当前位置:文档之家› 2015具有高介电常数的小型紧凑型镍 - 锌铁氧体介质谐振器天线

2015具有高介电常数的小型紧凑型镍 - 锌铁氧体介质谐振器天线

2015具有高介电常数的小型紧凑型镍 - 锌铁氧体介质谐振器天线
2015具有高介电常数的小型紧凑型镍 - 锌铁氧体介质谐振器天线

锰锌铁氧体

锰锌铁氧体 本文来自维库电子市场网https://www.doczj.com/doc/395865137.html,/news/, 本文地址:https://www.doczj.com/doc/395865137.html,/news/html/2007-5-24/38340.html 试制高导锰锌铁氧体 试制:氧化物湿法工艺,原材料按下列配方:Fe2O3:52.1mol%,MnO:23.9mol%,ZnO:24mol%,经湿混砂磨一次喷雾造粒(25kg蒸发量)后,850℃预烧,加入少量微量元素如Bi2O3、Zn2O3、MoO3等,再经二次砂磨二次喷雾干燥造粒(25kg蒸发量),压成φ4×2×1.5环形磁芯。在小型钟罩炉中1400℃烧结4~6小时,烧结过程中严格控制氧含量。磁环的磁导率μi通过HP4284ALCR表测量,用电子显微镜SEM观察磁环表面及断面结构,用EDAX分析表面成份。 选择原辅材料及微量添加元素如Bi2O3、In2O3、MoO3等,获得了初始磁导率达32000的高磁导率MnZn 铁氧体材料。经喷雾干燥后铁氧体粉料颗粒外观形状是实心球状,该粉料具有较好的流动性,同时松装比重较高,对铁氧体毛坯成型非常有利。粉料压制特性对毛坯密度及强度的影响,铁氧体粉料颗粒均已破碎,对应毛坯的密度为3.2g/cm3,较高的毛坯密度对于获得较好的电磁性能如高磁导率和低损耗的铁氧体是十分有益的。铁氧体颗粒形态及成型密度对初始磁导率影响还是比较大的。 微量元素是加入0.02wt%的Bi2O3,0.03wt%的Zn2O3,以及0.04wt%的MoO3,材料起始磁导率为32000,测试条件为:f=1kHz,U=0.05V,N=10Ts,25℃,φ4×2×1.5环。平均晶粒直径为45μm。 Bi2O3及ZnO在烧结过程中的挥发性,向铁氧体中加入过量Bi2O3(为0.08wt%,其中主成份及其它微量元素完全相同)后,由于Bi2O3大量挥发,导致铁氧体磁芯表层存在大量不规则气孔。φ4×2×1.5环内表面和外表面EDAX成份谱线。其中内表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=35.36 : 13.27 : 53.60 : 0.40 mol%;外表面成份是:Fe2O3 : MnO : ZnO : Bi2O3=46.62 : 18.82 : 35.28 : 0.09 mol%,经比较不难发现,内表面Bi2O3和ZnO含量分别是外表面的4倍和1.5倍。说明经过1400℃烧结时,Bi2O3的挥发比ZnO更厉害。料浆参数会影响铁氧体喷雾造粒粉料颗粒形状,以及铁氧体粉料的压制特性,从而影响毛坯的密度及机械强度,并最终影响铁氧体的初始磁导率。 通过精心选择原辅材料,添加微量元素Bi2O3、In2O3 以及MoO3等,并通过严格控制烧结工艺参数在小型钟罩炉中烧结,获得了μi=32000的高磁导率MnZn铁氧体材料。对高密度、轻量化、薄型化的高性能电子元器件的需求量大幅度增长。高磁导率MnZn铁氧体材料由于其特殊的电磁性能,在抗电磁干扰(EMI)噪声滤波器、电子电路宽带变压器、脉冲变压器、综合业务数据网(ISDN)、局域网(LAN)、宽域网(WAN)、背景照明、汽车电子等领域具有非常广泛的应用。高磁导率MnZn铁氧体材料特性主要体现在以下七个方面:高初始磁导率;在宽频下具有较高的磁导率;低损耗因数;低总谐波失真(THD);在宽温下具有较高的磁导率;磁导率减落系数要小;磁导率的应力敏感性要小。不同的应用领域对高磁导率MnZn铁氧体上述某个或几个方面的性能具有更高的要求。 环形铁心Le和Ae的计算方法 磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe)式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。 下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,这是严格按照标准执行的计算方法。 第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和Ae,并可推算叠片系数Sx,这是另外一种计算

