当前位置:文档之家› 04- 湿空气热力学

04- 湿空气热力学

冷冻水系统培训——

湿空气热力学-焓湿图

Johnson Controls

学习和发展部

2007年11月26-30日,Shanghai

湿空气热力学

湿空气热力学是一门研究湿空气热力学参数以及如何利用这些参数分析湿空气状态及相关空气处理过程的学科。

湿空气热力学是热力学中的一门专业学科。在HVAC 行业中,湿空气热力学主要关注空气热力学参数及在焓湿图上的应用。

理解各种湿空气热力学参数的物理意义。

能够在焓湿图上确定各项空气参数。

能够在焓湿图上表达常用的空气处理过程。

能够结合焓湿图,理解HVAC系统的设计步骤。

掌握空气处理过程计算常用公式,根据在焓湿图上确定的空气参数,对空气处理过程进行定量计算。

湿空气的组成及空气的状态参数。

焓湿图及空气热力学参数在焓湿图上的表示方法。

HVAC 空气处理过程在焓湿图上的表示方法。

焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管设计冷量的确定方法。

湿空气的组成及空气的状态参数。

焓湿图及空气热力学参数在焓湿图上的表示方法。

HVAC 空气处理过程在焓湿图上的表示方法。

焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管冷量的确定方法。

空气的物理组成:

大气环境中,空气的成分主要是氮气(78%)、氧气(21%)及其它微量气体如:水蒸气、二氧化碳、氩气等。

HVAC 空气热湿处理过程中,空气的组成:

干空气—氮气、氧气、二氧化碳等(在HVAC温度范围内始终维持气态)。

水蒸气-在HVAC 温度范围内,可能发生蒸发或者冷凝过程,从而“进入”或“离开”空气。

?HVAC 空气热湿处理过程中,“空气”是“湿空气”的简称,是干空气和水蒸气的混合物。

空气(湿空气)=干空气+水蒸气

?在湿空气中,水蒸汽的含量虽少,但其却对室内空气环境控制(人员舒适性及工艺生产要求)产生重要的影响,并且对空气热湿处理能耗产生重要影响(潜热换热量)。

空气的热力学状态参数

◆干球温度

◆含湿量

◆饱和空气

◆相对湿度

◆露点温度

◆湿球温度

空气的速度、洁净度等参数

空气的状态参数-干球温度

干球温度(DB)——普通温度计在空气中所测出的温度,即我们一般常说的气温。单位为℃。

干球温度

含湿量◆

饱和空气

相对湿度◆

露点温度◆

湿球温度

℃=(F-32)/ 1.8

△℃=△F/1.8

空气的状态参数-含湿量

含湿量(W) ——空气中,单位质量干空气实际所含的水蒸气质量。该值通常用“g/Kg 干”表示。

干空气中“包含”水蒸气的能力和空气的温度有关:温度越高,“包含”水蒸气的能力越强。

10℃时,1kg 的干空气中最多能含水蒸气7.6g 。

30℃时,1kg 的干空气中最多能含水蒸气27.3g 。

干球温度

含湿量◆

饱和空气

相对湿度◆

露点温度◆

湿球温度

空气的状态参数-饱和空气

饱和空气——空气中的水蒸气含量达到相同温度下空气所能包含的水蒸气最大含量。在自然界中,当空气不能包含更多的水蒸气时,就会结露/雾。

干球温度

含湿量◆

饱和空气

相对湿度◆

露点温度◆

湿球温度

相对湿度(RH )——一定量空气中的实际水蒸气含量和相同温度下空气所能包含最大水蒸气含量的比值。相对湿度通常用%表示。

例如:

30℃时,1kg 的干空气中最多能含水蒸气27.3g ,若空气中实际含湿量为16.4g/kg 干,则此时空气的相对湿度为:16.4/27.3=60%

干球温度

含湿量◆

饱和空气

相对湿度◆

露点温度◆

湿球温度

露点温度(DP )——表示在对空气进行冷却的过程中,空气中的水蒸气开始冷凝成为液态,并在物体表面上结露时的温度。

露点温度和空气中的含湿量有关,含湿量越高,空气的露点温度越高。

举例:冷冻水管和蒸发器为什么要保温?

