当前位置:文档之家› 控制系统的稳定性分析

控制系统的稳定性分析

控制系统的稳定性分析
控制系统的稳定性分析

精品

实验题目控制系统的稳定性分析

一、实验目的

1.观察系统的不稳定现象。

2.研究系统开环增益和时间常数对稳定性的影响。

二、实验仪器

1.EL-AT-II型自动控制系统实验箱一台

2.计算机一台

三、系统模拟电路图

系统模拟电路图如图3-1

图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。

四、实验报告

1.根据所示模拟电路图,求出系统的传递函数表达式。

G(S)=

K=R3/100K,T=CuF/10

2.绘制EWB图和Simulink仿真图。

精品

3.根据表中数据绘制响应曲线。

4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

系统响应曲线

实验曲线Matlab (或EWB)仿真

R3=100K

= C=1UF

临界

稳定

(理论值

R3=

200K)

C=1UF

精品

临界

稳定

(实测值

R3=

220K)

C=1UF

R3

=100K

C=

0.1UF

精品

临界

稳定

(理论

值R3=

1100

K)

C=0.1UF

临界稳定

(实测值

R3=

1110K )

C=

0.1UF

精品

实验和仿真结果

1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。

对比:

实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。

原因:

MATLAB仿真没有误差,而实验时存在误差。

2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2,

当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11

当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近

四、实验总结与思考

1.实验中出现的问题及解决办法

问题:系统传递函数曲线出现截止失真。

解决方法:调节R3。

2.本次实验的不足与改进

遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。

改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。

3.本次实验的体会

遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

测量系统分析报告(MSA)方法

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 3.1质管部负责测量系统分析的归口管理; 3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析; 3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。 4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获 得的测量平均值总变差,即偏倚随时间的增量。 4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。 4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于 有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。 4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。 4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所

MSA测量系统(稳定性、偏移和线性研究)分析报告

XXXX作业文件 文件编号:JT/C-7.6J-003版号:A/0 (MSA)测量系统分析 稳定性、偏移和线性研究 作业指导书 批准:吕春刚 审核:尹宝永 编制:邹国臣 受控状态:分发号: 2006年11月15日发布2006年11月15日实施

量具的稳定性、偏移、线性研究作业指导书JT/C-7.6J-003 1目的 为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对测量系统的五个特性进行分析,使测量结果的不确定度已知,为准确评定产品提高质量保证。 2适用范围 适用于公司使用的所有测量仪器的稳定性、偏移和线性的测量分析。3职责 3.1检验科负责确定过程所需要的测量仪器,并定期校准和检定,对使用的测量系统分析,对存在的异常情况及时采取纠正预防措施。 3.2工会负责根据需要组织和安排测量系统技术应用的培训。 3.3生产科配合对测量仪器进行测量系统分析。 4术语 4.1偏倚 偏倚是测量结果的观测平均值与基准值(标准值)的差值。 4.2稳定性(飘移) 稳定性是测量系统在某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差。 4.3线性 线性是在量具预期的工作量程内,偏倚值的变差。 4.4重复性 重复性是由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性获得的测量值的变差。 4.5再现性 再现性是由不同的评价人,采用相同的测量仪器,测量同一零件的同一特性的测量平均值的变差。 5测量系统分析作业准备 5.1确定测量过程需要使用的测量仪器以及测量系统分析的范围。 a)控制计划有要求的工序所使用的测量仪器; b)有SPC控制要求的过程,特别是有关键/特殊特性的产品及过程; c)新产品、新过程; d)新增的测量仪器; e)已经作过测量系统分析,重新修理后。 5.2公司按GB/T10012标准要求,建立公司计量管理体系,确保建立的测

