当前位置:文档之家› 3DSuit三维人体运动捕捉传感器

3DSuit三维人体运动捕捉传感器

3DSuit三维人体运动捕捉传感器
3DSuit三维人体运动捕捉传感器

3DSuit三维人体运动捕捉传感器

?公司名称:

?发布日期:

?所在地:

?生产地址:

?已获点击:

?北京星网宇达科技开发有限公司

?2007-8-28

?美国

?3200

3DSuit工作原理: 17个惯性动态传感器每个都包括陀螺,加速计和磁力计。它可以感应绕3轴的旋转,通过复杂的算法来计算横滚俯仰和航向。通信设备包括传感器输出的数据,并计算四肢相对“主心骨"的位置。同时运用特别的算法来帮助计算主心骨相对地面的位置。所有数据将通过蓝牙传送到电脑。3DSuit 软件处理并传输数据到3D动画软件。所有步骤都在动态中用最小时间间隔完成,真正做到实时实动。

3D suit说明(中文版)

>> 产品介绍>>

3DSuit动作捕捉采用17个OSV3惯性传感器,可以对人体主要骨骼部位的运动进行实时测量。

3DSuit动作捕捉系统可根据反向运动学原理测算出人体关节的位置,并将数据施加到相应的骨骼上。由于动作捕捉惯性传感器主要依赖无处不在的地球重力和磁场,所以运动捕捉服在任何地点都可以正常使用,无需事先作任何准备工作。

物理惯性传感器和连接线的外壳具有温度补偿和防水的特性,适合在水下、雨中、或冷热气候中使用,只要是有生物的地方,运动捕捉服都可以正常使用。

一、可选三种套装样式:

1. 系带套装:

使用者的每个身体部位单独安装捕捉装置,提高了灵活性,适合不同体型的人士使用。

2. 内置式套装:

在运动捕捉服袖子的内部,上下两端均缝制有传感器口袋,传感器口袋中装有传感器,连接线则在外部走线。

3. 全身套装:

定制式全身套装的传感器和线缆均为嵌入式。捕捉服可水洗,使用极其方便,可以快速安装并且开始工作。

二、3DSuit 惯性动作捕捉系统特点:

● 灵活性:

不受光线束缚,您不再需要固定场所的动作捕捉工作室,无论何时何地都能操作使用

● 高性价比:

3DSuit动作捕捉是行业内极具性价比的动作捕捉解决方案

● 携带方便:

多部件集成,尺寸小巧,可装在笔记本电脑包大小的手提箱中轻松携带,能够胜任多人动作捕捉需求

● 功能:

3DSuit动作捕捉具有温度补偿性能,可浸在水中使用,广泛适用于多种的工作环境下的动作捕捉解决方案

三、3DSuit SDK:

● 直接打开和监控所有传感器数据

● 可与用户自己的运动分析应用直接集成

● 可实现深度动作分析,包括运动速度、加速度监控等

● 将输出数据与商业游戏引擎集成,适用于虚拟现实和增强现实领域

四、3DSuit动作捕捉包含:

标准包装清单:

1个系带全身套装,或内置式套装,带有:

20个OSv3传感器

20条传感器连接线

1个无线控制元件

1个USB 软件狗

2个电池组(可充电)

2个传感器线分配器

1个3DSuit手提箱

可选3DSuit配件:

传感器总线扩展器

USB转换器

五、用户群

院校用户

3DSui动作捕捉给各大专院校提供了高性价比的解决方案,您能够直接在课堂中使用,不需要事先进行任何安装和设置。可以用手提箱把3DSuit带到使用地点,几分钟内即可开始使用。

游戏开发者

3DSui动作捕捉不仅仅为您提供了动作捕捉解决方案,更能够让您在任何地点轻松完成动作捕捉。假如您在研发一款足球网络游戏,您可以把3DSuit带到球场上进行动作捕捉,非常方便。

动画制作者

有了3DSuit动作捕捉,用户甚至可以在自己的家里进行动作捕捉,完全无需使用专业的工作室。3DSuit让您足不出户便可轻松完成动作捕捉项目。

定制用户

对于有特殊需求的用户可利用3DSuit SDK定制属于自己的运作捕捉,比如可应用于虚拟仿真培训、人机工程定位导航、虚拟现实交互等。

温度传感器的历史发展与研究现状

温度传感器的历史发展与研究现状 摘要:本文通过查阅各类文献并进行分析总结,简述了温度传感器的意义和作用,介绍了温度传感器的发展历史,列举并分析了常用温度传感器的类型,对比了国外温度传感器设计和研究领域的现状与发展,着重阐述了国外先进的CMOS模拟集成温度传感器的主要原理。最后,文章对温度传感器的未来发展方向做出了说明。 关键词:温度传感器,IC温度传感器,CMOS集成温度传感器 一、背景介绍 1.1绪言 人们为了从外界获取信息,必须借助于感觉器官,而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中,它们的功能就远远不够了。为适应这种情况,就需要传感器。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。[1]传感器是以一定的精度和规律把被测量转换为与之有确定关系的、便于应用的某种物理量的测量装置。它是实现自动测量和自动控制的首要环节。[2]温度是反映物体冷热状态的物理参数,它与人类生活环境有着密切关系。早在2000多年前,人类就开始为检测温度进行了各种努力,并开始使用温度传感器检测温度。[3]在人类社会中,无论工业、农业、商业、科研、国防、医学及环保等部门都与温度有着密切的关系。 [4]在工业生产自动化流程中,温度测量点一般要占全部测量点的一半左右。[5]因此,人类离不开温度传感器。传感器技术因而成为许多应用技术的基础环节,成为当今世界发达国家普

