立. 4.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a <0时,讨论f (x )的单调性; (2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围. 5.(优质试题·福州质检)设函数f (x )=e x -ax -1. (1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0; (2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.

答案精析 1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1. (2)证明 由(1)知,f (x )=x 2-x -ln x , 令g (x )=f (x )-????-x 33+5x 22 -4x +116 =x 33-3x 22+3x -ln x -116 , 由g ′(x )=x 2 -3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116 成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0), 由h ′(x )=2x 2-ax +1x (x >0), 若h (x )的单调减区间是????12,1, 由h ′(1)=h ′????12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x (x >0). 由h ′(x )<0,解得x ∈????12,1, 即h (x )的单调减区间是????12,1, ∴a =3. (2)由题意知x 2-ax ≥ln x (x >0), ∴a ≤x -ln x x (x >0). 令φ(x )=x -ln x x (x >0),

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

利用导数证明数列不等式(含解析)

利用导数证明数列不等式 利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型: (1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源: (1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式. (2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式: (1) 对数→多项式 (2) 指数→多项式 4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种: (1)倒序相加:通项公式具备第项与第项的和为常数的特点. (2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减). (3)等比数列求和公式 (4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑. 5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式. 6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向. 7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等). ln 1x x <-1x e x >+n n k 1n k -+?2n n a n =?n a

(完整版)利用导数求参数的取值范围方法归纳

利用导数求参数的取值范围 一.已知函数单调性,求参数的取值范围 类型1.参数放在函数表达式上 例1. 设函数R a ax x a x x f ∈+++-=其中86)1(32)(23. 的取值范围 求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(. ,3)()1(-∞= 二.已知不等式在某区间上恒成立,求参数的取值范围 类型1.参数放在不等式上 例3.已知时都取得极值与在13 2)(23=-=+++=x x c bx ax x x f (1)求a、b的值及函数)(x f 的单调区间. (2)若对2)(],2,1[c x f x <-∈不等式恒成立,求c的取值范围. __________)(]2,1[,522)(.32 3 的取值范围是则实数都有若对任意已知函数m m x f x x x x x f >-∈+--= 类型2.参数放在区间上 例4.已知三次函数d cx x ax x f ++-=2 35)(图象上点(1,8)处的切线经过点(3,0),并且)(x f 在x=3处有极值. (1)求)(x f 的解析式.(2)当),0(m x ∈时, )(x f >0恒成立,求实数m 的取值范围. 分析:(1)935)(23++-=x x x x f ] 3,0(),0(0)(]3,0(),0(0)(30)3()(,)(,0)()3,3 1(9)0()()(,0)()3 1,0(3,310)() 3)(13(3103)().2(''21‘2'的取值范围为所以内恒成立 在时当且仅当内不恒成立在时所以当所以单调递减时当所以单调递增时当得由m m x f m ,m x f m f x f x f x f x f x f ,x f x f x x x x f x x x x x f >∈>>=><∈=>>∈===--=+-= 基础训练: .___________24.434的取值范围是则实数都成立对任意实数若不等式a ,x a x x -≥-