切换系统的稳定性调研报告

切换系统的稳定性调研报告 陈龙0909122920 自动化1206班 丁志成0909122921 自动化1206班 摘要:本文通过查找文献的方法来了解切换系统及其应用领域、切换系统稳定性的特点、主要结果、研究方法(使用的主要数学工具)和研究现状;了解研究的难点,还有哪些有待研究的问题。 关键词:切换系统稳定性李雅普诺夫函数 一、切换系统的定义及其应用领域 切换系统是一种包含多个连续或离散子系统的混杂系统,并由切换信号来控制它在各个子系统之间切换,它是从系统与控制论角度来研究的一种特殊混杂系统。近年来,切换系统由于其结构形式相对简单,便于理解,分析和实际应用,而被广泛的研究与讨论。在实践应用中,许多自然、社会及工程系统会随环境的变化而展现不同的的模型,如输电系统、飞行器队型、运动机器人、神经网络、交通控制、汽车工业等,而用切换系统可以很好地刻画出这些系统的数学模型。 二、切换系统稳定性的特点 子系统的稳定性不等价于切换系统的稳定性,也就是说,即使它的所有子系统都稳定,整个系统不一定稳定;同样,即使各个子系统都不稳定,也不能说明整个切换系统不稳定。 三、切换系统稳定性的研究方法 1、多李雅普诺夫函数法: 多李雅普诺夫函数法的基本思想是对每个子系统都要寻找一个李雅普诺夫函数进行稳定性分析。该研究方法保守性小,有利于数学推导。 2、公共李雅普诺夫函数法: 公共李雅普诺夫函数法是在多李雅普诺夫函数法之后被提出来的,主要用于判定一个系统对于任意切换是否稳定。利用这一方法证明系统稳定性的关键是研究公共李雅普诺夫函数的存在条件。 3、驻留时间法: 驻留时间法又叫慢变切换,这一思想来源于Desoer关于慢时变系统的著名论断:如果系统所有子系统的矩阵都是Hurwitz矩阵,那么在足够缓慢的切换下可以保持系统稳定。 4、其他方法 四、切换系统稳定性的研究成果 1、任意切换下的稳定性:对切换线性系统,任意切换条件下的几种稳定性是等价的:渐近稳定、全局渐近稳定、(全局)指数稳定。 2、约束切换下的稳定性:。一般分为两类,一类是切换规则受到状态演化的约束,还有一类就是约束切换发生的速率。比较而言,实践中更为重要的一类问题是:给定一族非Hurwitz 矩阵,判定是否存在状态相关的切换律,使得系统是全局一致渐近稳定的。对切换线性系统约束切换条件下,对状态轨迹无关(时间相关)的切换信号,一致渐近稳定等价于指数稳定;对状态轨迹相关的切换信号,二者之间并无确定性的等价关系。约束切换又可分为以下三个方面:切换速率的约束:如果所有的子系统矩阵都是Hurwitz的,那么在足够缓慢的切换条

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

土坡稳定性计算

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 序号 放坡高度L(m) 放坡宽度W(m) 平台宽度B(m) 1 3.5 2.25 0.75 2 4 3 1.5 荷载参数: 土层参数:

1 填土 3.5 19.8 7.4 20.4 8 20 2 粘性土 3.5 20 16. 3 45.8 21 23 3 粘性土 3.6 20.3 17. 4 64.1 23 23 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.35的要求。 圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]co sθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值;

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

(完整版)土坡稳定性分析

第七章土坡稳定性分析 第一节概述 土坡就是由土体构成、具有倾斜坡面的土体,它 的简单外形如图7-1所示。一般而言,土坡有两种类 型。由自然地质作用所形成的土坡称为天然土坡,如 山坡、江河岸坡等;由人工开挖或回填而形成的土坡 称为人工土(边)坡,如基坑、土坝、路堤等的边坡。 土坡在各种内力和外力的共同作用下,有可能产生剪 图7-1 土坡各部位名称 切破坏和土体的移动。如果靠坡面处剪切破坏的面积 很大,则将产生一部分土体相对于另一部分土体滑动的现象,称为滑坡。土体的滑动一般系指土坡在一定范围内整体地沿某一滑动面向下和向外移动而丧失其稳定性。除设计或施工不当可能导致土坡的失稳外,外界的不利因素影响也触发和加剧了土坡的失稳,一般有以下几种原因: 1.土坡所受的作用力发生变化:例如,由于在土坡顶部堆放材料或建造建筑物而使坡顶受荷。或由于打桩振动,车辆行驶、爆破、地震等引起的振动而改变了土坡原来的平衡状态; 2.土体抗剪强度的降低:例如,土体中含水量或超静水压力的增加; 3.静水压力的作用:例如,雨水或地面水流入土坡中的竖向裂缝,对土坡产生侧向压力,从而促进土坡产生滑动。因此,粘性土坡发生裂缝常常是土坡稳定性的不利因素,也是滑坡的预兆之一。 在土木工程建筑中,如果土坡失去稳定造成塌方,不仅影响工程进度,有时还会危及人的生命安全,造成工程失事和巨大的经济损失。因此,土坡稳定问题在工程设计和施工中应引起足够的重视。 天然的斜坡、填筑的堤坝以及基坑放坡开挖等问题,都要演算斜坡的稳定性,亦既比较可能滑动面上的剪应力与抗剪强度。这种工作称为稳定性分析。土坡稳定性分析是土力学中重要的稳定分析问题。土坡失稳的类型比较复杂,大多是土体的塑性破坏。而土体塑性破坏的分析方法有极限平衡法、极限分析法和有限元法等。在边坡稳定性分析中,极限分析法和有限元法都还不够成熟。因此,目前工程实践中基本上都是采用极限平衡法。极限平衡方法分析的一般步骤是:假定斜坡破坏是沿着土体内某一确定的滑裂面滑动,根据滑裂土体的静力平衡条件和莫尔—库伦强度理论,可以计算出沿该滑裂面滑动的可能性,即土坡稳定安全系数的大小或破坏概率的高低,然后,再系统地选取许多个可能的滑动面,用同样的方法计算其稳定安全系数或破坏概率。稳定安全系数最低或者破坏概率最高的滑动面就是可能性最大的滑动面。 本章主要讨论极限平衡方法在斜坡稳定性分析中的应用,并简要介绍有限元法的概念。 182

