当前位置:文档之家› 硅基光子晶体的研究

硅基光子晶体的研究

硅基光子晶体的研究
硅基光子晶体的研究

硅基光子晶体的研究

从真空管到超大规模集成电路,人类跨出了巨大的一步、半个世纪以来,电子器件的迅猛发展使其广泛应用于生活和工作的各个领域,它尤其促进了通讯和计算机产业的发展。然而,进一步小型化以及在减小能耗下提高运作速度,几乎是一种挑战、由于电子器件是基于电子在物质中的运动,在纳米区域内,量子和热的波动使它的运作变得不可靠了,人们感到了电子产业的发展极限。由于光子是以光速运动的粒子,以光子为载体的光子器件有比电子器件高得多的运行速度,光子在电介质传播每秒可以携带更多的信息,其传输带宽要远大于金属导线,并且光子受到的相互作用远小于电子,因而光子器件的能量损耗小、效率高,人们转而把目光投向了光子,提出了用光子作为信息裁体代替电子的设想。类似于电子产业中的半导体材料,光子产业中也存在着一种基础材料——光子晶体(Photonic Crystals )。

光子晶体(Photonic Crystals )是由具有不同介电常数(折射率)的材料按照某种空间有序排列的的其周期可与光波长相比的人工微结构。介电函数的周期性变化能够调制材料中光子的状态模式,使光子带隙出现,当光的频率位于光子带隙范围内,它将不能在光子晶体中的任何方向传播。因此,光子晶体也常称为光子带隙材料(Phtonic Band Gap Materials )。光子晶体将成为光电集成、光子集成、光通讯的关键性基础材料,所以光子晶体又成为“光学半导体”。它广阔的应用前景使光子晶体成为当今世界范围的

一个研究热点,得到了迅速的发展。

硅材料是现代集成电路工业的基础性材

料,是人类制备工艺最成熟、研究最深入、

了解最清楚的材料之一。硅的折射率 较高

(在波长为1.1μm 时n=3.53),满足完全

光子带隙的光子晶体的要求,且硅对通信领

域所采用的两个波长1.3μm 和1.55μm 来说

是透明的,所以硅材料是制备光子晶体的良

好材料。近几年硅基光电集成取得了一些突

破,研究硅基光子晶体,将大大促进硅基光电集成,全光集成技术的发展。 本研究方向着重研究硅基光子晶体和二氧化硅蛋白石光子晶体的制备和性质,研究

采用自组装方法获得的蛋白石胶体晶体为模板,制备硅的反蛋白石结构,理论计算表明三维周期结构只具有赝光子带隙,这种由数百纳米的单分散二氧化硅小球自组装面心密排堆积而成的反蛋白石结构具有完全的光子带隙。

光子晶体的广阔的应用前景使其

成为当今世界范围的一个研究热点

铸造多晶硅及其他光电转换材

现代工业的发展,一方面加大对能源的需

求,引发能源危机;另一方面在常规能源的使用

中释放出大量的二氧化碳气体,导致全球性的

“温室效应”。为此各国力图摆脱对常规能源的

依赖,加速发展可再生能源。作为最理想的可再

生能源,太阳能具有“取之不尽,用之不竭”的

特点,而利用太阳能发电具有环保等优点,而且

不必考虑其安全性问题。所以在发达国家得到了

高度重视,欧洲联盟国家计划在2010年太阳

能光电转换的电力占所有总电力的1.5%,美国

启动了“百万屋顶”计划。在能源短缺,环境保护问题日益严重的我国,低成本高效率地利用太阳能尤为重要。

太阳能电池就是利用光伏效应将太阳能直接转换为电能的一种装置。常规太阳电池简单装置如图1所示。当N型和P型两种不同型号的半导体材料接触后,由于扩散和漂移作用,在界面处形成由P型指向N型的内建电场。当光照在太阳电池的表面后,能量大于禁带宽度的光子便激发出电子和空穴对,这些非平衡的少数载流子在内电场的作用下分离开,在电池的上下两极累积,这样电池便可以给外界负载提供电流。

从本世纪70年代中期开始了地面用太阳电池商品化以来,晶体硅就作为基本的电池材料占据着统治地位,而且可以确信这种状况在今后20年中不会发生根本的转变。以晶体硅材料制备的太阳能电池主要包括:单晶硅太阳电池,铸造多晶硅太阳能电池,非晶硅太阳能电池和薄膜晶体硅电池。单晶硅电池具有电池转换效率高,稳定性好,但是成本较高;非晶硅太阳电池则具有生产效率高,成本低廉,但是转换效率较低,而且效率衰减得比较厉害;铸造多晶硅太阳能电池则具有稳定得转换的效率,而且性能价格比最高;薄膜晶体硅太阳能电池则现在还只能处在研发阶段。目前,铸造多晶硅太阳能电池已经取代直拉单晶硅成为最主要的光伏材料。但是铸造多晶硅太阳能电池的转换效率略低于直拉单晶硅太阳能电池,材料中的各种缺陷,如晶界、位错、微缺陷,和材料中的杂质碳和氧,以及工艺过程中玷污的过渡族金属被认为是电池转换效率较低的关键原因,因此关于铸造多晶硅中缺陷和杂质规律的研究,以及工艺中采用合适的吸杂,钝化工艺是进一步提高铸造多晶硅电池的关键。另外,寻找适合铸造多晶硅表面织构化的湿化学腐蚀方法也是目前低成本制备高效率电池的重要工艺。

从固体物理学上讲,硅材料并不是最理想的光伏材料,这主要是因为硅是间接能带半导体材料,其光吸收系数较低,所以研究其他光伏材料成为一种趋势。其中,碲化镉(CdTe)和铜铟硒(CuInSe2)被认识是两种非常有前途的光伏材料,而且目前已经取得一定的进展,但是距离大规模生产,并与晶体硅太阳电池抗衡需要大量的工作去做。