DB =25℃,RH =50%的空气的露点温度为14℃。冷冻水管中的水温为7-12℃,管壁温度低于空气的露点温度,管壁表面结露。

干球温度

含湿量◆

饱和空气

相对湿度◆

露点温度

湿球温度

湿球温度(WB)——指空气按等焓过程达到饱

和状态时的温度。

◆干球温度

◆含湿量

◆饱和空气◆相对湿度◆露点温度◆湿球温度手摇式干湿球温度计每秒旋转该装置四转,可以在两个温度计上得到稳定的读数。所需时间为一至两分钟。

比焓:空气的焓值是指单位质量的干空气及其所包含的水蒸气所

培训内容

湿空气的组成及空气的状态参数。

焓湿图及空气热力学参数在焓湿图上的表示方法。 HVAC 空气处理过程在焓湿图上的表示方法。

焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管冷量的确定方法。

露点温度水蒸气分压-mm 显热比

含湿量g/kg 干

所有的湿空气热力学参数都与当

地大气压有关。 标准焓湿图以海平面标准大气压

为依据制作。

如在美国丹佛、法国加穆尼克斯

谷等海拔较高的

地方工作,则需

要使用专为该海

拔制作的焓湿图。

空气参数在焓湿图上的表示——干球温度

等温线

干球温度坐标

空气参数在焓湿图上的表示——含湿量

等含湿量线

含湿量坐标

含湿量

g/kg

空气参数在焓湿图上的表示——相对湿度

等相对湿度线

相对湿度增加方向100

90

80

70

60

50

工程热力学-湿空气

第8章 湿 空 气 本章基本要求 理解绝对湿度、相对湿度、含湿量、饱和度、湿空气密度、干球温度、湿球温度、露点温度和角系数等概念的定义式及物理意义。 熟练使用湿空气的焓湿图。 掌握湿空气的基本热力过程的计算和分析。 8.1 湿空气性质 一、湿空气成分及压力 湿空气=干空气+水蒸汽 v a p p p B +==二、饱和空气与未饱和空气 未饱和空气=干空气+过热水蒸汽 饱和空气=干空气+饱和水蒸汽 注意:由未饱和空气到饱和空气的途径: 1.等压降温 2.等温加压 露点温度:维持水蒸汽含量不变,冷却使未饱和湿空气的温度降至水蒸汽的饱和状态,所对应的温度。 三、湿空气的分子量及气体常数 B p M r M r M v v v a a 95.1097.28-=+=B p R v 378.01287 -=

结论:湿空气的气体常数随水蒸汽分压力的提高而增大 四、绝对湿度和相对湿度 绝对湿度:每立方米湿空气中所含水蒸汽的质量。 相对湿度:湿空气的绝对湿度与同温度下饱和空气的饱和绝对湿度的比值, s v ρρφ=相对湿度反映湿空气中水蒸气含量接近饱和的程度。 思考:在某温度t 下,值小,表示空气如何,吸湿能力如何; φ值大,示空气如何,吸湿能力如何。 φ 相对湿度的范围:0<<1。 φ应用理想气体状态方程 ,相对湿度又可表示为 s v p p =φ五、含温量(比湿度) 由于湿空气中只有干空气的质量不会随湿空气的温度和湿度而改变。定义:含湿量(或称比湿度):在含有1kg 干空气的湿空气中,所混有的水蒸气质量称为湿空气的)。 g/kg(a) V v P B p d -=622六、焓 定义:1kg 干空气的焓和0.001dkg 水蒸汽的焓的总和 v a dh h h 001.0+=代入: g/kg(a) )85.12501(001.001.1t d t h ++=七、湿球温度用湿纱布包裹温度计的水银头部,由于空气是未饱和空气,湿球纱布上的水分将蒸发,水分蒸发所需的热量来自两部分:

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

工程热力学思考题答案,第十二章#试题

第十二章 理想气体混合物及湿空气 1.处于平衡状态的理想气体混合气体中,各种组成气体可以各自互不影响地充满整个体积,他们的行为可以与它们各自单独存在时一样,为什么? 答:混合气体的热力学性质取决于各组成气体的热力学性质及成分,若各组成气体全部处在理想气体状态,则其混合物也处在理想气体状态,具有理想气体的一切特性。 2.理想气体混合物中各组成气体究竟处于什么样的状态? 答:若各组成气体全部处在理想气体状态,遵循状态方程pV nRT =。 3.道尔顿分压定律和亚美格分体积定律是否适用于实际气体混合物? 答:否。只有当各组成气体的分子不具有体积,分子间不存在作用力时,处于混合状态的各组成气体对容器壁面的撞击效果如同单独存在于容器时的一样,这时道尔顿分压力定律和亚美格分体积定律才成立,所以道尔顿分压定律和亚美格分体积定律只适用于理想气体混合物。 4.混合气体中如果已知两种组分A 和B 的摩尔分数x A >x B ,能否断定质量分数也是ωA >ωB ? 答:否。i i i eq x M M ω=?,质量分数还与各组分的摩尔质量有关。 5.可以近似认为空气是1 mol 氧气和3.76 mol 氮气混合构成(即x O2=0.21、 x N2=0.79),所以0.1 MPa 、20°C 的4.76 mol 空气的熵应是0.1 MPa 、20°C 的1 mol 氧气的熵和0.1 MPa 、20°C 的3.76 mol 氮气熵的和,对吗?为什么? 答:不对。计算各组分熵值时,应该使用分压力,即(,)i i s f T p =。 6.为什么混合气体的比热容以及热力学能、焓和熵可由各组成气体的性质及其在混合气体中的混合比例来决定?混合气体的温度和压力能不能由同样方法确定? 答:根据比热容的定义,混合气体的比热容是1kg 混合气体温度升高1°C 所需热量。理想气体混合物的分子满足理想气体的两点假设,各组成气体分子的运动不因存在其他气体而受影响。混合气体的热力学能、焓和熵都是广延参数,具有可加性。所以混合气体的比热容以及热力学能、焓和熵可由各组成气体的性质及其在混合气体中的混合比例来决定。 混合气体的温度和压力是强度参数,不能由同样方法确定。 7.为何阴雨天晒衣服不易干,而晴天则容易干? 答:阴雨天空气的湿度大,吸取水蒸气的能力差,所以晒衣服不易干。晴天则恰恰相反,所以容易干。