镍锌铁氧体(NiZnFe2O4)及其工艺

第三十四讲、镍锌铁氧体(NiZnFe 2O 4 )及其工艺 教学目标:熟悉镍锌铁氧体(NiZnFe 2O 4 )的工艺 职业技能教学点:1添加剂2离子取代新课教学: 在1~100MHz范围内,NiZnFe 2O 4 应用最广泛。使用频率高、频带宽。由于Ni2+ 不易变价,故可在氧气氛中烧结,以避免Fe2+离子的产生。电阻率ρ可达106Ω.cm 以上。缺点是:Ni资源缺乏,故生产成本较高。 一、基本配方 Fe 2O 3 的含量接近于50mol%时,μ i 最高。对(Ni 0.32 Zn 0.68 O) 1-x (Fe 2 O 3 ) 1+x 的 配方,结果显示: 1、当x>0时,密度随x值的增加而下降,从而导致μ i 值的下降; 2、当x<0时,会产生非磁性相,因而μ i 随x负值的增大而下降; 3、随着Ni含量的增加,Fe 2O 3 的下降,这主要是由于偏离λs、K 1 较小的区域; 4、ZnO含量因使用频率与具体用途而异,当用于1MHz以下较低频段时ZnO含量可适当提高,甚至可达35%。使用频率的增高,要求ZnO含量随之减小,甚至可低到百分之几(摩尔比)。表10-1列出了一般通讯用NiZn铁氧体的配方与截止频率的关系:表10-1般通讯用NiZn铁氧体的配方(mol%百分比)与截止频率 NiZnFe 2O 4 用于大功率高频场中(因此称为高频磁),需要的是高饱和磁感 应强度。通常取NiFe 2O 4 : ZnFe 2 O 4 =60%:40%的配比,即Ni 0.6 Zn 0.4 Fe 2 O 4 。

二、添加剂的影响 1、添加Co 2O 3 在NiZnFe 2O 4 中添加少量的钴,可以产生感生各向异性,有利于提高截止频 率,降低损耗。另一方面由于Co3+的存在,将会在μ i -T曲线上呈现第二峰,有 利于改善温度特性。为了同时改善温度系数,添加平面六角的Co 2 Y铁氧体 (Co 2Y=Ba 2 Co 2 Fe 12 O 22 =2BaO.2CoO.6Fe 2 O 3 )十分有效。添加Co 2 Y主要是Co、Ba离 子的作用,Co离子呈几何有序排列,使畴壁稳定在能量最低位置,Ba2+半径大,可以起钉扎畴壁的作用。 2、添加BaO Ba2+半径大,加入后使局部区域晶格畸变,磁晶各向异性常数Ko(n>1)的值有一定增加,从而有可能得到平坦的μ i -T曲线和低的高频损耗。 3、添加SnO 2 NiZnFe 2O 4 在烧结中,伴随Zn离子的挥发,相应地有部分Fe3+转变为Fe2+, 使电阻率下降。如引入高价阳离子,可以与Fe2+生成稳定的静态键,从而使Fe2+ 束缚在高价离子附近而难以参与导电过程。含Sn的NiZnFe 2O 4 电阻率高、涡流 损耗小,可作为高频(0.1~75MHz)的感抗磁芯。 4、添加SiO 2、Bi 2 O 3 添加Bi 2O 3 主要起降低熔点和致密化的作用。Si4+(0.41A)进入晶格相应的产生 Fe2+,改变了磁晶各向异性常数,导致负的温度系数。如果只加入SiO 2 ,则只有 当温度大于1300℃时,Si4+进入晶格,而在高温下烧结,将使晶粒长大。而当SiO 2 和Bi 2O 3 组合添加时,Si4+可在较低的温度下进入NiZnFe 2 O 4 晶格,同时得到细晶 粒。 三、离子取代——NiCuZnFe 2O 4 多层片式电感器(MLCI)的工艺技术关键是实现软磁铁氧体和纯银内导体材料的共烧结,这就要求其中的软磁铁氧体必须兼备低温烧结和高性能的特点。迄今为 止,研究较多的是NiCuZnFe 2O 4 ,并已成为层片式电感器(MLCI)所广泛采用的 磁介质材料。多层片式电感器一般要求采用导电性能好且价格相对较低的纯银作 为内导体。由于纯银熔点为961℃,因此要求NiCuZnFe 2O 4 的烧结温度尽可能低,