本实验室该研究方向主要集中在对太阳能用直拉硅单晶和铸造多晶硅中杂

质和缺陷规律的研究,表面绒面的制备和性质, SiNx减反射和钝化膜的制备,以及碲化镉(CdTe)和铜铟硒(CuInSe2)等化合物太阳能电池材料的制备。

一维纳米半导体材料的研究

纳米材料特别是纳米半导体材料研究是目前材料学研究的一个热点,被公认为是21世纪最有前途的学科之一。欧盟委员会最近的调查认为纳米技术在10年后有可能成为仅次于计算机芯片制造的第二大制造业,科学家们认为,纳米技术的深远意义可与18世纪的工业革命相媲美。如果说微电子技术推动了信息技术的高度发展,那么纳米光电子技术将在信息时代的下一阶段占据中心地位,并将发挥革命性的作用。而在半导体材料中,半导体硅是一种非常重要的微电子材料,由于它的光电性能已经在微电子器件各个方面有了广泛的应用,对于它的研究也已经广泛而深刻。但是当硅的尺寸到了纳米级以后,由于量子限域效应、尺寸效应等作用,使它在光电方面、机械方面表现出与常规硅材料不同的优异性能。因此一维纳米硅材料以及其它一维纳米半导体材料将在场发射、扫描电镜探头、发光器件、单电子晶体管、可转换电池电极、以及MOS器件等领域中发挥重要作用。

我们采用低温气相沉积法、电化学和化学方法研究和制备一维纳米半导体材料,我们在高温高压条件下或运用阵列化氧化铝模板作为衬底,生长出符合半导体器件要求的阵列化可控纳米硅丝(硅管)以及CdS, ZnO, SiO2等其它一维纳米丝,其长度、直径和生长方向可以简单的调节。同时,研究一维纳米半导体材料的生长机理、Raman 位移、PL光谱等性能。对于它们的结晶性能的改善、掺杂、I-V特性、光波导、以及P-N结二极管特性方面也进行了一定的研究和探讨。我们所需要的测试仪器包括:TEM、SEM、FESEM、AFM、STM、XPS、Raman Spectrum、PL、XRD、EDX、I-V测试仪等等。

超大规模集成电路用硅单晶材料的制备和缺陷工程

人类经历了石器时代,铜器时代和铁器时代,在本世纪的六十年代进入了硅时代。在硅材料基础上微电子工业的崛起,对本世纪世界经济和科技的高速发展起了决定性的作用。在人类跨入21世纪的时候,超大规模集成电路的发展依旧很快,并仍然按照摩尔(Moore)定律发展,目前,国际微电子工业已进入深亚微米时代,主流硅晶片的直径是200毫米,特征线宽是0.18微米,生产着256M 的DRAM。微电子已成为国民经济的支柱产业,在国家经济、国防和科技的现代化上起着举足轻重的作用。

毫无疑问,硅材料是微电子的基础材料,在过去的四十年,硅材料的发展直接促进了集成电路和整个微电子产业的进步。国际半导体材料专家们共同认为,在本世纪前20-50年,硅材料作为微电子的基础材料是不会改变的。在经济和技术发展的推动下,超大规模集成电路将“更快、更好、更便宜”,技术特征上将出现“硅片直径更大,特征线宽更小”。深亚微米集成电路的超速发展对硅材料的科学研究和技术进步提出了新的挑战,它要求硅单晶材料“大直径、无缺陷”。

集成电路和硅单晶材料的大直径化的根本动力在

于经济成本,国际市场竞争激烈,虽然从200毫米到

300毫米的转变,整个工业界需要花费150-500亿美圆,

但直径的增加,可以使每一硅片上的芯片数增加2.5

倍,整体成本可以降低20-30%,因此,硅单晶材料的

大直径研制和发展是必然的。

随着线宽的变小,在早期不成严重问题的微缺陷问题

更加突现,如200毫米硅材料中出现的void微缺陷的

尺寸在100纳米左右,对集成电路已形成致命的影响。

实际上,当单个缺陷的尺寸达到最小特征线宽的二分

之一或三分之一时,将导致线路的失效。因此,硅材

料的发展,在今后20年中,其技术特征是大直径化,

其关键的问题则是:晶体的完整性。这完整性包括三

方面,一是晶体生长中体材料的晶格完整,无缺陷。

二是晶体加工过程中表面的完整性。三是器件制造过

程中,器件有源区的晶格完整性。

本实验室从50年代初就开始半导体硅材料研究,

至今已取得了一系列重要成果。在硅单晶生长技术,探测器级高纯硅单晶,硅单晶中碳、氧的控制,以及硅单晶的电学测量等方面取得过重大成果,在国际上首创了减压充氮硅单晶生长技术获得国家发明二等奖l项,三等奖2项,省部级科技进步奖十余项。

本研究方向主要研究8-12英寸超大规模集成电路用硅单晶的制备、加工和缺陷工程。揭示8-12英寸超(特)大规模硅集成电路(ULSI)用硅材料中轻元

素杂质和缺陷性质以及相互作用规律,它们在热处理工艺中的演变,和对材料电学和力学性能的作用。利用缺陷工程,减少或消除对超(特)大规模硅集成电路(ULSI)用硅材料的缺陷,提高和优化材料性能,为超(特)大规模硅集成电路(ULSI)的设计和制备提供理论依据和优质硅材料。