利用导数证明不等式的常见题型

利用导数证明不等式的常见题型 山西大学附属中学 韩永权 邮箱:hyq616@https://www.doczj.com/doc/3410475517.html, 不等式的证明是近几年高考的一个热点题型,它一般出现的压轴题的位置,解决起来比较困难。本文给出这一类问题常见的证明方法,给将要参加高考的学子一些启示和帮助。只要大家认真领会和掌握本文的内容,定会增强解决对这一类问题的办法。下面听我慢慢道来。 题型一 构造函数法,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 例1(人教版选修2-2第32页B 组1题)利用函数的单调性,证明不列不等式 (1)),0(,sinx π∈-x x x (3)0,1≠+>x x e x (4)0,ln ><x 时,求证:x x x ≤+≤+- )1ln(1 1 1 证明:令x x x f -+=)1ln()(,则1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,当0>x 时,0)(<'x f ,()f x 在),1(+∞-上的最大值为 0)0()(max ==f x f ,因此,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln((右面得证), 再证左面,令11 1 )1ln()(-+++=x x x g ,2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时,函数)(x g 在),1(+∞-上的最小值为 0)0()(m i n ==g x g ,∴0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x (左面得证),综上,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 启示:证明分三个步骤,一是构造函数,二是对函数求导,判断函数的单调性,三是求此函数的最值,得 出结论。 题型二 通过对函数的变形,利用分析法,证明不等式 例.bx x x h +=ln )(有两个不同的零点21,x x ①求b 的取值范围;②求证:1221x x e >. 解析:①()ln h x x bx =+,其定义域为(0,+∞).由()0h x =得ln -x b x =,记ln ()x x x ?=-,则2 l n 1 ()x x x ?-'=, 所以ln ()x x x ?=-在(0,)e 单调减,在(,)e +∞单调增,所以当x e =时ln ()x x x ?=-取得最小值1e -. 又(1)0?=,所以(0,1)x ∈时()0x ?>,而(1,)x ∈+∞时()0x ?<,所以b 的取值范围是(1 e -,0). ②由题意得1122ln 0,ln 0x bx x bx +=+=, 所以12122121ln ()0,ln ln ()0x x b x x x x b x x ++=-+-=,所以 12122121 ln ln ln x x x x x x x x +=--,不妨设21x x <, 要证212x x e >,需证12122121 ln (ln ln )2x x x x x x x x +=->-.即证2121212()ln ln x x x x x x -->+, 设21(1)x t t x =>,则2(1)4()ln ln 211 t F t t t t t -=-=+-++, 所以2 22 14(1)()0(1)(1) t F t t t t t -'=-=>++,所以函数()F t 在(1,+∞)上单调增, 而(1)0F =,所以()0F t >即2(1) ln 1 t t t ->+,所以212x x e >.

利用导数构造函数解不等式

构造函数解不等式 1.(2015全国2理科).设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D ) 2若定义在R 上的函数()f x 是奇函数, ()02=f ,当x >0时,()()2x x f x f x -'<0,恒成立,则不等式()x f x 2>0的解集 A ()2,-∞-?()+∞,2 B ()0,2- ? ()+∞,2 C ()2,-∞-?()2,0 D .()0,2-?()2,0 3定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,, 则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞ B . ()(),03,-∞+∞U C .()(),00,-∞+∞U D .()3,+∞ 4. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为 A .()0,+∞ B .()(),03,-∞+∞U C .()(),01,-∞+∞U D .()3,+∞ 5.定义在R 上的函数()f x 满足 则不等式(其中e 为自然对数的底数)的解集为

6.定义域为R 的可导函数()x f y =的导函数为'()f x ,满足()()x f x f '>,且(),10=f 则不等式()1

导数中的求参数取值范围问题

帮你归纳总结(五):导数中的求参数取值范围问题 一、常见基本题型: (1)已知函数单调性,求参数的取值范围,如已知函数()f x 增区间,则在此区间上 导函数()0f x '≥,如已知函数()f x 减区间,则在此区间上导函数()0f x '≤。 (2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。 例1.已知a ∈R ,函数2 ()()e x f x x ax -=-+.(x ∈R ,e 为自然对数的底数) (1)若函数()(1,1)f x -在内单调递减,求a 的取值范围; (2)函数()f x 是否为R 上的单调函数,若是,求出a 的取值范围;若不是,请说明 理由. 解: (1)2 -()()e x f x x ax =-+Q -2 -()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ??-++??. ()()f x 要使在-1,1上单调递减, 则()0f x '≤ 对(1,1)x ∈- 都成立, 2 (2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2 ()(2)g x x a x a =-++,则(1)0, (1)0. g g -≤?? ≤? 1(2)01(2)0 a a a a +++≤?∴?-++≤?, 3 2a ∴≤-. (2)①若函数()f x 在R 上单调递减,则()0f x '≤ 对x ∈R 都成立 即2-(2)e 0x x a x a ??-++≤?? 对x ∈R 都成立. 2e 0,(2)0x x a x a ->∴-++≤Q 对x ∈R 都成立 令2 ()(2)g x x a x a =-++, Q 图象开口向上 ∴不可能对x ∈R 都成立 ②若函数()f x 在R 上单调递减,则()0f x '≥ 对x ∈R 都成立, 即2-(2)e 0x x a x a ??-++≥?? 对x ∈R 都成立, e 0,x ->Q 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ?=+-=+>Q 故函数()f x 不可能在R 上单调递增. 综上可知,函数()f x 不可能是R 上的单调函数 例2:已知函数()()ln 3f x a x ax a R =--∈, 若函数()y f x =的图像在点(2,(2))f 处的切