软磁铁氧体材料基本类别及主要应用Featuresand

软磁铁氧体材料基本类别及主要应用(Features and applicat ion of Soft magnet) 软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。 一:国内外研发现状: 在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。 上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(?i=15000)、H5E(?i=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的H5C2(?i=10000)基础上,又先后开发了H5C3(?i=12000)、H5D(?i=15000)和H5E(?i=18000)等系列高?软磁铁氧体材料;90年代末已试验成功?i=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(?i=12000)、15000H(?i=15000)和18000H(?i=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:?i=15000、3E7:?i=15000、MA T-H:?i=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过?i=18000。 虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产?i=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、

锰锌与镍锌铁氧体

锰锌铁氧体和镍锌铁氧体 锰锌铁氧体和镍锌铁氧体是目前生产的软磁铁氧体中品种最多、应用最广泛的两大系列磁芯元件。我们知道,用于电视机中作行输出变压器的U形磁芯、偏转磁芯、还有作变压器的E形磁芯,一般都是锰锌铁氧体材料制成的。用于收音机中的磁性天线,有锰锌也有镍锌,但可从棒端不同颜色来区别。例如,有的工厂在锰锌中波磁棒的棒端喷有黑漆,在镍锌短波磁棒的棒端喷有大红色漆。另外,各种环形磁芯也有锰锌、镍锌之分。 但是遇到体积较小的螺纹形、圆柱形、工形和帽形磁芯,有的用锰锌材料制成,也有的用镍锌材料制成,而滋芯上又没有色标,当这些磁芯混在一起时,如何来区分呢?下面介绍两种具体方法。 一、目测法:由于锰锌铁氧体一般磁导率μ比较高,晶粒较大,结构也比较紧密,常呈黑色。而镍锌铁氧体一般磁导率μ比较低,晶粒细而小,并且是多孔结构,常呈棕色,特别是在生产过程中烧结温度比较低时尤为突出。根据这些特点,我们可用目测法来区分。在光线比较亮的地方,如果看到铁氧体的颜色发黑、有较耀眼的亮结晶,此磁芯为锰锌铁氧体;如果看到铁氧体带棕色、光泽暗淡、晶粒不耀眼,此磁芯为镍锌铁氧体。目测法是一种比较粗略的方法,经过一定实践也是可以掌握的。 二、测试法:这种方法比较可靠,但需要一些测试仪器,例如高阻计、高频Q表等。 1.利用锰锌和镍锌铁氧体的电阻率ρ不同来区分。 由于锰锌铁氧体的电阻率比较低,约在103Ω·cm以下,而镍锌铁氧体的电阻率较高,约105~108Ω·cm。所以,我们可以用高阻计或能测量电阻率的其它任何仪表来测量。测试前,要在磁心上作两个任意位置的电极,为了测试方便,可选螺纹形、圆柱形、工形磁心两个圆柱体端面作电极,帽形磁心可选在同一圆平面上作两个电极,这时,用砂皮轻轻磨去待测部位磁心的氧化层,然后可涂上导电性好的材料作为测试电极,一般可用6B铅笔涂上两个石墨电极,作成如图2圆柱形磁心、帽形磁心所示的石墨电极,测直流电压在几十伏以上时的电阻率。在作好两个石墨电极后,也可用500型万用表(量程选择开关可放在10K 档)测磁心的阻值来区分锰锌还是镍锌铁氧体。一般阻值在150KΩ以下的是锰锌;阻值相当大、万用表表头指针基本不动的则是镍锌铁氧体。 2.我们还可利用锰锌和镍锌铁氧体使用频率f不同来区分。 由于锰锌铁氧体材料的使用频率一般在2 MHz以下,它的Q值较低;而镍锌铁氧体使用频率在2~200MHz,它的Q值较高。我们可以利用现成的高频线圈,例如图3所示那种(要求此线圈不装磁心时,电感量小于20μH),先把磁心取出来,再把要测试的铁氧体磁心分别装入,在QBG—3高频Q表或其它同精度的仪表上测Q值,Q值高的为镍锌;Q值低的(一般要低几倍)是锰锌。