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c ===''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 221mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++ =221 2.gz c u e ++=221 3.U E = 或u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.102000121221t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把()T f c v =的经验公式代入?=?2 1dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1121Λ 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?21pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学课后作业答案(第十章)第五版

10-1蒸汽朗肯循环的初参数为16.5MPa 、550℃,试计算在不同背压p2=4、6、8、10及12kPa 时的热效率。 解:朗肯循环的热效率 3 121h h h h t --= η h1为主蒸汽参数由初参数16.5MPa 、550℃定 查表得:h1=3433kJ/kg s1=6.461kJ/(kg.K) h2由背压和s1定 查h-s 图得: p2=4、6、8、10、12kPa 时分别为 h2=1946、1989、2020、2045、2066 kJ/kg h3是背压对应的饱和水的焓 查表得。 p2=4、6、8、10、12kPa 时饱和水分别为 h3=121.41、151.5、173.87、191.84、205.29 kJ/kg 故热效率分别为: 44.9%、44%、43.35%、42.8%、42.35% 10-2某朗肯循环的蒸汽参数为:t1=500℃、p2=1kPa ,试计算当p1分别为4、9、14MPa 时;(1)初态焓值及循环加热量;(2)凝结水泵消耗功量及进出口水的温差;(3)汽轮机作功量及循环净功;(4)汽轮机的排汽干度;(5)循环热效率。 解:(1)当t1=500℃,p1分别为4、9、14MPa 时初焓值分别为: h1=3445、3386、3323 kJ/kg 熵为s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa(s2=s1)对应的排汽焓h2:1986、1865、1790 kJ/kg 3点的温度对应于2点的饱和温度t3=6.98℃、焓为29.33 kJ/kg s3=0.106 kJ/(kg.K) 3`点压力等于p1,s3`=s3, t3`=6.9986、7.047、7.072℃ 则焓h3`分别为:33.33、38.4、43.2 kJ/kg 循环加热量分别为:q1=h1-h3`=3411、3347、3279.8 kJ/kg (2)凝结水泵消耗功量: h3`-h3 进出口水的温差t3`-t3 (3)汽轮机作功量h1-h2 循环净功=0w h1-h2-( h3`-h3) (4)汽轮机的排汽干度 s2=s1=7.09、6.658、6.39 kJ/(kg.K) p2=1kPa 对应的排汽干度0.79、0.74、0.71 (5)循环热效率1 0q w =η=

工程热力学课后答案--华自强张忠进高青(第四版)第13章

-1第十三章 13 设湿空气中水蒸气的状态为:(1) p v =0.001 MPa ,t =20 ℃;(2) p v =0.004 MPa ,t =29 ℃。试求按水蒸气表及理想气体状态方程确定水蒸气的比体积所产生的差别。 解 (1) p v =0.001 MPa ,t =20 ℃,查水蒸气表,当t =20 ℃时,饱和蒸汽压力P s =0.002 337 Mpa ,01729.0s =′′=ρρ kg/m 3。 相对湿度 s V s V 4279.0002337.0001.0ρρ?====p p 绝对湿度 =0.0073984 kg/m 01729.04279.0s V ×==?ρρ3水蒸汽的比容 165.1351 V ==ρν kg/m 3 按理想气体方程得 2.13510001.02935.461R 6 V V =××==ρνT i m 3/kg (2) p v =0.004 MPa ,t =29 ℃,查水蒸气表,当t =29 ℃时 饱和蒸汽压力p s =0.004026 MPa ,904028.0s =′′=ρρ kg/m 3 相对湿度 s V s V 199354.0004026 .0004.0ρρ?=≈===p p 绝对湿度 =0.02871728 kg/m 028904.099354.0s V ×==?ρρ3水蒸汽的比容 82.341 V ==ρν kg/m 3 按理想气体方程得 84.3410 004.03025.461R 6V V =××==ρνT i m 3/kg