2016年硅光子领域新进展及发展趋势

2016年硅光子领域新进展及发展趋势 硅光子技术是基于硅材料,利用现有CMOS工艺进行光器件的开发和集成的新一代技术,在光通信,数据中心,超级计算以及生物,国防,AR/VR技术,智能汽车与无人机等许多领域将扮演极其关键的角色。美欧等国在硅光子领域已经有十多年的投入和积累,并业已形成了产业优势。Light Counting的测,仅硅光子在光通信领域的产品市场五年内就将达到10亿美元以上。未来一二十年内,硅光子技术的市场更将远远超过这一数字。有专家认为,现在市场上虽然硅光子的商用产品还不多,但是很可能厂商只是在等待别人先发布或是在评估不同的技术。现在只是爆发前的静默期。以下为2016年以来,硅光子领域的一些进展情况:1、Ciena收购Tera Xion磷化铟和硅光子资产 2016年1月,Ciena公司和私有企业Tera Xion表示双方已经达成了一项协议,即Ciena将收购这家加拿大公司的高速电子元器件(High-Speed Photonics Components,HSPC)资产。Ciena 将支付大约4660万加元(约3200万美元)收购以下资产,包括磷化铟和硅光子技术以及潜在的知识产权(IP)。 Tera Xion在光网络市场最初是以其可调色散补偿器闻名。2013年,Tera Xion通过收购COGO Optronics的调制器资产跨足相干接收机和调制器领域。在该领域,Tera Xion开发出400Gbps 应用的磷化铟调制器。Tera Xion还开始发展硅光子;在ECOC2015展会上,该公司发表了一篇论文,表示它正在开发一款基于硅光子的针对PAM4传输的调制器。 对于这些模块,Ciena未透露是否有所规划。Ciena发言人Nicole Anderson在回复Lightwave 的一封邮件咨询时表示:“对于如何应用我们收购的这些资产,目前还没有细节。简单来说,这是一次战略性收购,是为了更好的掌控我们的WaveLogic芯片组,增强我们在调制格式能力方面的灵活性,以便公司继续展示从数据中心互连到跨太平洋海底链接等全方位应用方面的领先的性价比。” 与此同时,TeraXion总裁兼CEO Alain-Jacques Simard表示,出售HSPC资产只是让公司变回一家在色散补偿和各种滤波技术方面的专业公司。公司还将在光纤激光器和光传感应用方面保持活跃。 2、NeoPhotonics推出硅光子QSFP28光模块激光器 光学组件和模块供应商NeoPotonics宣布,推出了基于硅光子QSFP28组件的1310纳米和1550纳米大功率激光器以及激光器阵列。 NeoPotonics表示,该非制冷激光器和阵列将应用于数据中心光收发器。包括基于各种多源协议(MSAs)的光模块,例如CWDM4、CLR4以及PSM-4等。每种多源协议(MSAs)都需要磷化铟DFB激光器的支持。 该激光器支持的功率为40mW至60mW,温度范围也较广。 NeoPotonics表示已经与全球服务器和存储端到端连接解决方案的领先供应商Mellanox Technologies合作,共同开发能通过倒装芯片技术粘合至Mellanox公司光学引擎的激光器阵列。最终研发出了一款高容量、低成本电子式100G PSM4光模块组件。 3、Mellanox发布首个200Gb/s硅光子设备 世界领先的高性能计算、数据中心端到端互连方案提供商Mellanox在OFC 2016(美国光纤通讯展览会)上展示了全新的50Gb/s硅光子调制器和探测器。它们是Mellanox LinkX系列200Gb/s和400Gb/s电缆和收发器中的关键组件。本次展示的突破性成果对于InfiniBand和以太网互连基础设施具有里程碑意义,让端到端的HDR 200Gb/s解决方案成为可能。Mellanox公司商务拓展和互连产品部执行副总裁Amir Prescher表示:“硅光子技术是200Gb/s InfiniBand和以太网网络的使能技术。QSFP56模块可将下一代交换机的前置面板密度提升一

SOI光波导器件研究进展及应用

SOI光波导器件前沿研究 光电信息学院 赵正松 2011059050025摘要:SOI(Silicon-on-insulator绝缘衬底上的硅)是一种折射率差大、波导传输损耗小的新型材料,SOI基光电子器件具有与微电子工艺兼容、能够实现OEIC单片集成等优点,近年来随着SOI晶片制备技术的成熟,SOI 基波导光波导器件的研究日益受到人们的重视.介绍了弯曲波导、光耦合器、可 调谐光衰减器、光调制器和光开关等常见的SOI基光波导器件的一些研究进 展。 引言:光纤通讯网络中,波分复用(WDM)是提高传输速率和扩大通讯容量的理想途径:通过在单根光纤中多个波长的复用,可以充分利用光纤巨大的带宽资源,实现不同数据格式信息的大容量并行传输,同时又可降低对器件的超高速要求。 在WDM网络中,网际间交叉互联(OXC)光信号上下载路(OADM),以及波长变换等关键技术的实现使得WDM 网络具有高度的组网灵活性、经济性和可靠性。 在WDM光网络中,网际OXC和节点OADM功能是最核心的技术,光滤波器、光耦合器、光开关、可变光衰减器、波长变换器、复用与解复用器等是最关键的器件[1].在基于各种材料的光波导器件中,硅基光波导器件格外引人注目。 硅基光波导材料有SOI絶缘体上的硅)、SiO2/Si和SiGe/Si等多种.硅基光波 导的优势在于:硅片尺寸大、质量高、价格低;硅基光波导材料具有较大的折射率差,便于缩小器件尺寸和实现平面光波回路(PLC单片集成;电学性能好,易于控制, 具备光电混合集成的潜力;机械性能好,加工方便,可以光刻腐蚀成各种三维光波导结构;硅的热导性和热稳定性好,可以直接用作集成芯片的热沉,器件封装结构简单.最重要的是硅的加工工艺与传统微电子工艺兼容,适合低成本制作硅基光电子集成(OEIC芯片。 本文主要研究的SOI硅基光波导材料全名为Silicon On Insulator是指硅晶体管结构在绝缘体之上的意思,原理就是在Silicon (硅)晶体管之间,加入绝缘体物

常见发光材料

一.常见发光种类 光致发光 灯用材料 日光灯,节能灯,黑光灯,高压汞灯,低压汞灯,LED转换组合白光 长余辉材料 放射性永久发光,超长余辉,长余辉 紫外发光材料 长波3650发光,短波2537发光,真空紫外发光,量子点发光…… 红外线发光材料 上转换发光,红外释光,热释发光, 多光子材料 荧光染料\颜料 稀土荧光,有机荧光 电致发光 高场发光 直流粉末DCEL,交流粉末ACEL,薄膜发光,厚膜发光,有机发光 低场发光 发光二极管(LED),有机发光(OEL-OLED),硅基发光,半导体激光 阴极射线发光 彩色电视发光材料 黑白电视发光材料 像素管材料 低压荧光材料 超短余辉材料 放射线发光 α射线发光材料,β射线发光材料,γ射线发光材料,氚放射发光材料,闪烁晶体材料 X射线发光 X存储发光材料 X增感发光材料 CT扫描发光材料 摩擦发光 单晶发光,微晶发光 化学发光 有机化合物发光(荧光染料) 液体发光 有机稀土发光 生物发光 酶发光,有机发光, 反射发光(几何光学) 光学镀膜反射材料,玻璃微珠反射材料 二.常见发光材料成份 物质发光过程有激励、能量传输和发光三个过程。激励方式主要有电子束激发,光激发和电场激发。电子束激发有阴极射线(CRT)发光材料,真空荧光(VFD)材料,场发射(FED)显示材料;光激发有荧光灯用发光材料,等离子显示(PDP)发光材料,X射线激发光材料等;电场激发有电致发光(EL)材料,发光二极管(LED)材料。 1 .阴极射线(CRT)稀土发光材料