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

切换系统知识总结

切换系统来源于实际控制系统,所以对其研究不但是现代控制理论发展的需要,更是试图解决大量实际问题的迫切需求.不同于一般系统,切换系统在运行过程中,切换规则起着重要作用,不同的切换规则将导致完全不同的动态特征:若干个稳定的子系统在某一切换规则下可导致整个系统不稳定.而若干个不稳定的子系统在适当的切换下可使整个系统稳定,即其子系统的稳定性不等价于整个系统的稳定性. 1999年Daniel Liberzon和A. Stephen Morse发表了一篇切换系统稳定性分析的综述文章,并归结为如下三个基本问题: 问题1:切换系统在任意切换下渐近稳定的条件; 问题2:切换系统在受限切换下是否渐近稳定; 问题3:如何设计切换信号,使得切换系统在该切换信号下渐近稳定. 以上三个问题是在研究切换系统稳定时密不可分的。 我们在研究切换系统稳定性的时候,大多围绕这三个问题展开.在对控制系统进行分析的过程中,已经有了很多的研究方法,在研究切换系统的稳定性时,我们经常用到的方法有:单Lyapunov 函数方法,共同Lyapunov 函数方法,多Lyapunov 函数方法,共同控制Lyapunov 函数方法,backstepping 方法,LMI等。 切换系统基本知识 定义1一个切换系统被描述成以下微分方程的形式 ()(1)其中这里:是一族的充分正则函数,:是关于时间的分段.常值函数,称为切换新号。有可能取决于时间t或状态 ,或 () 两者都有。P是某个指标集。以下非特别指明假设P都是有限集。如果这里所有的子系统都是线性的,我们就得到一个线性切换系统, (2) 1任意切换下稳定 很明显,为了研究切换系统在任意切换下的稳定性,我们必须假设所有系统都是稳定的,这点对于切换系统的稳定只是必要条件。我们要研究的是为了使切换系统在任意切换下稳定还需要什么条件。 存在共同Lyapunov函数是系统在任意切换下渐近稳定的充要条件,因而寻求共同Lyapunov函数存在的条件是解决稳定性问题的一个途径。共同Lyapunov 函数法与传统的Lapunov直接法基本是一致的。其主要思想是:对于切换系统,如果各子系统存在共同Lyapunov函数,那么系统对于任意的切换序列都是稳定的。 定理1 Lapunov稳定性定理为研究切换系统的稳定性提供了一个基本工具,具体如下: 对于切换系统(1),如果存在正定连续可微的函数V:,正定连续的函数W:,满足 ,

基于切换系统理论的三相变流器建模及其稳定性分析

2009年11月电工技术学报Vol.24 No. 11 第24卷第11期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Nov. 2009 基于切换系统理论的三相变流器建模 及其稳定性分析 李琼林1刘会金2宋晓凯1王 1张振安1 (1. 河南电力试验研究院郑州 450052 2. 武汉大学电气工程学院武汉 430072) 摘要功率开关的动作使得三相变流器成为一典型的切换系统,它同时包含连续和离散两种动态,常规的建模方法都是从线性系统理论出发,通过平均化、坐标变换或小信号线性化等方法得到系统的近似线性化模型。本文在考虑变流器的混杂系统特征基础上,直接从切换系统理论出发,建立了三相变流器的切换系统模型,并针对整流器和逆变器分别给出了相应的切换系列。该模型完全精确,不存在任何近似,更能真实反映变流器的实际物理工作过程。通过引入线性切换系统的稳定性判定法则,对三相变流器的切换过程的稳定性进行了分析。仿真和实验结果与理论分析具有很好的一致性,验证了本文所提方法的有效性。 关键词:变流器 建模 切换系统 稳定性分析 中图分类号:TM46 Modeling and Stability Analysis of Three-Phase Converter Based on Switching System Theory Li Qionglin1 Liu Huijin2 Song Xiaokai1Wang Jing1Zhang Zhen’an1 (1. Henan Electric Power Research Institute Zhengzhou 450052 China 2. Wuhan University Wuhan430072China) Abstract Converter is a typical switching system for the action of the power switch. It includes two dynamical states of the continuous and the discrete. The conventional method of modeling was based on the linear system theory, through the methods of averaging, coordinate transformation and linearization etc, an approximate model could be obtained. Considering the hybrid trait of the converter, this paper deduces the switching system model of the converter, and gives the switch sequences respectively for the inverter and the rectifier. The new model is accurate, and it can represent the actual system completely. By introducing the determinant principle of stability for the linear switch system, this paper analyzes the switch course stability of the converter. The final simulation results has good agreement with the theory analysis. The validity of the method presented in this paper is approved. Keywords:Converter, modeling, switching system, stability analysis 1引言 功率开关器件的存在,使得电力电子电路同时包含连续和离散两种动态,建立精确的数学模型是分析和设计电力电子电路的基础。状态空间平均法是一种比较简单、有效的小信号分析方法,已用于多种功率变换器的建模[1-2],该方法通常适用于仅具有两种不同电路状态的变流器的建模分析,如DC/DC变换器。对于三相变流器,由于其开关模态的增加,以及所处理的信号包含时变的正弦信号,其建模过程更加复杂,开关函数描述法是一种更加普遍、更精确的建模方法[3],更能描述电路的连续、 国家自然科学基金资助项目(50677045)。收稿日期 2008-11-21 改稿日期 2009-03-05