1313 -2 湿空气的温度为50 ℃,相对湿度为50%,试求绝对湿度及水蒸气的分压力。 解 查水蒸气表,饱和蒸汽压力p s =0.012335 MPa, 饱和蒸汽密度 kg/m 08302.0s =′′=ρρ3 ∴ 绝对湿度 =0.04151 kg/m 08302.05.0s V ×==?ρρ3水蒸汽的分压力 MPa 0061675.0012335.05.0V =×==s p p ? -3 设大气压力为0.1 MPa ,干球温度为40 ℃,湿球温度为32 ℃,试求相对湿度及绝对湿度。 解 由t =40 ℃,t W =25 ℃,查图得相对湿度56=?%,查水蒸汽表t =40 ℃, 05116.0s =′′=ρρ kg/m 3 ∴绝对湿度 =0.2865 kg/m 5116.056.0s V ×==?ρρ 3 13-4 按习题12-1的条件,设湿空气的压力为0.1 MPa ,试求湿空气的密度按理想气体状态方程及按水蒸气表计算所产生的差别。 解 (1) Mpa ,t =20 ℃时 , MPa 001.0V =p 1.0V =p 查水蒸汽表,在12-1题中已求得=0.0073984 kg/m V ρ3 而干空气得分压力为 p A =1-0.001=0.999 MPa 故湿空气的密度 073984.0293 1.28710999.06V A +××=+=ρρρ=1.184 kg/m 3按理想气体状态方程得: 184.1293 5.46110001.02931.28710999.0R R 66V V A A =××+××=+=T p T p i ρ kg/m 3(2) MPa, t =29 ℃ 时 004.0V =p 查水蒸汽表,在12-1题中已求得=0.028 717 28 kg/m V ρ3

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

工程热力学第八章湿空气作业

第8章 湿 空 气 例1:如果室外空气的参数为p=1.0133bar ,t=30℃,φ=0.90,现欲经空气调节设备供给2t =20℃,2φ=0.60的湿空气,试用h-d 图分析该空气调节过程,并计算析出的水分及各过程中的热量。 解:利用h-d 图分析计算该题所给条件下的空调过程,如图8.1,根据所给条件t=30℃,φ=0.90, 在h-d 图上确定初态1,并查得1h =62.2kJ/k(a),1d =15.7g/kg(a) 同样,由2t =20℃,2φ=0.60在图上确定终态2,并查得 2h =34.1kJ/k(a),2d =15.7g/kg(a),由定2d 线与φ=1线的交点4, 查得4h =26.4kJ/kg(a), 2d =4d 空调过程的分析: 定湿冷却过程:湿空气的冷却过程,因其组成成分不变,即含湿量不变,但相对湿度增加,温度下降,直降到露点。所以,是定湿降温过程。例如,在h-d 图上自初态1沿1d =15.7g/kg(a)的定湿线进行到与φ=1线的交点3。此时已成饱和空气,再继续冷却,过程自状态3沿饱和线(临界线)进行,直至与终态含湿量相等的状态4,在这个冷却去湿阶段中,将有水蒸气凝结成水析出,并放出热量。1-4过程的放热量,可用焓差表示,即 q=14h h -=26.4-62.2=-35.8kJ/kg(a) 式中负号表示冷却时湿空气放出热量。 冷却去湿过程:每公斤干空气所析出的水分等于湿空气含湿量的减少量,即 14d d d -=?=7.1-15.7=-8.6g/kg(a) 式中负号表示湿空气析出水分。 加热过程:为了达到工程所要求的湿度,常采用降温去湿,但往往使温

热力学公式

1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 1. 热力学第一定律的数学表示式 W Q U +=? 或 'a m b δδδ d δd U Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ?为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1 d p H nC T ?= ? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0V W == p Q H =? (d 0,'0)p W == pV U H +=2 ,m 1 d V U nC T ?=?