遍重视并大力发展的高新技术之一,它与通信技术、计算机技术共同构成了现代信息产业的三大支柱。[6] 1.2温度传感器的发展历史和主要分类 人们研究温度测量的历史已经相当的久远了。公元1600年,伽利略研制出气体温度计。 [7]一百年后,酒精温度计[8]和水银温度计[9]问世。到了1821年,德国物理学家赛贝发明了热电偶传感器[10],人类真正的第一次把温度变成了电信号。此后,随着技术的发展,人们研制出了各种温度传感器。本世纪,在半导体技术的支持下,相继诞生了半导体热电偶传感器、PN结温度传感器和集成温度传感器。[11]与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。[12] 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。[13] 热电偶传感器有自己的优点和缺陷。热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。然而热电偶传感器的灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。[14] IC温度传感器即数字集成温度传感器,其外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。尤其是CMOS工艺实现的智能温度传感芯片具有低成本、低功耗、与标准数字工艺兼容以及芯片面积小等优点,已经取代了双极型工艺。IC温度传感器又包括模拟输出和数字输出两种类型,最主要的特点之一是将温度传感模块和信号的处理电路同时集成在一个芯片上。[15]

人体感应开关原理

采用热释电红外探头并对探头接收到的微弱信号加以放大,人 然后驱动继电器,可以制成热释电人体感应开关。人体感应开关电路 它可应用于电灯的节能自动开关、自动门、安全防护、防盗等设备中。 [电路工作原理] 该电路采用LN074B作探头。当探头接收到人体释放的热释红外信号后,由控头内部转换成一个频率约 0.3~3Hz微弱的低频信号,经VT 1、IC2两级放大器放大后输入电压比较器IC3。两级电压放大采用直流放大器,总增益约70~75分贝。 IC3等组成电压比较器,其中RP为参考电压调节电位器,用来调节电路灵敏度,也就是探测范围。平时,参考电压(IC3的 (2)脚电压)高于IC2的输入电压(IC3的 (3)脚电压),IC3输出低电平。当有人进入探测范围时,探头输出探测电压,经VT1和IC2放大后使信号输出电压高于参考电压,这时IC3的 (6)脚输出高电平,三极管VT2导通,继电器J1能电吸合,接通开关。 电路xxVT 3、C 7、R 8、~R10组成开机延时电路。当开机时,开机人的感应会使IC3输出高电平,造成误触发。开机延时电路在开机的瞬间,由电容C7的充电作用而使VT3导通,这样就使IC3输出的高电平经VT3通地,VAT2可以保持截状态,防止了开机误触发。开机延时时间由C7与R8的时间常数决定,约20秒。 [元件选用]热释红外探头选用LN074B型。I

C2、IC3选用高输入阻抗的运算放大器CA3140。该电路采用结型场效应管作差分输入级,输入阻抗高达 1.5*10 (12)xx,输入失调电流仅 0.5pA,频带宽达 4.5MHz,转换速率为9V/us,是一种性能十分优良的运算放大器,很适合于作微弱信号的放大级。 探头安装在高度距离地面为2米左右。外壳设计时应使透镜对地面呈13度左右的俯角,这样就可以形成一个监视区。由于探测器控制角只有86度左右,所以在安装时应选择最优良角度,使死区尽量减小。 [电路调试] 电路调试主要是调节电位器RB,选择合适的参考电压,以达到最佳灵敏度。

人体体温测量传感器

人体体温测量传感器

目录一·任务说明 二·总体设计方案 三·传感器的选型与测量电路 四·典型器件选择 五·系统误差的分析与处理

一、任务说明 任务用途 用于人体温度测量,要求实现非接触式测量,具备测量数据自动记录和打印功能,并对温度超限给出相应的报警和控制信号。 任务要求 1、确定测量方法,并说明其测量原理; 2、选定传感器类型,并说明理由; 说明:允许误差:±0.1℃ 各类传感器比较 热辐射 非接触测量,结构简单,量程比较宽,精确度高,可自动记录和远距离传送信号,但人为误差大,只能测量高温,连续测量需冷却。压电式

分辨率高,稳定性好,输出的频率便于数字化处理,抗噪声能力强,性能稳定,线性好,但是机械化强度很差。数字信号输出。 热电阻 热电阻具有负温度系数,其灵敏度远高于金属热电阻,体积小,热惯性小,适合快速测量,功率小,寿命长,但互换性差,测量范围窄。 光纤式 光纤体吸收性探头体积小,灵敏度高,工作可靠,精确度高,与电磁场的相互作用小,误差小,但是测量范围窄。 根据以上各类传感器的特点,我们选择光纤辐射温度传感器,因为对于我们人体的温度来看,测量范围小并不影响我们的测量,其精确度和线性度以及受周围磁场的影响小等优点,由于光纤直径细小且可绕行好,因此也可以用于狭窄或者视听不好的场所,此外还可以用多个探头,借助于扫描器进行转换,构成多点温度测量系统,我们还是觉得这类传感器比较适合测量人体温度。

四、测量电路可行性分析 下图为光纤辐射温度传感器的设计框图,光纤探头接受由被测物体温度决定的辐射能,并经过光纤传输到检测器,由光电器件转换成电信号,再经过电路转换、处理后显示出被测温度值,这种光纤辐射温度计与一般的辐射温度计相比,其明显的优点是测量探头可以不用水冷而测量,从而有利于克服环境的干扰,适合于在恶劣的工作条件下应用,由于光纤直径细小且可绕行好,因此也可以用于狭窄或者视听不好的场所,此外还可以用多个探头,借助于扫描器进行转换,构成多点温度测量系统。 五、总体设计方案

各种温度传感器分类及其原理.