表1 阴极射线稀土发光材料 组份发光色余辉用途 Y2O2S:Eu3+ 红 M 彩电,终端显示 Y2O2S:Eu3+ 红 M 投影电视 Y3(Al,Ga)5O12:Tb3+ 绿 M 投影电视 Y2SiO5:Tb3+ 绿 M 投影电视 InBO3:Tb3+ 绿 M 终端显示 InBO3:Eu3+ 红 M 终端显示 Y2SiO5:Ce3+ 415nm S 束电子引示管 (Beam index tube) Y3Al3Ga2O12:Ce3+ 520nm S 束电子引示管 (Beam index tube) YAlO3:Ce3+ 370nm S 束电子引示管 (Beam index tube) Y3Al5O12:Ce3+ 535nm S 飞点扫描管 2 .真空荧光显示(VFD)稀土发光材料 VFD用稀土发光材料较少,效率也不高,如SnO2:Eu3+, Y2O2S:Eu3+,很少使用。 3. 场发射显示(FED)稀土发光材料 FED是有可能与PDP和LCD相竞争的平板显示,它的画面质量和分辨率优于CRT,响应速度(寻址时间)非常快,而功耗仅是LCD的1/3,其应用前景令人关注。FED稀土发光材料如表2所示。 表2 FED稀土发光材料 组成颜色发光效率 SrTiO3:Pr 红 0.4 Y2O3:Eu 红 0.7 Y2O2S:Eu 红 0.57 Y3(Al,Ga)5O12:Tb 绿 0.7 Y2SiO5:Tb 绿 1.1 SrGa2S4:Eu[1] 绿 4.0 ZnS:Cu,Al 绿 2.6 Y2SiO5:Ce 兰 0.4 SrGa2S4:Ce[1] 兰 1.5 ZnS:Ag,Cl 兰 0.75 4 .灯用稀土发光材料 使用稀土三基色荧光粉的节能灯流明效率高,显色性好,是欧美、日和我国大力推广的绿色照明。灯用稀土发光材料如表3所示。 表3 灯用稀土发光材料 组成颜色用途 Y2O3:Eu 红节能灯 Y(V,P)O4:Eu 红高压汞灯 MgAl11O19:Ce,Tb 绿节能灯 LaPO4:Ce,Tb 绿节能灯 GdMgB5O10:Ce,Tb 绿节能灯 BaMgAl10O17:Eu,Mn 兰绿节能灯

光电器件研究进展和发展趋势

光电器件研究进展和发展趋势 原荣信息产业部电子第三十四研究所研究员 摘要:建设光纤接入网和DWDM系统离不开各种光学材料和器件,诸如光纤和光缆、连接器和耦合器、光发射/接收器、光波分复用/解复用器、光滤波器、光放大器、光开关以及光分插复用器等。本文就光纤通信系统用到的光电器件的研究进展和发展趋势作一个简要介绍。 一、光有源器件 1.1 可调谐激光器 可调谐激光器是实现宽带测试、WDM和光纤放大器泵浦的最重要的器件,近年制成的单频激光器都用多量子阱(MQW)结构、分布反馈(DFB)式或分布布喇格反射(DBR)式结构,有些能在80nm范围内调谐。在半导体激光器后面加上一个光纤布喇格光栅,可使波长稳定,如美国E-TEK研制的980nm泵浦激光器,输出光功率达220mW,又如法国alcatel Optronics公司研制的1480nm泵浦激光器,不但在半导体激光器后面加了一个光纤布喇格光栅,而且尾纤采用保偏光纤,既使波长稳定,又使功率也稳定。美国MPB公司推出的EBS-4022宽带光源,其输出功率达22dBm,在C波段40nm的带宽上,其平坦度≤1dB。美国Santec公司推出的TSL-220可调谐激光器,为保证pm数量级的波长精度,内置一个波长监测器;为去除ASE啐噪声,还内置一个可调谐滤波器,可调谐范围竟达80nm。 1.2光放大器 目前广泛使用的是光纤放大器,它有掺铒和掺氟2种,其单泵浦的增益典型值为17dB,双泵浦的增益典型值为35dB,噪声系数一般为5~7dB,带宽为30nm,在带宽内的增益偏差为1dB。在氟基光纤上掺镨就可制作出掺镨光纤放大器(PDFFA),可应用于工作在1.3mm波段上的G.652光纤。 半导体激光放大器(SLA)芯片具有高达30~35dB的增益,除输入和输出端存在总共8~10dB 的耦合损耗外,还有22~25dB的增益,另外行波半导体激光器具有很宽的带宽,可以对窄至几个ps的超窄光脉冲进行放大。SLA的另一个重要优点是它可与光发射机和接收机一起被单片集成在一起。欧洲ACTS KEOPS计划资助的全光分组交换系统采用的全光分组交换节点,在输入输出接口、光交换矩阵中都使用了半导体光放大器,在ns量级范围内实现了光门电路波长选择和波长转换器件的功能。 1.2.3 光纤喇曼放大器 当强激光通过光纤时,将产生受激喇曼散射(SRS)。光纤喇曼放大器(FRA)就是利用强泵浦光束通过光纤传输产生的受激喇曼散射。光纤喇曼放大器可覆盖的光谱范围宽,比泵浦光波长大约长100nm的波长区均可获得最大的增益,目前增益带宽已达132nm。这样通过选择泵浦光波长,就可实现任意波长的光放大,所以喇曼放大器是目前唯一能实现1290~1660nm光谱放大的器件。另外,它适用于任何种类的光纤。 光纤喇曼放大器由于其自身固有的全波段可放大的特性和可利用传输光纤做在线放大的优点,1999年已成功地应用于DWDM系统中。使用分布光纤喇曼放大器,可以增大传输距离,提高传输比特率,另外还允许通过加密信道间隔,提高光纤传输的复用程度和传输容量。传输跨距的延伸,有时可免除在两地之间安装昂贵的3R中继器,特别是在大陆和海岛、海岛和海岛间的海缆通信中,具有特别的意义。富士通在211×10Gb/s的DWDM系统中,使无中继传输距离从50km增加到80km,使系统传输距离达到7200km。朗讯和阿尔卡特也有类似的实验。阿尔卡特报道已将32×40Gb/s的无中继DWDM系统的传输距离延伸到250km。 1.3 光纤激光器