04- 湿空气热力学

冷冻水系统培训—— 湿空气热力学-焓湿图 Johnson Controls 学习和发展部 2007年11月26-30日,Shanghai

湿空气热力学 湿空气热力学是一门研究湿空气热力学参数以及如何利用这些参数分析湿空气状态及相关空气处理过程的学科。 湿空气热力学是热力学中的一门专业学科。在HVAC 行业中,湿空气热力学主要关注空气热力学参数及在焓湿图上的应用。

理解各种湿空气热力学参数的物理意义。 能够在焓湿图上确定各项空气参数。 能够在焓湿图上表达常用的空气处理过程。 能够结合焓湿图,理解HVAC系统的设计步骤。 掌握空气处理过程计算常用公式,根据在焓湿图上确定的空气参数,对空气处理过程进行定量计算。

湿空气的组成及空气的状态参数。 焓湿图及空气热力学参数在焓湿图上的表示方法。 HVAC 空气处理过程在焓湿图上的表示方法。 焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管设计冷量的确定方法。

湿空气的组成及空气的状态参数。 焓湿图及空气热力学参数在焓湿图上的表示方法。 HVAC 空气处理过程在焓湿图上的表示方法。 焓湿图的应用举例——舒适性全空气HVAC系统设计参数及空调箱盘管冷量的确定方法。

空气的物理组成: 大气环境中,空气的成分主要是氮气(78%)、氧气(21%)及其它微量气体如:水蒸气、二氧化碳、氩气等。 HVAC 空气热湿处理过程中,空气的组成: 干空气—氮气、氧气、二氧化碳等(在HVAC温度范围内始终维持气态)。 水蒸气-在HVAC 温度范围内,可能发生蒸发或者冷凝过程,从而“进入”或“离开”空气。

工程热力学-湿空气

第8章 湿 空 气 本章基本要求 理解绝对湿度、相对湿度、含湿量、饱和度、湿空气密度、干球温度、湿球温度、露点温度和角系数等概念的定义式及物理意义。 熟练使用湿空气的焓湿图。 掌握湿空气的基本热力过程的计算和分析。 8.1 湿空气性质 一、湿空气成分及压力 湿空气=干空气+水蒸汽 v a p p p B +== 二、饱和空气与未饱和空气 未饱和空气=干空气+过热水蒸汽 饱和空气=干空气+饱和水蒸汽 注意:由未饱和空气到饱和空气的途径: 1. 等压降温 2. 等温加压 露点温度:维持水蒸汽含量不变,冷却使未饱和湿空气的温度降至水蒸汽的饱和状态,所对应的温度。

三、湿空气的分子量及气体常数 B p M r M r M v v v a a 95.1097.28-=+= B p R v 378.01287 -= 结论:湿空气的气体常数随水蒸汽分压力的提高而增大 四、绝对湿度和相对湿度 绝对湿度:每立方米湿空气中所含水蒸汽的质量。 相对湿度:湿空气的绝对湿度与同温度下饱和空气的饱和绝对湿度的比值, s v ρρφ= 相对湿度反映湿空气中水蒸气含量接近饱和的程度。 思考:在某温度t 下,φ值小,表示空气如何,吸湿能力如何; φ 值大,示空气如何,吸湿能力如何。 相对湿度的范围:0<φ<1。 应用理想气体状态方程 ,相对湿度又可表示为 s v p p = φ 五、含温量(比湿度) 由于湿空气中只有干空气的质量不会随湿空气的温度和湿度而改变。定义:

含湿量(或称比湿度):在含有1kg 干空气的湿空气中,所混有的水蒸气质量称为湿空气的)。 V v P B p d -=622 g/kg(a) 六、焓 定义:1kg 干空气的焓和0.001dkg 水蒸汽的焓的总和 v a dh h h 001.0+= 代入:)85.12501(001.001.1t d t h ++= g/kg(a) 七、湿球温度 用湿纱布包裹温度计的水银头部,由于空气是未饱和空气,湿球纱布上的水分将蒸发,水分蒸发所需的热量来自两部分: 1. 降低湿布上水分本身的温度而放出热量。 2. 由于空气温度t 高于湿纱布表面温度,通过对流换热空气将热量传给湿 球。 当达到热湿平衡时,湿纱布上水分蒸发的热量全部来自空气的对流换热,纱布上水分温度不再降低,此时湿球温度计的读数就是湿球温度。 湿球加湿过程中的热平衡关系式: 2312110)(h d d t c h w p =?-+-

工程热力学第十章蒸汽动力装置循环教案.docx

第十章蒸汽动力循环 蒸汽动力装置:是实现热能→机械能的动力装置之一。 工质:水蒸汽。 用途:电力生产、化工厂原材料、船舶、机车等动力上的应用。 本章重点: 1、蒸汽动力装置的基本循环 匀速 朗肯循环回热循环 2、蒸汽动力装置循环热效率分析 y T 的计算公式 y T 的影响因素分析 y T 的提高途径 10-1水蒸气作为工质的卡诺循环 热力学第二定律通过卡诺定理证明了在相同的温度界限间,卡诺循环的热效率最高,但实际上存在种种困难和不利因素,使得实际循环(蒸汽动力循环)至今 不能采用卡诺循环但卡诺循环在理论上具有很大的意义。 二、为什么不能采用卡诺循环 若超过饱和区的范围而进入过热区则不易保证定温加热和定温放热,即不能 按卡诺循环进行。 p 51 C2 v 1-2绝热膨胀(汽轮机) 2-C定温放热(冷凝汽)可以实现 5-1定温加热(锅炉) C-5绝热压缩(压缩机)难以实现 原因: 2-C 过程压缩的工质处于低干度的湿汽状态 1 、水与汽的混合物压缩有困难,压缩机工作不稳定,而且 3 点的湿蒸汽比容比 水大的多 '2000'需比水泵大得多的压缩机使得输出的净功大大3232