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端或冷端,则回路中就有电流产生,如图2-1(a所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。 与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向, 称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决 于电流相对于温度梯度的方向,称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0 是由接触电势和温差电势合成的。接触电势是指两种不同 的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。 温差电势是指同一导体或半导体在温度不同的两端产生的电势, 此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。 无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势:热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b 之间便有一电动势差△ V,其极性和大小与回路中的热电势一致,如图 2-1(b所示。并规定在冷端,当电流由A流向B时,称A为正极,B 为负极。实验表明,当△ V很小时,△ V与厶T成正比关系。定义△ V对厶T 的微分热电势为热电势率,又称塞贝克系数。

实验MEMS薄膜压力传感器静力学分析

实验四 MEMS薄膜压力传感器静力学分析 一、实验目的 1、掌握静力学分析 2、验证理论分析结果 3、对不同形状膜的分析结果进行对比 二、实验器材 能够安装ANSYS软件,内存在512MHz以上,硬盘有5G空间的计算机 三、实验说明 (一)基本思路 1、建模与网格化 2、静力学分析 3、对结果进行分析和比较 (二)问题描述: 由于许多压力传感器的工作原理是将受压力作用而变形的薄膜硅片中的应变转换成所需形式的电输出信号,所以我们要研究比较一下用什么样形状的膜来作为压力传感器的受力面比较好。我们比较的膜形状有三种,分别是圆形. 正方形. 长方形。在比较的过程中,三种形状膜的面积.,厚度和承受的压力是都是相等的。设置参数具体为:F=0.1MPa, EX=1.9e11,PRXY=0.3,DENS=2.33e3.单元尺寸为5e-006。为了选择合适的网格化类型,首先我们拿圆的结构进行一下比较,最后选择比较接近理论计算的网格化类型,通过比较,我们知道映射网格化类型比较优越,所以后面的两种类型膜结构选择了映射网格化。

四、实验内容和步骤 圆形薄膜1 1.先建立一个圆形薄膜:Main Menu>Preprocessor>modeling>Create>volumes>solid cylinder.弹出以个对话框如图,输入数据如图1,单击OK. 图1 2.设置单元类型:Main Menu>Preprocessor>element type>add/edit/delete,弹出一个对话框,点击add,显示library of element type对话框如图:在library of element type下拉列表框中选择structural solide 项,在其右侧下拉表框中选择brick 8node 45选项,单击OK. 在点击close.如图2. 图2

可穿戴式运动传感器、传感电路及运动检测方法与制作流程

图片简介: 一种可穿戴式运动传感器、传感电路及运动检测方法,涉及人机交互用传感器,设有硅橡胶介电薄膜层,硅橡胶介电薄膜层上侧和下侧分别设有上柔性电极层和下柔性电极层,上柔性电极层的上侧和下柔性电极层的下侧分别设有上绝缘保护层和下绝缘保护层,上柔性电极层和下柔性电极层上分别设有上电极引脚和下电极引脚,上绝缘保护层和下绝缘保护层为硅橡胶绝缘保护层。传感电路包括用传感器本体、电流积分模块、滤波模块、信号处理模块、解耦处理模块、稳压电源模块、开关模块和显示模块;检测方法包括信号检测、处理,信号解耦实时输出。本技术具有结构简单,灵敏度、精度高成本低,实时性好,穿戴舒适,能够准确测量人体动作等优点。 技术要求 1.一种可穿戴式运动传感器,其特征在于:设有硅橡胶介电薄膜层,硅橡胶介电薄膜层上侧和下侧分别设有上柔性电极层和下柔性电极层,上柔性电极层的上侧和下柔性电极层 的下侧分别设有上绝缘保护层和下绝缘保护层,上柔性电极层和下柔性电极层上分别设 有上电极引脚和下电极引脚,上绝缘保护层和下绝缘保护层为硅橡胶绝缘保护层;其由 下述材质及方法制备而成: 第一步、制备硅橡胶介电薄膜板:配制牺牲层,按聚丙烯酸和挥发性溶剂按质量比 1:3~1:5称取试剂、放置于小盒中,再将其放入搅拌机,混匀脱泡搅拌、得牺牲层浆液; 配置硅橡胶液,硅橡胶原液与稀释剂按质量比1:1~3:2放置于小盒中,再将其放入搅拌 机,混匀脱泡搅拌、得硅橡胶液;涂牺牲层,将牺牲层浆液使用涂布器涂覆在热塑性聚 酯基板上,涂完后,等牺牲层变干,变干后热塑性聚酯基板呈现七彩色;涂硅橡胶层, 将硅橡胶液使用涂布器涂覆在已覆盖牺牲层的热塑性聚酯基板上,用钢板托起涂膜后基板,盖上亚克力罩;加热固化,送至加热箱加热固化、得硅橡胶介电薄膜板待用;

温度传感器的发展现状、原理及应用

温度传感器的发展现状、原理及应用 摘要: 近年来,中国工业现代化进程和电子信息产业的持续快速发展,推动了传感器市场的快速崛起。温度传感器是一类重要的传感器,占传感器总需求量的40%以上。温度传感器是一种半导体器件,利用NTC电阻随温度变化的特点,将非电物理量转化为电量,从而实现精确的温度测量和自动控制。温度传感器广泛应用于温度测量和控制、温度补偿、流量和风速测量、液位指示、温度测量、紫外和红外测量、微波功率测量等领域,广泛应用于彩电领域。电脑彩色显示,开关电源,热水器,冰箱,厨房设备,空调,汽车等领域。近年来,汽车电子和消费电子行业的快速增长推动了中国对温度传感器需求的快速增长。 关键词:温度传感器;发展现状;应用