硅基光电器件研究进展

半导体技术 Semiconductor Technology 1999年 第1期 No.1 1999 硅基光电器件研究进展 郭宝增 摘要 在信息处理和通信技术中,光电子器件起着越来越重要的作用。然而,因为硅是间接带隙半导体,试图把光电子器件集成在硅微电子集成电路上却遇到很大困难。为解决这一困难,人们发展了多种与硅微电子集成电路兼容的光电子器件制造技术。本文介绍最近几年这方面技术的发展情况。 关键词 多孔硅 光电子器件 硅集成电路 Research Development of Silicon-Based Optoelectronic Devices Guo Baozeng (Department of Electronic & Informational Hebei University,Baoding 071002) Abstract Silicon-based optoelectronic devices are increasingly important in information and communication technologies.But attempts to integrate photonics with silicon-based microelectronics are hampered by the fact that silicon has an indirect band gap,which prevents efficient electron-photon energy conversion.In order to solve this problem,many technologies to make optoelectronic devices which can be compatible with conventional silicon technology have been developed.In this article,we review the deve-lopment of these thchnologies. Keywords Porous silicon Optoelectronic devices Silicon integrated circuit 1 引 言 硅是微电子器件制造中应用得最广泛的半导体材料。硅集成电路的应用改变了当代世界的面貌,也改变了人们的生活方式。但是,一般硅集成电路只限于处理电信号,对光信号的处理显得无能为力。然而,光电器件的应用却是非常广泛的,光纤通信、光存储、激光打印机及显示设备都 要用到各种光电器件。从更广的意义上说,我们所处的世界实际上是一个光的世界。据心理学家分析,人们通过眼睛所接收的信息占总接收信息量的83%,即人们接收的信息83%是光信号。因此可以想象,在未来信息化社会里,对光电子器件的需求决不亚于对微电子器件的需求。目前采用的光电子器件,主要是Ⅲ-Ⅴ族材料,这些器件与广泛使用的硅技术不兼容,而且制造成本高,因

探析硅光学技术的原理、种类及优势

探析硅光学技术的原理、种类及优势 当互联网流量在用户和数据中心之间传递时,越来越多数据通信发生在数据中心,让现有数据中心交换互联变得更加困难,成本越来越高,由此技术创新变得十分重要与紧迫。 现在有一种半导体技术——硅光子,具有市场出货量与成本成反比的优势,相比传统的光子技术,硅光器件可以满足数据中心对更低成本、更高集成、更多嵌入式功能、更高互联密度、更低功耗和可靠性的依赖。 微电子技术按照“摩尔定律”飞速发展已有五十几年了,但随着器件的特征尺寸减小到十几个纳米以下,微电子产业能否再依照“摩尔定律”前进已面临挑战。器件的速度、功耗和散热已经成为制约微电子技术发展的瓶颈。另一方面,基于计算机与通信网络化的信息技术也希望其功能器件和系统具有更快的处理速度、更大的数据存储容量和更高的传输速率。仅仅利用电子作为信息载体的硅集成电路技术已经难以满足上述要求。因此,应用“硅基光电子技术”,将微电子和光电子在硅基平台上结合起来,充分发挥微电子先进成熟的工艺技术,大规模集成带来的低廉价格,以及光子器件与系统所特有的极高带宽、超快传输速率、高抗干扰性等优势,已经成为了信息技术发展的必然和业界的普遍共识。 什么是硅光技术? 硅光子是一种基于硅光子学的低成本、高速的光通信技术,用激光束代替电子信号传输数据,她是将光学与电子元件组合至一个独立的微芯片中以提升路由器和交换机线卡之间芯片与芯片之间的连接速度。 硅光子技术是基于硅和硅基衬底材料(如SiGe/Si、SOI 等),利用现有CMOS 工艺进行光器件开发和集成的新一代技术,结合了集成电路技术的超大规模、超高精度制造的特性和光子技术超高速率、超低功耗的优势,是应对摩尔定律失效的颠覆性技术。这种组合得力于半导体晶圆制造的可扩展性,因而能够降低成本。 硅光子架构主要由硅基激光器、硅基光电集成芯片、主动光学组件和光纤封装完成,使用

硅基光电子技术在大数据时代的机遇与挑战(周治平)

Silicon Photonics: Challenge and Opportunity in Big Data Era 周治平.北京大学 Zhiping Zhou Peking University, China zjzhou@https://www.doczj.com/doc/343915036.html, CIOEC, Sept. 2, 2015 Shenzhen, China

Silicon Photonics Edited by Zhiping Zhou

Outline ?Interconnect and the emerging silicon photonics ?Current silicon photonics interconnect ?Difficulties and challenges ?Conclusions

Applications push the growth of data centers Source: Intel IDF14 Scalability: both quantity and continuous improvement of device performance

Today’s interconnects in data centers Rack to rack: optical (VCSEL-based) In-rack: imminent transformation to optical solution Source: M Paniccia, Presentation at Purdue University (2007).