第18讲 导数的应用——利用导数研究不等式恒成立问题备战2021年新高考数学考点精讲与达标测试

《导数的应用——利用导数研究不等式恒成立(能成立)问题》 达标检测 [A 组]—应知应会 1.已知函数f (x )=x +4 x ,g (x )=2x +a ,若?x 1∈????12,1,?x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 【解析】选A.由题意知f (x )min ??? ?x ∈????12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A. 2.(2020·吉林白山联考)设函数f (x )=e x ????x +3x -3-a x ,若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【解析】原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x (x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e. 3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程; (2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 【解析】(1)因为f ′(x )=1 x , 所以f ′(1)=1. 又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1. (2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x ); ②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x ); ③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1 x -a ,

2021届高考数学(理)一轮复习学案:第3章导数及其应用第4节利用导数证明不等式

第四节 利用导数证明不等式 课堂考点探究 考点1 单变量不等式的证明 单变量不等式的证明方法 (1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x ); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数; (3)最值法:欲证f (x )<g (x ),有时可以证明f (x )max <g (x )min . 直接将不等式转化为函数的最值问题 已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-3 4a -2. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1= x +1 2ax +1 x . 当a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 当a <0,则当x ∈? ????0,-12a 时,f ′(x )>0;当x ∈? ????-12a ,+∞时,f ′(x )<0. 故f (x )在? ????0,-12a 上单调递增,在? ?? ??-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ? ????-12a =ln ? ??? ?-12a -1-1 4a . 所以f (x )≤-34a -2等价于ln ? ????-12a -1-14a ≤-34a -2,即ln ? ????-12a +1 2a +1≤0.设g (x ) =ln x -x +1,则g ′(x )=1 x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x ) <0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大 值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ? ????-12a +1 2a +1≤0, 即f (x )≤-3 4a -2. 将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间

2018届高三构造函数利用导数解不等式(原卷版)

专题一构造函数利用导数解不等式 对于已知不等式中既有()f x 又有'()f x ,一般不能直接确定'()f x 的正负,即不能确定()f x 的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有 1.对于()()x g x f ''>,构造()()() x g x f x h -=更一般地,遇到()()0'≠>a a x f ,即导函数大于某种非零常数(若a =0,则无需构造),则可构()()ax x f x h -=2.对于()()0''>+x g x f ,构造()()() x g x f x h +=3.对于()()0'>+x f x f ,构造()()x f e x h x =4.对于()()x f x f >'[或()()0'>-x f x f ],构造()()x e x f x h = 5.对于()()0'>+x f x xf ,构造()() x xf x h =6.对于()()0'>-x f x xf ,构造()()x x f x h = 7.对于()() 0'>x f x f ,分类讨论:(1)若()0>x f ,则构造()()x f x h ln =;(2)若()0C.(1)4(2)f f

导数求参数取值范围

一、已知单调性求参数取值范围 1.已知3 2 ()39f x x x x =--在区间(,21)a a -上单调递减,求则a 的取值范围 小结:若函数()f x (不含参数)在区间是(,)a b (含参数)上单调递增(递减), 则可解出函数()f x 的单调区间是(,)c d ,则(,)(,)a b c d ? 2.已知3 21()53 f x x x ax = ++-, (1)若()f x 的单调递减区间是(3,1)-, 求a 的取值范围 (2)若()f x 在区间[1,)+∞上单调递增,求a 的取值范围 小结:一个重要结论:设函数()f x 在(,)a b 内可导.若函数()f x 在(,)a b 内单调递增(减),则有' ' ()0(()0)f x f x ≥≤. 方法1:运用分离参数法,如参数可分离,则分离参数→构造函数()g x (可将有意义的端点改为闭)→求()g x 的最值→得参数的范围。 3.函数c bx ax x x f +++=2 3 )(,过曲线)(x f y =上的点))1(,1(f P 的切线方程为 .13+=x y . (1)若)(x f y =在2=x 时有极值,求)(x f 的表达式; (2)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围. 4.(2015重庆)设函数()()23x x ax f x a R e +=∈ (I )若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点 ()()1,1f 处的切线方程; (II )若()f x 在[)3,+∞上为减函数,求a 的取值范围。 5.(2014江西)已知函数. (1) 当时,求的极值; (2) 若 在区间 上单调递增,求b 的取值范围. 方法2:如参数不方便分离,而' ()f x 是二次函数,用根的分布: ①若' ()0f x =的两根容易求,则求根,考虑根的位置