减少,同时对压缩机不利。 2、循环仅限于饱和区,上限T1受临界温度的限制,即使是实现卡诺循环,其理 论效率也不高。 3、膨胀末期,湿蒸汽所含的水分太多不利于动机 为了改进上述的压缩过程人们将汽凝结成水,同时为了提高上 限温这就需要对卡诺循环进行改进,温度采用过热蒸汽使 T1高于临界温度,改进的结果 就是下面要讨论的另一种循环—朗肯循环。 10-2朗肯循环 过程: 从锅炉过热器与出来的过热蒸汽通过管道进入汽轮机T,蒸汽部分热能在T 中转换为机械带动发电机发电,作了功的低压乏汽排入C,对冷却水放出γ,凝结成水,凝结成的水由给水泵 P 送进省煤器 D′进行预热,然后在锅炉内吸热汽化,饱 和蒸汽进入 S 继续吸热成过热蒸汽,过程可理想化为两个定压过程,两个绝热 过程—朗诺循环。 1-2绝热膨胀过程,对外作功 2-3定温(定压)冷凝过程(放热过程) 3-4绝热压缩过程,消耗外界功 4-1定压吸热过程,(三个状态) 4-1 过程:水在锅炉和过热器中吸热由未饱和水变为过热蒸汽过程中工质与外界无技术功交换。 1-2 过程:过热蒸汽在汽抡机中绝热膨胀,对外作功,在汽轮机出口工质达到低压低温蒸汽状态称乏汽。 2-3 过程:在冷凝器中乏汽对冷却水放热凝结为饱和水。 3-4 过程:水泵将凝结水压力提高,再次送入锅炉,过程中消耗外功。

热力学公式

电熔镁砂热回收热量引用计算公式说明 本课题主要研究熔坨高温回收利用,众所周知,物体能量传递主要以热传导、对流换热、辐射三种方式进行传递。本课题主要涉及到熔坨自身热传导,气体对物体表面对流换热传导过程。物体能量主要是以物体温度作为表征,其中还有化学能、汽化热能等其它不以温度为表征的能量。在本课题能量传递过程中共涉及到熔坨非稳态导热过程,空气与熔坨间的对流放热过程,热空气与矿石原料对流换热过程和矿石原料加热过程, 一、在热工过程热平衡计算中应用了热力学第一定律(即能量 守恒定律),其表达式根据能量守恒定律得知,熔坨的放 出热量等于空气的得热;热空气放热等于矿石原料的热量 (其中含有矿石原料的分解热),并考虑到系统的热损失。 二、在热量传递过程采用熔坨非稳态热传导(熔坨自身传热) 放热和矿石原料非稳态传到加热计算;空气与熔坨和热空 气加热矿石原料的对流换热计算公式(即牛顿冷却或加热 公式)。 三、任何物质在高于绝对零度的温度下,必然具有热能,其能 量值与物质的比热容、物质质量、物质所具有的温度有关。 据此计算熔坨的总能量,整个放热期间终了时刻的能量。 整个吸热过程终了时刻物质所具有的热能(含化学分解热 能)。根据能量传递过程中的热量计算工序所要求的矿石 原料加热量 四、根据应用能量守恒定律、非稳态传导和对流换热过程的计 算得知。该项目可回收熔坨加工过程中的热能。 本课题采用热力学公式如下: 一、热力学第一定律(能量守恒定律) 基本表达式 Q=⊿U+AW (Kcal) Q-----------热量(Kcal)吸热取正值,反之取负值 ⊿U--------系统的内能变化(Kcal) A-----------功热当量1/427(Kcal /kgf*m) W------------物体的膨胀功 kgf*m 二、物体具有的能量 根据任何高于绝对零度物体下所具有的能量得到如下公式: 1、公式Q=Cp*M*T 或 Q=Cp*ρ*V*T (KJ) 该计算公式表征任何高于绝对零度物体下所具有的能量。