硅基发光材料与光互连的基础研究

硅基发光材料与光互连的基础研究 ★项目简介: 建立在硅材料基础之上的微电子技术对人类社会的进步发挥了巨大的作用,对我国国民经济的发展,工业、科技和国防的现代化也起着至关重要的作用。在进入21世纪以后,我国正大力发展微电子工业,有望成为新兴的国际微电子工业基地,是国家发展的重大需求所在。随着信息产业的发展,信息数据将海量增加,对信息计算、传输等技术在今后的发展也提出了更高的要求和挑战。其主要的解决途径之一就是将现有成熟的微电子和光电子结合,实现硅基光电集成,这将成为信息产业发展的重要方向之一。近十年来,由于重大的工业意义,硅基光电集成关键材料和器件的研究引起了国际科学界(如美国MIT、哈佛大学)和工业界(如Intel,ST)的严重关注,仅Intel公司对硅基光电子的研发就投入数十亿美元巨资。一旦突破,不仅可以实现芯片光互连、光电集成以及将来的光计算,而且在光通讯、光显示等领域具有重大的潜在应用前景,对我国的信息产业的发展具有重大意义。本项目的主要目标是:探索硅基发光和光互连的新材料、新原理和新器件。采用能带工程、缺陷工程等途径,对硅基发光材料进行人工改性,发展新的硅基发光材料;提高硅基电致发光效率,实现硅基电泵激光。研究硅基微纳尺度下光的传输与控制,解决硅基芯片光互连和光电集成的关键问题。为我国硅基光电子产业的发展提供坚实的理论基础和技术、人才贮备,促进高速、大容量计算机技术的重大突破。本项目拟解决的关键科学问题是:(1)硅基高效率发光微结构体系的构建原理、可控制备和表征,以及硅基发光材料表面、界面结构的调控。(2)硅基发光材料的载流子注入、输运与复合过程,硅基电致发光的内、外量子效率增强和电泵激光的机制。 (3)微纳尺度下,硅基光波导中的光传输和控制,硅基光互连和单片集成中的光电融合。围绕科学问题,我们研究(1)硅基纳米材料的发光原理和技术,(2)硅基化合物半导体材料的发光原理及技术,(3)硅基材料杂质和缺陷的发光原理和技术,(4)硅基SiGe量子阱材料的发光原理和技术,(5)硅基光电子光互连和光电集成的关键原理和工艺。针对上述主要研究内容,为解决关键科学问题,我们设立五个课题,分别为:(1)硅基纳米材料的构建、调控及发光原型器件,(2)纳米化合物半导体/硅异质结构发光材料及原型器件,(3)基于缺陷工程的硅基发光材料及原型器件,(4)基于能带工程的硅基发光材料及光电子原型器件,(5)硅基微纳光波导传输与单片光电集成技术。前四个课题是通过不同的技术途径研究硅基发光来解决硅基光源问题,重点放在硅基纳米硅、硅基铒离子注入和硅基纳米硫化镉/硒化镉化合物异质结这三种材料体系中实现光放大和光增益。在此基础上,结合实际的器件或集成工艺,形成电致发光器件,并力争实现真正的硅基电致激光。而在实现硅基发光的基础上,最后一个课题则研究硅基光互连和光电集成。我们充分发挥人员交叉、学科交叉和单位交叉的优势,由国内硅基光电子研究的主要优势单位承担本课题。 项目由浙江大学牵头、中科院半导体所、北京大学、南京大学、南开大学和厦门大学参加,研究队伍包括了固体微结构国家实验室(筹)和集成光电子学、人工微结构与介观物理和硅材料三个国家重点实验室中研究硅基发光的几乎所有骨干力量,课题组成员包括2位中科院院士、3位国家杰出青年基金获得者和一批优秀的中青年学术骨干。在过去5年中,这一团队在本领域获得包括2项国家自然科学二等奖在内的一批科研成果,承担和完成了20多项相关的科研项目。本项目的完成不仅会提高我国硅基光电子材料的整体研究水平、跻身于国际研发的先进行列,还将培养一批优秀的中青年学术带头人,为我国新一代光电集成、计算机等的工业应用和发展提供理论基础和技术、人才储备。 ★项目专家组: 姓名单位 杨德仁浙江大学 徐骏南京大学 江晓清浙江大学 俞育德中国科学院半导体研究所 秦国刚北京大学

硅基发光材料简述

硅基发光材料简述 摘要:本文简要描述了三种硅基发光材料:掺铒硅、多孔硅、纳米晶硅的发光特性、优缺点和应用前景。从而对这些硅基发光材料有所了解并对其可能的研究方向进行初步的了解。 关键词掺铒硅多孔硅纳米硅晶光学特性 一、前言 硅材料在半导体工业中有着不可替代的作用,硅在地球上储量丰富,硅基器件制造成本低廉、环境友好且制造工艺非常成熟,是迄今最适合于集成工艺的材料。然而,由于体硅为间接带隙材料其发光效率低下,故而被认为不是良好的光电子材料,不适宜应用于光电子领域。然而相较于在光电子领域站优势地位的化合物半导体材料,硅基光电子材料又有着成本低廉、易于实现光电集成等优点,且随着对硅材料的进一步深入研究,人们又发现了硅基发光的一些新特性,因而近年来对于硅基发光材料的研究受到越来越多的关注。本文将回顾硅基发光的研究历史,并归纳几种硅基发光材料的性质和特点,以期能对硅基发光材料有着更好地理解并对硅基发光材料未来的研究方向有所了解。 二、实现硅基发光的几种方法 由于硅单晶并不是一种很好的光电子材料,因此虽然经过各种技术上的改进,体硅发光二极管发光效率已可达到1%,但体硅发光并不是硅基发光的主要研究方向。目前,对硅基发光的努力方向主要有如下几个方面: 1 通过杂质或利用缺陷处复合放光; 2 通过合金或分子调节发射波的波长; 3利用量子限制效应或能带工程,通过增加电子-空穴复合的几率来增加发光效率; 4采用硅基混合的方法将其他直接带隙材料与硅相结合; 下面本文将简要介绍几种硅基发光材料。 2.1 掺铒硅的发光 对于间接带隙半导体材料,可以通过引入杂质的方法使电子或空穴局域化,形成复合中心,提高复合率,达到发光效率增加的目的。目前,硅中稀土杂质(特别是铒)的掺杂被认为是这种手段中最具有应用前景的一种手段。 稀土元素铒4f壳层中的正三价态离子的分离态具有具有类似于原子跃迁(I l3/2→l5/2)的辐 射发光特性,可发射波长1.54μm的光,对应着石英光纤的最低损耗波长区域,因而掺铒硅 发光在硅基光通讯中有着重大的潜在应用前景。掺铒硅的发光独立于体硅发光,是典型的第