利用导数解决不等式恒成立中的参数问题学案

利用导数解决不等式恒成立中的参数问题 一、单参数放在不等式上型: 【例题1】(07全国Ⅰ理)设函数()x x f x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围. 解:令()()g x f x ax =-,则()()x x g x f x a e e a -''=-=+-, (1)若2a ≤,当0x >时,()20x x g x e e a a -'=+->-≥,故()g x 在(0,)+∞上为增函数, ∴0x ≥时,()(0)g x g ≥,即()f x ax ≥. (2)若2a >,方程()0g x '=的正根为1x = 此时,若1(0,)x x ∈,则()0g x '<,故()g x 在该区间为减函数. ∴1(0,)x x ∈时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(,2]-∞. 说明:上述方法是不等式放缩法. 【针对练习1】(10课标理)设函数2 ()1x f x e x ax =---,当0x ≥时,()0f x ≥,求a 的取值范围. 解: 【例题2】(07全国Ⅰ文)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (1)求a 、b 的值;(2)若对于任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围. 解:(1)2()663f x x ax b '=++, ∵函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=?? ++=? ,解得3a =-,4b =. (2)由(1)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(0,1)x ∈时,()0f x '>;当(1,2)x ∈时,()0f x '<;当(2,3)x ∈时,()0f x '>. ∴当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[0,3]x ∈时,()f x 的最大值为(3)98f c =+. ∵对于任意的[0,3]x ∈,有2()f x c <恒成立,∴298c c +<,解得1c <-或9c >, 因此c 的取值范围为(,1)(9,)-∞-+∞. 最值法总结:区间给定情况下,转化为求函数在给定区间上的最值. 【针对练习2】(07重庆理)已知函数44 ()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中 a 、b 、c 为常数. (1)试确定a 、b 的值;(2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2()2f x c ≥-恒成立,求c 的取值范围.

利用导数解不等式考点与题型归纳

利用导数解不等式考点与题型归纳 考点一 f (x )与f ′(x )共存的不等式问题 [典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<1 2,则不 等式f (lg x )>lg x +1 2 的解集为__________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________. [解析] (1)由题意构造函数g (x )=f (x )-1 2x , 则g ′(x )=f ′(x )-1 2<0, 所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=1 2, 由f (lg x )>lg x +12,得f (lg x )-12lg x >1 2. 即g (lg x )=f (lg x )-12lg x >1 2=g (1), 所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10). (2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0?[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3). [答案] (1)(0,10) (2)(-∞,-3)∪(0,3) [解题技法] (1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).

导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题 含参数导数问题的分类讨论问题 1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★已知函数ax x a x x f 2)2(2 131)(23++-=(a>0),求函数的单调区间 )2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a x a x x f ln )2(2)(+-- =(a>0)求函数的单调区间 2 2 2) )(2(2)2()(x a x x x a x a x x f --=++-=' ★★★例3已知函数()()22 21 1 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()() 2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 ! 解:(Ⅰ)当1a =时,曲线()y f x =在点()() 2,2f 处的切线方程为032256=-+y x 。 (Ⅱ)由于0a ≠,所以()() 1 2)1(222+-+='x x a x f ,由 ()'0f x =,得121 ,x x a a =-=。这两个实根都在定 ()()()()()() 2 2 ' 2222 122122111a x a x a x x ax a a f x x x ? ?--+ ?+--+??==++义域R 内,但不知它们之间 的大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。 (1)当0a >时,则12x x <。易得()f x 在区间1,a ? ? -∞- ??? ,(),a +∞内为减函数, 在区间1,a a ?? - ??? 为增函数。故函数()f x 在11x a =-处取得极小值 21f a a ?? -=- ??? ; 函数()f x 在2x a =处取得极大值()1f a =。 (1) 当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1 (+∞-a 内为增函数,在区间 )1,(a a -为减函数。故函数()f x 在11 x a =-处取得极小值 21f a a ?? -=- ??? ;函数 ()f x 在 2x a =处取得极大值()1f a =。