工程热力学第8章答案

第8章 湿空气和空气调节 8-1 今测得湿空气的干球温度t =30℃,湿球温度t s =20℃,当地大气压力p b =0.1MPa 。求:湿空气的相对湿度?、含湿量d 、焓h 。 解:查h-d 图得:相对湿度 ?=40%;含湿量d =10.7g/kg(DA);比焓h=57.5kJ/kg(DA) 8-2 已知湿空气开始时的状态是p b =0.1MPa ,温度t =35℃,相对湿度?=70%,求水蒸气的分压力和湿空气的露点温度;如果保持该湿空气的温度不变,而将压力提高到 (40)0.00738C Mpa °= 110.77.380.6221000.7s s p p p ??××=×??× MPa C p s 000873.0)5(2=° %1002=? )(/48.51000873 .0100873 .01622.0622 .02222DA kg g p p p d s s =×?×× =?=?? )(/4.2848.588.332DA kg g d d d =?=?=? 8-4 一功率为800W 的电吹风机,吸入的空气为0.1MPa 、15℃、?=70%,经过电吹风

机后,压力基本不变,温度变为50℃,相对湿度变为20%,不考虑空气动能的变化。求电吹风机入口的体积流量(m 3/s )。 解:1)0 (15)0.00171s p C MPa =

)(/82.1071 .11001000 71.1622 .0DA kg g d =?×= 1(30)0.00424s p C MPa = 010 (15) 1.71 40%(30) 4.24 s s p C p C ?=== 2)0 2(50)0.01235s p C MPa = 020(15) 1.71 13.8%(50)12.35 s s p C p C ?=== )86.12501(005.111111t d t h h h v a ++=+= 222用图解法及计算法求混合后湿空气的焓、含湿量、温度,相对湿度。 解:11120 4.39/31.27/30%t C d g kga h kJ kga ?=°=?????==?? 2223529.33/110.44/80%t C d g kga h kJ kga ?=°=????? ==?? ,1,10.1013250.30.0023370.100624a v p p p MPa =?=?×= 6,11 ,1,10.100624101517.95/min 0.287(27320) a ma g a p V q kg R T ××===×+

大气物理学(复习版)

大气物理学(大三) 第六章 大气热力学基础 一、热力学基本规律 1、空气状态的变化和大气中所进行的各种热力过程都遵循热力学的一般规律,所以热力学方法及结果被广泛地用来研究大气,称为大气热力学。 2、开放系和封闭系 (1) 开放系:一个与外界交换质量的系统 (2) 封闭系:和外界互不交换质量的系统 (3) 独立系:与外界隔绝的系统,即不交换质量也不交换能量的系统。 3、准静态过程和准静力条件 (1)准静态过程: 系统在变态过程中的每一步都处于平衡状态 (2) 准静力条件:P ≡Pe 系统内部压强p 全等于外界压强Pe 4、气块(微团)模型 气块(微团)模型是指宏观上足够小而微观上含有大量分子的空气团,其内部可包含水汽、液态水或固态水。 气块(微团)模型就是从大气中取一体微小的空气块,作为对实际空气块的近似。 5、气象上常用的热力学第一定律形式 【比定压热容cp 和比定容热容cv 的关系cp= cv+R ,(R 比气体常数)】 6、热力学第二定律讨论的是过程的自然方向和热力平衡的简明判据,它是通过态函数来完成的。 7、理解熵、焓(从平衡态x0开始而终止于另一个平衡态x 的过程,将朝着使系统与外界的总熵增加的方向进行;等焓过程: 绝热和等压;物理意义:在等压过程中,系统焓的增加值等于它所吸收的热量) 8、大气能量的基本形式:(1)内能;(2)势能;(3)动能;(4)潜热能 9、大气能量的组合形式(1)显热能:单位质量空气的显热能就是比焓。(2)温湿能:单位质量空气的温湿能是显热能和潜热能之和。(3)静力能: 对单位质量的干(湿)空气,干(湿)静力能:(4)全势能: 势能和内能之和称全势能 10、大气总能量 干空气的总能量: 湿空气的总能量: 二、大气中的干绝热过程 1、系统(如一气块)与外界无热量交换(δQ=0)的过程,称为绝热过程。(对未饱和湿空气κ= κd=R/Cp=0.286计算大气的干绝热过程)286.00 00)()(p p p p T T d ==κ例:如干空气的初态为p=1000hpa ,T0=300K ,当它绝热膨胀,气压分别降到900hpa 和800hpa 时温度分别为多少? 2、干绝热减温率 定义:未饱和湿空气块温度随高度的变化率的负值为干绝热减温率γv ,单位°/100m dp ρ 1-dT c =αdp -dT c =δQ p p 2p k d V 21+gz +T c =E +Φ+U =E Lq +V 2 1+gz +T c =Lq +E +Φ+U =E 2p k m m C m k km K c g o pd d 100/1100/98.0/8.9≈===γ