光通信硅光子学

会 员 委 班 金 习 基 讲 学 理 科 物 然 验 自 实 家 部 国 学 理 数
硅基光子学的新进展
Recent Progresses of Si-Based Photonics SiSi-Based
Three Major Inventions in Optics
Laser Laser Low-loss Optical Fiber Low-loss Optical Fiber Semiconductor photonic Devices Semiconductor photonic Devices
余 金 中
Jinzhong YU
Three “T” of Information Society “T” 信息社会中的三“T” 信息社会中的三“T”
中国科学院半导体研究所
Institute of Semiconductors, Chinese Academy of Sciences P. O. Box 912, Beijing 100083, CHINA E-mail: jzyu@https://www.doczj.com/doc/343915036.html,
12 “T”: tera (1012 ) 1. Calculation rate of computer 计算机计算速度 1T bit/sec. 2. Transmission rate of optical fiber communication 光纤通信传输速度 1T bit/sec. 3. Recordation density of optical disc 2 光盘记录密度 1T bit/inch2
2006-7-26
4
OUTLINE
Moore’s Law Moore’s
Itanium? 2 Processor Itanium? 2 Processor Itanium?
1. Introduction 2. Si-based light emitter
Microprocessor transistor count
Source: Intel Source: Intel
1,000,000,000 1,000,000,000
a. Stimulated emission from Si nanostructure b. CW Raman Si Laser a. SiGe/Si MQW RCE photodetector b. SOI-based InGaAs photodetector a. Optical modulator b. Optical filter c. Optical switch
100,000,000 100,000,000 10,000,000 10,000,000
3. Si-based photodetector
Pentium? III Processor Pentium? III Processor Pentium?
Pentium? 4 Pentium? 4 Pentium? Processor Processor
Pentium? Processor Pentium? Processor Pentium?
Pentium? II Processor Pentium? II Processor Pentium?
386? Processor 386? Processor 386?
486? DX Processor 486? DX Processor 486?
1,000,000 1,000,000 100,000 100,000 10,000 10,000 1,000 1,000
4. SOI optical wave guiding devices
8086 8086
286 286
4004 4004
8080 8080
8008 8008
5. Summary
1970 1970
1980 1980
1990 1990
2000 2000
2010 2010
2006-7-26
2
2006-7-26
nd ~ 1 Billion transistors by 2nd half of decade
5
光子学
Tree Feature Sizes of Moore’s Law Moore’s
从物理学的角度看,光子学是研究光子的产生和运动特 性、光子同物质的相互作用及其应用的一门前沿学科。 从工程技术的角度看,光子学是研究作为信息和能量载体 所赋予的特性、运动行为及其应用的一门工程技术。
信息光子学
固体光子学
在信息领域,将光子看作信息载体,研究光子的产生和运 动特性,这种专门研究光子的信息功能和应用的新型科学 便是信息光子学。 专门以固体材料为介质,研究光子载体在固体介质中的产 生、运动、控制、操作,研究光子同固体物质的相互作用 及其应用,这种专门研究固体中的光子性能的新型科学便 是固体光子学。
半导体光子学:以半导体材料为介质的光子学。研 究半导体中光的产生、传输、控制和探测特性。
2006-7-26
3
2006-7-26
6
1

硅基光波导结构与器件 - 中国科学院半导体研究所机构知识

Ξ硅基光波导结构与器件 刘育梁 王启明 (中国科学院半导体研究所集成光电子学国家重点联合实验室,北京,100083) 摘要 简要评述硅基光波导的结构、工艺及其器件,包括低损耗的硅基光波导、电光波导器件、红外波导探测器、氧化硅光波回路等. 关键词 硅,光波导. 引言 硅是微电子学领域最重要的半导体材料,其工艺技术和集成电路技术得到了高度发展.将硅从微电子学领域拓展到光电子学领域,发展集电子学功能和光子学功能于一体的硅基光电子器件与回路已成为一个重要的发展趋势,吸引了越来越多的科学家和工程技术人员,并取得了一定的进展.其主要标志为:(1)SiGe Si 超晶格和多孔硅的高效光发射现象的发现和研究表明了硅基材料中确定存在着可用于实际器件制作的高效发光机制;(2)可见光范围的硅雪崩光电探测器早已投入实际应用.可望用于113Λm 光通信系统的SiGe Si 多量子阱光波导探测器也已在实验室研究成功,并开始了探测器阵列的研究;(3)硅基无源光波导器件的研究卓有成效,取得了许多实际成果.其中最重要的,一是80年代以来提出的各种结构的硅基光波导的传输损耗几乎都已降至1dB c m ,制作这些光波导大都采用常规的微电子加工工艺,这为进一步研制各种功能器件奠定了坚实的基础;二是硅上二氧化硅光波导器件与回路已逐渐推向市场. 硅基光波导器件的这种发展趋势明显地反映在重要的国际光电子期刊中,80年代中期很少看到这方面的研究论文,而到90年代初,硅基光波导器件的研究论文在这类期刊中所占比例越来越大,近期已发展到专集讨论的程度[1].目前从事硅基光波导与光电子器件研究的实验室很多,有3个实验室的工作最具连贯性,代表了现今硅基光波导器件的发展水平.它们是:N T T 光电子实验室(集中从事Si O 2平面光波导器件与回路的研究开发工作),A T &B T B ell 实验室(M u rray H ill )(主要从事Si O 2光波导与回路、Ge x Si 1-x Si 波导探测器的研究)和柏林工业大学(TUB )(从事SO I 光波导、Ge 扩散硅光波导、光开关和Ge x Si 1-x Si 波导探测器的研究工作).本文将专门就硅基光波导及器件的发展作一简要评述. 1 低损耗硅基光波导结构及工艺 1.1 外延型光波导 第15卷第1期 1996年2月 红外与毫米波学报J.Infrared M illi m .W aves V o l .15,N o.1Feb ruary,1996 Ξ

硅基光子晶体的研究

硅基光子晶体的研究 从真空管到超大规模集成电路,人类跨出了巨大的一步、半个世纪以来,电子器件的迅猛发展使其广泛应用于生活和工作的各个领域,它尤其促进了通讯和计算机产业的发展。然而,进一步小型化以及在减小能耗下提高运作速度,几乎是一种挑战、由于电子器件是基于电子在物质中的运动,在纳米区域内,量子和热的波动使它的运作变得不可靠了,人们感到了电子产业的发展极限。由于光子是以光速运动的粒子,以光子为载体的光子器件有比电子器件高得多的运行速度,光子在电介质传播每秒可以携带更多的信息,其传输带宽要远大于金属导线,并且光子受到的相互作用远小于电子,因而光子器件的能量损耗小、效率高,人们转而把目光投向了光子,提出了用光子作为信息裁体代替电子的设想。类似于电子产业中的半导体材料,光子产业中也存在着一种基础材料——光子晶体(Photonic Crystals )。 光子晶体(Photonic Crystals )是由具有不同介电常数(折射率)的材料按照某种空间有序排列的的其周期可与光波长相比的人工微结构。介电函数的周期性变化能够调制材料中光子的状态模式,使光子带隙出现,当光的频率位于光子带隙范围内,它将不能在光子晶体中的任何方向传播。因此,光子晶体也常称为光子带隙材料(Phtonic Band Gap Materials )。光子晶体将成为光电集成、光子集成、光通讯的关键性基础材料,所以光子晶体又成为“光学半导体”。它广阔的应用前景使光子晶体成为当今世界范围的 一个研究热点,得到了迅速的发展。 硅材料是现代集成电路工业的基础性材 料,是人类制备工艺最成熟、研究最深入、 了解最清楚的材料之一。硅的折射率 较高 (在波长为1.1μm 时n=3.53),满足完全 光子带隙的光子晶体的要求,且硅对通信领 域所采用的两个波长1.3μm 和1.55μm 来说 是透明的,所以硅材料是制备光子晶体的良 好材料。近几年硅基光电集成取得了一些突 破,研究硅基光子晶体,将大大促进硅基光电集成,全光集成技术的发展。 本研究方向着重研究硅基光子晶体和二氧化硅蛋白石光子晶体的制备和性质,研究 采用自组装方法获得的蛋白石胶体晶体为模板,制备硅的反蛋白石结构,理论计算表明三维周期结构只具有赝光子带隙,这种由数百纳米的单分散二氧化硅小球自组装面心密排堆积而成的反蛋白石结构具有完全的光子带隙。 光子晶体的广阔的应用前景使其 成为当今世界范围的一个研究热点