目录 一、温度传感器的发展现状 (3) 二、温度传感器的原理 (3) (一)热电偶温度传感器原理 (4) (二)金属热电阻温度传感器原理 (4) (三)集成温度传感器原理 (4) 三、温度传感器的应用 (4) (一)在汽车中的应用 (5) (二)在家用电器中的应用 (5) (三)生物医学中的应用 (6) (四)工业中的应用 (6) (五)太空中的应用 (6) 四、结论 (6) 参考文献 (8)

一、温度传感器的发展现状 温度传感器是通过物体随温度变化而改变某种特性来间接测量的[1]。不少材料、元件的特性都随温度的变化而变化,所以能作温度传感器的材料相当多。温度传感器随温度而引起物理参数变化的有:膨胀、电阻、电容、而电动势、磁性能、频率、光学特性及热噪声等等。随着生产的发展,新型温度传感器还会不断涌现。 由于工农业生产中温度测量的范围极宽,从零下几百度到零上几千度,而各种材料做成的温度传感器只能在一定的温度范围内使用。温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一。其测量控制一般产用各式各样形态的温度传感器。 表1.1当前市面上温度传感器分类统计表[2] 分类特征传感器名称 测量范围 超高温用1500℃以上光学高温计、辐射传感器 中高温用1000℃ -1500℃ 光学高温计、辐射传感器、热电偶 中温用500℃-1000℃光学高温计、辐射传感器、热电 低温用-250℃-0℃晶体管、热敏电阻、压力式玻璃温度计极低温用-270℃ --250℃ BaSrTi03陶瓷 现如今,在集成数字智能温度传感器领域,国内相关的设计和研究尚处于交 际处的阶段。目前市场上流行的同类温度传感器诸如DS18B20,AD7416,AD7417,AD7418,AD590等F,大国都是出自国外一些比较大的公司。就目前来说,国内的很多公司往往温度传感器产品比较少,并且已申请到的相关专利也非常少,处理厦门大学等高校申请专利外,还有香港应用科技研究院、苏州纳芯微电子、背景中电华大电子设计、上海贝岭等少数研究机构或企业的专利,虽然其专利名称比较大,但是技术涉及点并不全面。因此,在集成数字温度传感器方面,我国尚有较大的发展空间。

合金薄膜压力传感器的应用共15页

传感器原理及工程应用(论文) 合金薄膜压 力传感器的应用 学生姓名:张志强 指导教师:任爽 所在学院:信息技术学院 专业:电气工程及其自动化 学号:20094073120 中国·大庆 2019 年12 月

目录 前言........................................................ I I 1 合金薄膜压力传感器工作原理 (1) 2 合金薄膜高温压力传感器研究现状 (2) 2.1 镍铬系合金薄膜压力传感器 (2) 2.2 铂钨合金薄膜压力传感器 (3) 2.3 钯铬合金薄膜应变计 (3) 3 多功能传感器(MULTIFUNCTION) (4) 3.1 多功能传感器的执行规则和结构模式 (4) 3.2 多功能传感器的研制与应用现状 (4) 4 无线网络化(WIRELESS NETWORKED) (7) 4.1 传感器网络 (7) 4.2 传感器网络研究热点问题和关键技术 (7) 4.3 传感器网络的应用研究 (8) 结论 (10) 参考文献 (11)

前言 咨询公司INTECHNO CONSULTING的传感器市场报告显示,2019年全球传感器市场容量为506亿美元,预计2019年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景,一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(Micro-Electro-Mechanical Systems,微机电系统)传感器、生物传感器等新兴传感器。其中,无线传感器在2019-2019年复合年增长率预计会超过25%。 目前,全球的传感器市场在不断变化的创新之中呈现出快速增长的趋势。有关专家指出,传感器领域的主要技术将在现有基础上予以延伸和提高,各国将竞相加速新一代传感器的开发和产业化,竞争也将日益激烈。新技术的发展将重新定义未来的传感器市场,比如无线传感器、光纤传感器、智能传感器和金属氧化传感器等新型传感器的出现与市场份额的扩大。