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:典型系统的时域响应和稳定性分析实验时间: 学生成绩:教师签名:批改时间: 一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图 1.2-1 所示。 图1.2-2 (2) 对应的模拟电路图:如图 1.2-2 所示。 图1.2-2

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: (3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: 图 1.2-3 (2)模拟电路图:如图1.2-4 所示。 图 1.2-4 (3)理论分析: 系统的特征方程为: (4)实验内容: 实验前由Routh 判断得Routh 行列式为:

离散时间扰动脉冲切换系统鲁棒指数稳定性

Vol.32,No.2ACTA AUTOMATICA SINICA March,2006 Robust Exponential Stability of Discrete Time Perturbed Impulsive Switched Systems1) ZONG Guang-Deng WU Yu-Qiang (Research Institute of Automation,Qufu Normal University,Qufu273165) (E-mail:zonggdeng@https://www.doczj.com/doc/3417716697.html,) Abstract The robust exponential stability of a class of discrete time impulsive switched systems with structure perturbations is studied.Based on the average dwell time concept and by dividing the total activation time into the time with stable subsystems and the time with unstable subsystems, it is shown that if the average dwell time and the activation time ratio are properly large,the given switched system is robustly exponentially stable with a desired stability https://www.doczj.com/doc/3417716697.html,pared with the traditional Lyapunov methods,our layout is more clear and easy to carry out.Simulation results validate the correctness and e?ectiveness of the proposed algorithm. Key words Switched systems,robust exponential stability,structure perturbations,average dwell time 1Introduction A switched system is an important class of hybrid systems consisting of a family of continuous-time or discrete-time subsystems and a rule that orchestrates the switching among them.Switched systems are di?erent from the common continuous-time or discrete-time systems,because they have some special properties.It is very important how to choose the rule.Recently,the study on the switched systems analysis and switching control has attracted more and more attentions[1~12].Its main result lies in:1) many systems encountered in practice exhibit switching phenomena between several subsystems due to the inherent multi-model or various environmental factors[3,4];2)the methods of intelligent control design are based on the idea of switching between di?erent controllers[3,5];3)switching controllers can achieve a better performance than the traditional feedback controllers,e.g.,Narendra and Balakrishnan improved the system performance by using a set of switched adaptive controllers[6]. In this paper,under the assumption that the subsystems include stable and unstable subsystems, we study the robust exponential stability of a class of discrete time impulsive switched systems with structure perturbations.[7]considered the exponential stability of a class of continuous time switched systems that only contained stable subsystems,and proved that the switched system is exponentially stable when the dwell time of the switching signal(the time between every two consequent switchings)is large enough.[8]proposed the concept of the average dwell time,and proved that the switched system is still exponentially stable when the average dwell time is large enough.[9]studied the switched systems containing stable and unstable subsystems.The total activation time of the switched system was divided into the activation time of the stable subsystems and unstable subsystems.The authors proved that the switched system is exponentially stable when the average dwell time and the total activation time period ratio between the stable subsystems and unstable subsystems are both large enough.Similar to[9],[11]considered the exponential stability of a class of discrete time switched systems. However,there are few results on the robustness of the uncertain switched systems.Meanwhile, for the practical systems,the impulsive e?ect often occurs when switching exists.Therefore,in this note,we consider the robust exponential stability of the impulsive switched systems with structure perturbations.With the knowledge of the average dwell time and the modular matrix,we prove that the given switched system is robustly exponentially stable with the desired stability degree under the proposed switching signal,if the average dwell time and the total activation time period ratio between the stable subsystems and unstable subsystems are both properly large.Finally,the numerical simulations validate the algorithm in this paper.

相关主题
文本预览
相关文档 最新文档