2020高考数学专题突破练2利用导数研究不等式与方程的根文含解析

专题突破练(2) 利用导数研究不等式与方程的根 一、选择题 1.(2019·佛山质检)设函数f (x )=x 3 -3x 2 +2x ,若x 1,x 2(x 1<x 2)是函数g (x )=f (x )-λx 的两个极值点,现给出如下结论: ①若-1<λ<0,则f (x 1)<f (x 2);②若0<λ<2,则f (x 1)<f (x 2);③若λ>2,则 f (x 1)<f (x 2). 其中正确结论的个数为( ) A .0 B .1 C .2 D .3 答案 B 解析 依题意,x 1,x 2(x 10,即λ>-1,且x 1+x 2=2,x 1x 2=2-λ3.研究f (x 1)0,解得λ>2.从而可知③正确.故选B . 2.(2018·乌鲁木齐一诊)设函数f (x )=e x x +3x -3-a x ,若不等式f (x )≤0有正实数解, 则实数a 的最小值为( ) A .3 B .2 C .e 2 D .e 答案 D 解析 因为f (x )=e x x +3x -3-a x ≤0有正实数解,所以a ≥(x 2-3x +3)e x ,令g (x )=(x 2-3x +3)e x ,则g ′(x )=(2x -3)e x +(x 2-3x +3)e x =x (x -1)e x ,所以当x >1时,g ′(x )>0;当0b >c B .b >a >c C .c >b >a D .c >a >b 答案 C 解析 构造函数f (x )=e x x 2,则a =f (6),b =f (7),c =f (8),f ′(x )=x e x (x -2) x 4 ,当x >2时,f ′(x )>0,所以f (x )在(2,+∞)上单调递增,故f (8)>f (7)>f (6),即c >b >a .故选C . 4.(2018·合肥质检二)已知函数f (x )是定义在R 上的增函数,f (x )+2>f ′(x ),f (0)=1,则不等式ln (f (x )+2)-ln 3>x 的解集为( ) A .(-∞,0) B .(0,+∞) C.(-∞,1) D .(1,+∞)

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

利用导数求参数取值范围的几种类型(1)

利用导数求参数取值范围的几种类型 学习目标:(1)学会利用导数的方法求参数的取值范围 (2)通过学习培养善于思考,善于总结的思维习惯 学习重点:学会利用函数的单调性求参数的取值范围;学会利用不等式求参数的取值范围 学习难点:在求参数的取值范围中构造关于x 的函数 学习过程: 类型1. 与函数单调性有关的类型 例1. 已知0a >,函数3()f x x ax =-在[)1,x ∈+∞是一个单调函数。 (1) 试问函数()f x 在[)1,+∞上是否为单调减函数?请说明理由; (2) 若函数()y f x =在[)1,+∞上是单调增函数,试求a 的取值范围。 解:(1)'2()3f x x a =-,若函数()f x 在区间[)1,+∞上单调递减,则'2()30f x x a =-≤在[)1,x ∈+∞上恒成立,即23x a ≤对[)1,x ∈+∞恒成立,这样的a 值不存在。所以函数()f x 在区间[)1,+∞上不是单调减函数。 (2)函数()y f x =在区间[)1,+∞上是单调增函数,则'2()3f x x a =-0≥,即23a x ≤在[)1,x ∈+∞上恒成立,在此区间上233y x =≥,从而得03a <≤ 规律小结:函数在区间(a ,b)上递增'()0f x ?≥,递减'()f x ?0≤在此基础上再 研究参数的取值范围(一般可用不等式恒成立理论求解)注意:解出的参数的值要是使'()f x 恒等于0,则参数的这个值应舍去,否则保留。 类型2. 与不等式有关的类型 例2. 设函数1()(01)ln f x x x x x =>≠且 (1) 求函数()f x 的单调区间; (2) 已知12a x x >对任意(0,1)x ∈成立,求实数a 的取值范围 解:(1)'22ln 1()x f x +=-,'1()0,f x x ==若则,列表如下:

相关主题
文本预览
相关文档 最新文档