人体微波感应传感器工作原理

人体微波感应传感器工作原理 1。工作原理 微波感应控制器使用直径9厘米的微型环形天线作微波探测,其天线在轴线方向产生一个椭圆形半径为0~5米(可调)空间微波戒备区,当人体活动时其反射的回波和微波感应控制器发出的原微波场(或频率)相干涉而发生变化,这一变化量经HT7610A进行检测、放大、整形、多重比较以及延时处理后由白色导线输出电压控制信号。 高可靠微波感应控制器内部由环形天线和微波三极管组成一个工作频率为2.4GHz的微波振荡器,环形天线既做发射天线也可接收由人体移动而反射的回波。内部微波三极管的半导体PN结混频后差拍检出微弱的频移信号(即检测到人体的移动信号) ,微波专用微处理器HT7610A首先去除幅度太小的干扰信号只将一定强度的探测频移信号转化成宽度不同的等幅脉冲,电路只识别脉冲足够宽的单体信号,如人体、车辆其鉴别电路才被触发,或者两秒内有2~3个窄脉冲,如防范边沿区人走动2~3步,鉴宽电路也被触发,启动延时控制电路工作。如果是较弱的干扰信号,如小体积的动物,远距离的树木晃动、高频通讯信号、远距离的闪电和家用电器开关时产生的干扰予以排除。最后输HT7610A鉴别出真正大物体移动信号时,控制电路被触发,输出2秒左右的高电平,并有LED2 同步显示,输出方式为电压方式,有输出时为高电平(4伏以上),没有输出时为低电平。 微波专用的微处理器HT7610A的时钟频率为16KH,当初次加电时,系统将闭锁60秒,期间完成微处理器的初始化并建立电场,这时LED1点亮60秒后熄灭,系统自动进入检测状态,当检测到有效信号时,将有5秒信号输出,并由指示灯LED2同步显示。 控制器的外形上图所示,面板上设置有灵敏度调整孔,可以使监控距离在1~7米范围内可调,顺时针转动距离变远,逆时针转动距离变近, LED1、LED2用于指示TX982的工作状态,1.2米长的双芯屏蔽线用于连接电源和负载,其中红色线用来接正电源,白色线接输出,铜网屏蔽层接电源负极,必要时可以用类似电缆加长至50米以内使用。 高可靠微波感应控制器电源电压为12~16V的整流变换器供电,静态耗电量在5MA左右。 输出形式为电压方式,有输出时为高电平(4V以上),静态时为低电平,使用请参考下图

浅析体育运动中的一些力学知识

浅析体育运动中的一些力学知识 【摘要】本文从理论上对常见的几个体育运动中的相关力学知识作了初步分析,通过这些分析,希望能从中找出一些体育运动中的用力规律,借此做一些有益的探索。 【关键词】体育运动;力学知识 体育运动已成为我们生活中不可或缺的一部分,加强体育锻炼,增强身体素质,是健康的需要,是时代的需要。在我们在进行体育运动的过程中,你是否留意过应用到哪些力学知识呢? 下面我们从几个实际的事例中了解一下如影相随的几个力学知识点。 在篮球场上,也许你渴望能成为一位“飞人”,能够做出强劲、漂亮的扣篮动作,如同排球在3米线上的起跳进攻,你知道自己的弹跳高度取决于哪些因素吗?你测过自己的蹬地力吗?你知道自己的起跳时间吗?也许直觉或者“经验”会告诉你第一个问题的答案:我跳得高是因为我的力量大、我的体重轻、我跑得快等等。实际上,我们能跳高是因为我们弹跳的时候地面对我们的反作用力为我们提供一个竖直向上的速度,这个速度决定了我们能跳起的高度。 下面作一下物理分析:将运动员的弹跳过程视为竖直上抛运动,根据相关的物理知识,他的弹跳高度可表示为: 由上式可知,他的弹跳高度只与他起跳的初速度v0 有关,而v0是运动员和地面的相互作用得到:运动员弯曲双腿用力蹬地的过程中,地面同时提供一个大于他本身的重力反作用力,使他获得一个竖直向上的加速度,在短时间内提供了起跳的初速度v0。如果在运动员两脚站的地方安装一个压力传感器,通过它就可以测出运动员蹬地的平均压力F,同时,地面给运动员同样大小、方向相反的反作用力F′,由加速度计算公式可求得平均加速度: a=F′-mgm=F′m-g(2) 假如我们起跳的时间是t秒,则我们离地的初速度为 v0=at(3) 由此我们可以看到,我们轻、力气大(对地面蹬力大)就可以获得较大的加速度a,较大的加速度a又为我们提供一个较大的初速度v0。如果测出F和h ,利用4~6式,则可求出起跳过程的时间t和起跳瞬间的速度v0。 另外,我们还知道,篮球的表面并不光滑,密布着许多突起,这样可以增大手与球之间的摩擦,运动员接抱球时会更稳固,不容易滑落和被别人抢走;在用

薄膜压力传感器平面扫描测量系统

User Guide 薄膜压力传感器平面扫描测量系统 艾动测试系统使用流程图: 硬件安装启动测试软件 USB连接到测试电脑 连接传感器与数据采集查看设备是否连 接成功 打开软件界面设备已经连接 黄色LED点亮 轻压感应区软件窗口 Yes No 软件进入校正功能 OK?Yes No 开始录制施压过程停止录制施压过程保存、打开录制文件数据影片重播END 开始使用 重新拔、插传感器 红色LED灯点亮 施压过程分析 断开USB连接线 测试软件安装

一、安全使用注意事项: 为保证您正确使用本机,防止发生身体伤害或者损坏,特提供一项注意事项。请遵守这些事项。 1.1非专业人士,请勿拆开外壳;请勿在潮湿的环境中使用;请勿撕扯薄膜传感片。 1.2标定系统在使用过程中:请勿用力拉电线拔出电源插头;请勿用湿手插/拔插头。 二、系统设备配置列表 2.打开包装箱,请根据包装箱内附装箱单检查并仔细检查物品,若有物品丢失或损坏,请联络经销商。 2.1传感器系统包含以下物品: A,数据采集手柄1套; B,单点压力传感器若干片; C,测试软件安装软件包E-SCAN(显示52列44行数据),可以通过艾动公司的客服人员处获取; D,使用说明书,可以根据艾动公司的客服人员获取; 三、计算机运行系统要求: 四、设备组成与功能描述: 整套测试系统由数据采集采集手柄、传感器、以及PC测试软件安装包组成。数据采集手柄功能包括运算放大器、ADC转换器和USB数据传输给测试电脑。 (1)1套硬件测试电路(1套52行&44列数据采集手柄);通过USB接口连接数据采集手柄与测试电脑传感器集线系统。 (2)1套测试软件系统; (3)推拉力计校正系统用于校正功能使用。 五、艾动单点薄膜压力传感器参数与性能: (1)用途:在外力荷载作用下测试构件之间相互作用产生的应力分布及相应位置的应力值,施加在所有的传感器上构件产生的应力值需要能够同时采集。 (2)方案:采用多点分布式薄膜传感器。 (3)规格:感应区尺寸为255mm*210mm;信号导线延长长度180mm;压力测量时量程要求0-500KG (35PSI)。 (4)传感器封装PET薄膜采用100微米材料制作,整体封装厚度约0.2mm。 (5)各力敏点测试精度、稳定性具有较好的一致性; (6)检测方法,将感应区直接置于两片平板之间,量测对应测试压力,要求采用100KG量程的推拉力计机台。 六、艾动整套52行*44列数据采集手柄参数与性能: (1)通过52行*44列的阵列分布结构,数据采集手柄最大可以进行2288个点的信号处理,包含对应数据采集系统软件开发,数据传输。