2009硅基微纳光电子系统中光源的研究

https://www.doczj.com/doc/343915036.html, 中国光学期刊网1引言硅材料在20世纪通过半导体集成电路垄断了数字电子工业,并改变了人们的生活方式以后,现在又成为光学及光电子学青睐的材料。成熟的大规模、低成本硅基半导体集成电路生产工艺是人们期望用硅材料来制备微纳光电子器件及系统的最主要原因之一。其目的就是要大幅度地降低目前基于III-V 族材料的微纳光电子器件及系统的成本。众所周知,硅在1.3~1.5m m 通信波段是非常好的低损耗传输介质。人们已经利用这种特性,开发出了微纳尺寸的光波导、分束器、耦合器、调制器以及 探测器等光通信用基础元器件[1,2]。锗硅探测器已达到40Gb/s 的指标[3]。如能实现硅基微纳放大器和激光器,与微电子集成类似的微光电子集成就不难实现了。然而,硅是一种间隙材料,单纯的体硅发光效率是非常低的。这也是目前硅基光电子学领域研究人员正 在集中攻关的重点之一。 为了能够将光源引入到单片硅基光电子系统中 去,人们采用了耦合、贴片及混合集成等方式[4,5],但大部分的努力仍然是希望通过单片集成的方式将光源 硅基微纳光电子系统中光源的研究现状及发展趋势周治平王兴军冯俊波王冰 (北京大学区域光纤通信网与新型光通信系统国家重点实验室,北京100871)Zhou Zhiping Wang Xingjun Feng Junbo Wang Bing (State Key Laboratory of Advanced Optical Communication Systems Networks,Peking University,Beijing 100871,China ) 摘要综合了微电子学及微纳光学的优势,硅基微纳光电子学正在快速走向实用阶段。与微电子制造技术兼容 的微纳光子器件,包括调制器、探测器、分束器以及耦合器等均取得了重要的突破。但硅基微纳光源的研 究则仍处在探索阶段。外部光源在多大程度上能代替片上光源?片上光源的最佳选择是什么?介绍、分 析了目前硅基微纳光源的研究现状及进展,并对片上光源的研究趋势进行展望。 关键词微纳光电子学;集成光学;硅基光源 Abstract Si based micro -nano optoelectronics is rapidly moving toward commercial applications.Nano - photonic devices compatible with the microelectronics manufacturing technology,including modulators, detectors,splitter and coupler,etc.have made an important breakthrough.However,research on Si light source is still in the exploratory stage.Is the external light source enough for chip size optoelectronic systems?What will be the better choice as the on-chip light source?This article will introduce the current research progress and development of Si based micro-nano light source,and prospect further outlook on-chip light source development trends. Key words micro-nano optoelectronic;integrated optics;Si based light source 中图分类号TN253doi :10.3788/LOP20094610.0028 Research Progress and Development Trends of Light Source for Silicon Based Micro-Nano Optoelectronic Systems

硅基光波导1

光纤与硅基光波导及其器件对比光波导是导引光在其中传播的介质,而光纤则是最常见的光波导之一,广泛地应用于光纤通信、光纤激光器等领域,硅基光波导则是实现OEIC、PIC的基础。同为光波导,光纤与硅基光波导在结构上有很多相似之处,相比而言,光纤及其各种器件的制备技术已经十分成熟,故可以根据已有的光纤器件的结构去设想、设计、改进硅基光波导器件。 波导结构 光纤是圆柱形光波导,主要有纤芯(折射率n1)和包层(折射率n2)组成。根据n1是否为常数分为阶跃光纤和渐变光纤两种。其相对折射率差约为1%,故一般的光纤对光场的限制能力并不强,这使得光纤的弯曲半径很大,否则光场就会从包层泄露。 硅基光波导一般为脊形波导,其波导层(下图中的core)和限制层(下图中oxide)的折射率一般比较大。如下图中,波导层Si的折射率约为,而限制的折射率约为,折射率差达69%,故该波导对光场的约束能力很强,可以层SiO 2 把弯曲半径做的很小,易于集成。然而该波导很难像光纤那样做成渐变折射率结构,这使得光纤的一些器件用硅基光波导很难做成相似的结构。

光耦合器 光耦合器是传送和分配光信号的无源器件,通过波导中传输模式的耦合作用来实现耦合功能。 在光纤系统中,可以用光耦合器来实现分束器、波分复用器、隔离器、环形器和光开关等。 在硅基光波导中,光耦合器可以实现分束、合波、光开关及光开关阵列等。 上图左边为2X2的耦合器,右图为1X2的耦合器,通过调整两个波导参数或者耦合距离即可改变两输出端光功率的比。而由于耦合距离是和波长相关的,故该结构可将不同波长的光分离,从而实现波分复用功能。当然,也可以将不同波长的光进行合波。

硅基发光材料研究进展

硅基发光材料研究进展 摘要:硅基发光材料是实现光电子集成的关键材料。本文分析了传 统工艺制作的硅基发光材料存在发光效率低、发光性能不稳定等缺点,在此基础上,总结目前量子理论、超晶格理论和纳米技术在硅基发光材料研究进展以及多孔硅的实践应用,并对硅基发光材料的前景进行展望。 关键词硅基发光材料多孔硅量子限制效应 Abstract: Si-based light emitting material is the key material of optoelectronic integration. This paper analyzes the traditional craft of Si-based light emitting that exists the defects, such as the inefficiency and the unsteady property of light emitting, and sums up the current progresses of quantum theory, superlattice theory, nano-scale technology in the Si-based light emitting material and the applied of porous silicon. Also some prospects of Si-based light emitting material is mentioned in this parper Key words Si-based light emitting material porous silicon Quantum confinement effect

相关主题
文本预览
相关文档 最新文档