热力学公式总结(新)

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 /y B m,B B * =V ?∑*A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律 p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体

V RT n p /B B = 4. 阿马加分体积定律 */B B V n RT p = 此式只适用于理想气体。 第二章 热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 W Q U +=? 或 'amb δδδd δdU Q W Q p V W =+=-+ 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 3. 焓变 (1) )(pV U H ?+?=? 式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2 ,m 1d p H nC T ?=? 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。 4. 热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。 5. 恒容热和恒压热 V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W == 6. 热容的定义式 (1)定压热容和定容热容 pV U H +=2 ,m 1 d V U nC T ?=?

大气热力学温度(1)

大气热力学温度 thermodynamic temperatures of atmosphere 表征干空气和湿空气热力性质的重要变量。常用的有虚温、露点、湿球温度、位温和相当位温等。虚温在气压相等的条件下,使干空气的密度和湿空气的密度相等时,干空气应具有的温度。这是一种虚拟的温度,称为虚温(T V )。它表示湿空气的一种属性:TV≈T(1+0.61W ) 式中W =ρ V /ρ d 为混合比,ρ d 、ρ V 分别为干空气和水汽的密度(见气象要素)。 空气的水汽含量愈大,W 也愈大。在一般情况下,虚温仅略高于实测温度,即使在非常暖湿的空气中,也只有几摄氏度的差异。引入虚温后,比较复杂的湿空气 状态方程,就可以用比较简单的、类似于干空气的状态方程来代替,即P = ρR d T V 。 其中ρ是湿空气的密度,R d 为干空气气体常数。 露点在气压和水汽含量不变的情况下,降低空气温度使其达到饱和状态 时的温度,称为露点,常用T d 表示。在温度一定的情况下,空气中的水汽含量愈少,露点愈低,只有在饱和的湿空气中,露点才等于气温,故可利用气温和露点的差值来近似地表示大气中的水汽含量。 湿球温度在系统(空气加水)的气压保持不变并和外界没有热量交换的情况下,纯净的水蒸发到空气中去,使其达到饱和状态时,系统因蒸发冷却而到 达的温度,称为湿球温度,通常用T w 表示。在实际工作中,用湿球温度表上的读数代表湿球温度。该温度表的球部,包着保持浸透了水的纱布,在通风良好的情况下,湿球附近的水分在不断蒸发的过程中吸收周围空气的热量,使周围的气温下降,当湿球附近的空气达到饱和时,湿球温度表的指示剂稳定而不再下降,此时的读数便表示湿球温度。实际上,这种读数和通风情况有关,所以它只是一种近似于理论上的湿球温度。空气中的水汽含量愈小,为使空气达到饱和所需蒸发的水分就愈多,所吸收的热量愈大,湿球温度就愈低。故湿球温度的高低,能反映大气中水汽含量的多寡(湿度的大小)。气块由某高度干绝热上升,达到饱和之后,再湿绝热下降到原来高度时所具有的温度,称为假湿球温度,通常用 T sw 表示。 位温将一块干空气绝热地压缩或膨胀到气压等于1000百帕时所具有的温度,称为位温,常用θ表示。当气块绝热膨胀时,它对外界作功,内能减小,温度下降;反之,气块作绝热压缩时,内能增大,温度升高。但是气块的位温在干绝热过程中却是守恒的。对湿空气,气块干绝热上升,达到饱和之后,再湿绝热下降到1000 百帕高度时的温度,称为假湿球位温,通常用θsw表示。它在等压蒸发和凝结过程中是守恒的。 相当温度在等压情况下,湿空气的水汽全部凝结时,若所释放的潜热全 部用于加热空气,气块所达到的温度,称为相当温度,通常用T e 表示。如果未饱和的气块通过干绝热过程移到1000百帕高度,则其相当温度称为相当位温, 通常用θ e 表示。如果气块先作干绝热变化,达到饱和之后,再依湿绝热过程上升,直到所有的水汽全部凝结为水而脱离该气块为止,然后将这种已无水汽的干空气干绝热地下降至原来的气压处,气块在这种虚拟的过程中所能达到的温度, 称为假相当温度,用T se 表示。若将它用干绝热地移到1000百帕时,其温度称为

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1·引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数[1,2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(ε-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32/R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。王丰利用回热度对燃气轮机流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均温差、算术平均温差和热力学平均温差几乎相等[6]。中宁、桂初等也对传热温差的计算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性和应用时需要注意的问题[7,8]。Ram在对LMTD法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2·平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均温差在一定条件下可由积分平均温差表示[10],即:

相关主题
文本预览
相关文档 最新文档