运动捕捉技术在体育运动中的应用综述

运动捕捉技术在体育运动中的应用综述 摘要:运动捕捉系统在体育训练中它可以帮助教练员从不同的视角观察和监控运动员的技术动作,并大量地获取某类技术动作的运动参数及生理生化指标等数据,并统计出其运动规律,为科学训练提供标准规范的技术指导。通过实时的运动捕捉技术对训练中出现的问题进行技术诊断与分析,并以视频和图象以及量化的数据等方式反馈给教练为教练员提供科学地准确地定量依据和量化的训练指标。使教练员研究和改进训练方法直至提出新的改进训练意见,使教练员能够有的放矢地纠正运动员的技术动作,从而大大提高训练效果,使体育训练摆脱纯粹的依靠经验的状态,进入科学化、数字化的时代。运动捕捉技术广泛的应用于,田径、高尔夫、曲棍球、举重、铁饼、赛艇等项目。 1.前言 随着雅典奥运会的闭幕,2008中国奥运会进入到计时阶段,“科技奥运”工程也已经从先期的规划准备阶段进入到提速期。众所周知科学技术是第一生产力,举办现代奥运离不开科技,体育运动全面渗透着科学技术,体育事业离不开科技的强有力支撑。现代奥运会已不再纯粹是比哪个国家的运动员跑得更快、跳得更高、举得更重,在运动员与运动员较量的背后,是国家与国家科技发展与人心凝聚的综合大比拼。奥运会上的各项纪录,不仅仅是人类突破生理极限的体现,也是科技创新在体育中的集中展现,随着IT技术在体育运动中的广泛运用,人类正在向运动及身体的极限发起挑战。现代竞技体育的发展也愈来愈借重生物技术和IT手段,以期最大限度地开发出人体心理和生理的 极限潜能。 许多人认为,多种体育运动项目已经达到了人类体能的极限,已不大可能再创造新的纪录。不过,在运动捕捉技术的帮助下,奥运会上不时被打破的纪录还是会让你我感到惊诧。当你一帧一帧地在电脑前观看运动图像时,也许你会发现,运动员手臂的摆动并不正确,而这点儿细微的发现可能正是教练员们急需了解的信息——通过矫正姿势,运动员的速度有可能就此提高几秒,而运动员的成绩则有可能大幅提升。似乎,这应该是科幻电影里的某个情节。实际上,这只是体育运动领域常用的一种实时运动捕捉参数跟踪系统。只要在运动员的鞋中安装一个遥测传感器,你就可以观察运动员的每一个动作,甚至还可以测出运动员每迈出一步肌肉所承受的压力。 2.运动捕捉技术概述

温度传感器1

温度传感器 摘要:在工农业生产、医疗、汽车、气象监测以及火灾预防等方面,温度都是一个重要而普遍的测量参数。而且随着近年来我国现代化进程和电子技术产业的高速发展,温度传感器成为不可或缺的一类重要传感器。本文从温度传感起的分类(包括接触式和非接触式),典型温度传感器的原理及一般特性(包括线性度、灵敏度、稳定性以及抗干扰性能),新型温度传感器的应用及发展方向等方面介绍了这一类重要传感器。 关键字:温度传感器 一、发展现状概述 温度是过程控制中最重要的测量变量之一,在温度的计量和监测中,要将温度信号转变为电信号则离不开温度传感器。所谓温度传感器,就是能够通过检测那些物理量而可知其温度的器件。在工业生产中,温度传感器的用途十分广阔,可用作温度测量与控制、温度补偿、流速、流量和风速测定、液位指示、温度测量、紫外光和红外光测量、微波功率测量等而被广泛的应用于彩电、电脑彩色显示器、切换式电源、热水器、电冰箱、厨房设备、空调、汽车等领域。近年来,我国工业现代化的进程和电子信息产业连续的高速增长,带动了传感器市场的快速上升。温度传感器作为传感器中的重要一类,占整个传感器总需求量的40%以上。温度传感器是利用NTC的阻值随温度变化的特性,将非电学的物理量转换为电学量,从而可以进行温度精确测量与自动控制的半导体器件。近年来汽车电子、消费电子行业的快速增长带动了我国温度传感器需求的快速增长。 随着科学技术的不断发展,温度的计量和监测在工农业生产和国民经济各部门具有重要意义和十分广泛的应用。 随着各类电子产品的便携化,可用于片上测温的集成温度传感器的发展便越趋灼热化。传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。温度传感器的发展大致经历了以下三个阶段: 1.传统的分立式温度传感器(含敏感元件)

温度传感器发展史

温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段: 1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。2.模拟集成温度传感器/控制器。 3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器的分类 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。 接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。 温度传感器的发展 1.传统的分立式温度传感器——热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。 2.模拟集成温度传感器 集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。 模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。 2.1光纤传感器 光纤式测温原理 光纤测温技术可分为两类:一是利用辐射式测量原理,光纤作为传输光通量的导体,配合光敏元件构成结构型传感器;二是光纤本身就是感温部件同时又是传输光通量的功能型传感器。光纤挠性好、透光谱段宽、传输损耗低,无论是就地使用或远传均十分方便而且光纤直径小,可以单根、成束、Y型或阵列方式使用,结构布置简单且体积小。因此,作为温度计,适用的检测对象几乎无所不包,可用于其他温度计难以应用的特殊场合,如密封、高电压、强磁场、核辐射、严格防爆、防水、防腐、特小空间或特小工件等等。目前,光纤测温技术主要有全辐射测温法、单辐射测温法、双波长测温法及多波长测温等 2.1.1 全辐射测温法 全辐射测温法是测量全波段的辐射能量,由普朗克定律: 测量中由于周围背景的辐射、测试距离、介质的吸收、发射及透过率等的变化都会严重影响准确度。同时辐射率也很难预知。但因该高温计的结构简单,使用操作方便,而且自动测量,测温范围宽,故在工业中一般作为固定目标的监控温度装置。该类光纤温度计测量范围一般在600~3000℃,最大误差为16℃。 2.1.2 单辐射测温法 由黑体辐射定律可知,物体在某温度下的单色辐射度是温度的单值函数,而且单色辐射度的增长速度较温度升高快得多,可以通过对于单辐射亮度的测量获得温度信息。在常用温度与波长范围内,单色辐射亮度用维恩公式表示: 2.1.3 双波长测温法 双波长测温法是利用不同工作波长的两路信号比值与温度的单值关系确定物体温度。两路信号的比值由下式给出: 际应用时,测得R(T)后,通过查表获知温度T。同时,恰当地选择λ1和λ2,使被测物体在这两特定波段内,ε(λ1,T)与ε(λ2,T)近似相等,就可得到与辐射率无关的目标真实温度。这种方法响应快,不受电磁感应影响,抗干扰能力强。特别在有灰尘,烟雾等恶劣环境下,对目标不充满视场的运动或振动物体测温,优越性显著。但是,由于它假设两波段的发射率相等,这只有灰体才满足,因此在实际应用中受到了限制。该类仪器测温范围一般在600~3000℃,准确度可达2℃。 2.1.4 多波长辐射测温法 多波长辐射测温法是利用目标的多光谱辐射测量信息,经过数据处理得到真温和材料光谱发射率。考虑到多波长高温计有n个通道,其中第i个通道的输出信号Si可表示为: 将式(9)~(13)中的任何一式与式(8)联合,便可通过拟合或解方程的方法求得温度T和光谱发射率。Coates[8,9]在1988年讨论了式(9)、(10)

完整版HC-SR501人体感应模块

HC-SR501 HC-SR501是基于红外线技术的自动控制模块,采用德国原装进口LHI778探头设计,灵敏度高,可靠性强,超低电压工作模式,广泛应用于各类自动感应电器设备,尤其是干电池供电的自动控制产品。 产品型号HC--SR501人体感应模块 工作电压范围直流电压4.5-20V 静态电流<50uA 电平输出高3.3V/低0V 触发方式L不可重复触发/H重复触发 延时时间0.5-200S(可调)可制作范围零点几秒-几十分钟 封锁时间 2.5S(默认)可制作范围零点几秒-几十秒电路板外形尺寸32mm*24mm

感应角度<100 度锥角 工作温度-15-+70 度 感应透镜尺寸直径:23mm(默认) 深圳市捷深科技有限公司https://www.doczj.com/doc/375366551.html,专业传感器开发与销售 1、全自动感应:人进入其感应范围则输出高电平,人离开感应范围则自动延时关闭高电平,输出低电平。 2、光敏控制(可选择,出厂时未设)可设置光敏控制,白天或光线强时不感应。 3、温度补偿(可选择,出厂时未设):在夏天当环境温度升高至30~32℃,探测距离稍变短,温度补偿可作一定的性能补偿。 4、两种触发方式:(可跳线选择) a、不可重复触发方式:即感应输出高电平后,延时时间段一结束,输出将自动从高电平变成低电平; b、可重复触发方式:即感应输出高电平后,在延时时间段内,如果有人体在其感应范围活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。5、具有感应封锁时间(默认设置:2.5S封锁时间):感应模块在每一次感应输出后(高电平变成低电平),可以紧跟着设置一个封锁时间段,在此时间段内感应器不接受任何感应信号。此功能可以实现“感应输出时间”和“封锁时间”两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。(此时间可设置在零点几秒 —几十秒钟)。6、工作电压范围宽:默认工作电压DC4.5V-20V。7、微功耗:静态电流<50微安,特别适合干电池供电的自动控制产品。8、输出高电平信号:可方便与各类电路实现对接。 1 1. 感应模块通电后有一分钟左右的初始化时间,在此期间模块会间隔地输出0-3 次,一分钟后进入待机状态。 2 2. 应尽量避免灯光等干扰源近距离直射模块表面的透镜,以免引进干扰信号产生误动作;使用环境尽量避免流动的风,风也会对感应器造成干扰。 3 3.感应模块采用双元探头,探头的窗口为长方形,双元(A元B元)位于较长方向的两端,当人体从左到右或从右到左走过时,红外光谱到达双元的时间、距离有差值,差值越大,感应越灵敏,当人体从正面走向探头或从上到下或从下到上方向走过时,双元检测不到红外光谱距离的变化,无差值,因此感应不灵敏或不工作;所以安装感应器时应使探头双元的方向与人体活动最多的方向尽量相平行,保证人体经过时先后被探头双元所感应。为了增加感应角度范围,本模块采用圆形透镜,也使得探头四面都感应,但左右两侧仍然比上下两个方向感应范围大、灵敏度强,安装时仍须尽量按以上要求。

基于惯性传感器的运动识别系统_0533

摘要 基于惯性传感器的运动识别系统是模式识别的一个新兴领域,克服了传统基于视频的动作识别的诸多缺点和限制,具有更高的可操作性和实用性。所以本文首先着重介绍了如何利用惯性传感器进行动作的分类,及其原理。 在对运动进行识别的算法中,比较常用的算法有神经网络、支持向量机、隐马尔科夫模型等,这些算法不是很直观,而且相对来说比较复杂,因此本文采用的是k-means均值聚类算法,本文的工作流程如下:首先通过握在被测实验对象手中的惯性传感器采集动作信息,然后通过无线传输模块将数据传输到PC 机,进而对数据进行动作自动截取和动作特征提取,最后利用选定的识别算法对动作进行识别。在本文中,用于实现动作识别的几种动作为向上、向下、向左、向右和画圈,随后对该动作进行动作捕捉,并采用快速傅里叶变换(Fast Fourier Transform, FFT)进行特征提取,最后采用K-means均值聚类进行识别,识别率为69%。 本文的重点在于数据的特征提取,及惯性传感器的运动识别,分别用到了快速傅里叶变换,及K-mean均值聚类两种算法。 关键词:惯性传感器,K-means均值聚类, FFT 1

ABSTRACT Inertial sensor based motion recognition system is an emerging field. It overcomes the disadvantage of traditional video based gesture recognition, and has higher maneuverability and practicability. So this article introduces how to classify motions with inertial sensor, and its working principle. The most common algorithm for motion recognition is Neural Networks (NN), support vector machine (SVM), hidden Markov models (HMM), etc.. These algorithms are not so intuitive and relatively complex in algorithm. So this paper adopts k-means clustering for inertial sensor based motion recognition. The workflow is as flows: first of all, the inertial sensor fixed in subjects’ hand is used to collect motion information; and then, the data is transmitted to PC by wireless transmission module, followed by data preprocessing, feature extraction and selection. Finally, the motion is recognized by k-means clustering,This paper exploits the inertial sensors for the recognition of the following motions: up, down, left, right and the circle. The algorithm used for feature selection is Fast Fourier Transform (FFT), and the algorithm for recognition is K-means clustering. So this article is focused on feature extraction, and motion recognition. The corresponding algorithms are fast Fourier transform, and K-means clustering algorithm. KEY WORDS:Inertial sensors, K-means clustering, FFT 2

温度传感器的温度系数测量

温度传感器的温度系数测量 【目的要求】 1.了解温度传感器的温度特性; 2.了解温度传感器电路的静态特性; 3.学习测量温度传感器电路的输出—输入特性,并测定铂电阻(热敏电阻)的温度系数。 【实验仪器】 铂电阻(热敏电阻),温度传感器,数字万用表(3位半),温度计,保温杯,导线。 【实验原理】 传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。通过传感器将温度、压力、湿度等非电学量转换为电压等电学量进行检测,作为现代信息技术的基础——一传感器技术越来越广泛地应用在非电学量测量和智能检测、自动控制系统中。使用电阻型传感器时(如:温度、压力等),经常用到非平衡电桥电路,本实验用非平衡电桥和铂电阻温度传感器组成测温电路,测量此电路的输出—输入特性,并测定铂电阻的温度系数。 1.铂电阻温度传感器的温度特性 当温度变化时,导体或半导体的电阻值随温度而变化,这称为热电阻效应。根据电阻与温度的对应关系,通过测量电阻值的变化可以检测温度的改变,由此可制成热电阻温度传感器.一般将金属材料的电阻温度传感器称作热电阻;半导体材料的则称作热敏电阻。 通常金属材料的电阻值随温度升高而增大.这是因为温度越高,晶格振动越剧烈,从而使电子和晶格的相互作用越强,因此金属热电阻一般具有正温度系数.常用的热电阻材料有铜和铂。 工业用铂热电阻(Ptl0、Pt100、Pt1000)广泛用来测量一200~850 ℃范围的温度.在少数情况下,低温可测至一272 ℃(1 K),高温可测至1000 ℃.标准铂电阻温度计的准确度最高,可作为国际温标中961.78 ℃以下内插用标准温度计。它具有准确度高、灵敏度高、稳定性好等优点。 工业铂热电阻温度特性如下: 在-200~0 ℃时, ].)100(1[3 2 0T C T C BT AT R R T -+++= (1) 在0~850 ℃时, ).1(2 0BT AT R R T ++= (2) 在(1)式和(2)式中,R T 为温度T 时的铂电阻阻值,R 0为0℃时的铂电阻阻值,式中系数为 A=3.9083×10-3℃-1, B=-5.775×10-7℃-1, C=-4.183×10-12 ℃-1 在-200~850 ℃时,B 级工业铂热电阻有关技术参数如下: 测温度允许偏差/ ℃:±(0.30+0.005│T │); 电阻比W 100(R 100/R 0):1.385±0.001。 当T =0℃ 时,R 0=100Ω;T =100℃时,R 100=138.5Ω。 在0~100℃范围内(2)式可近似为

相关主题
相关文档 最新文档