铁氧体

铁氧体又称铁淦氧或磁性瓷。为一类非金属磁性材料。是磁性的三氧化二铁与其他一种或多 种金属氧化物的复合氧化物(或正铁酸盐)。铁氧体有磁性,在高频时会较高的磁导率(比金属磁性材料高);其电阻率比金属磁性材料大得多,还有较高的介电性能。磁铁矿FeO·Fe2O3是最简单的铁氧体。通常铁氧体限于由那些具有d层或f层不成对电子的元素 组成,尤其是与二价铁离子半径接近的二价金属离子,如锰、锌、铜、镍、镁、钴等离子, 也可是希土元素离子或镓、铝、铋、钡、锶等离子。 铁氧体磁性材料按其矫顽力(使已磁化的铁磁质失去磁性而必须加的与原磁化方向相反的外 磁场强度)和用途可分为软磁、硬磁、旋磁、矩磁、压磁五类。软磁铁氧体在较弱磁场下易 磁化也易退磁,如锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-ZnFe2O4,结构为尖晶石型; 主要做各种电感元件,如滤波器、变压器、天线等的磁芯和录音、录像机的磁头。硬磁铁氧 体磁化后不易退磁,能长期保留磁性,如钡铁氧体BaFe12O17,结构大多为磁铅石型;主 要用作恒磁源,在电讯、电声、电表、电机工业中可代替铝镍钴系硬磁金属材料。旋磁铁氧 体也称微波铁氧体,如镍铜铁氧体Ni-CuFe2O4和钇石榴石铁氧体3M2O3·5Fe2O3(M为 三价钇、钐、钇等希土离子),用于雷达、导航、遥控等电子设备中。矩磁铁氧体有矩形磁 滞回线,如锂锰铁氧体Li-MnFe2O4等,一般用作记忆元件,用于电子计算机存储器中。 压磁铁氧体磁化时,能在磁场方向作机械伸长或压缩,如镍锌铁氧体Ni-ZnFe2O4、镍铜铁氧体Ni-CuFe2O4等,一般作磁致伸缩元件,用于超声波换能器等。 铁氧体性能好,成本低,生产工艺简单,又能节约大量贵重金属,为高频弱电领域中有发展 前途的非金属磁性材料。但其饱和磁化强度较低,通常为纯铁的1/3—1/5,不能用于发 电、电动、输电变压器等大功率电力设备中。 隐身技术与隐身材料 https://www.doczj.com/doc/395865137.html, 时间:2007-1-6 来源:生命经纬 当人们谈论1991年初春海湾战争中的先进武器时,都免不了要提到隐身战斗机F-117A。隐身飞机的英文名称是stealthy aircraft,也可译成隐形飞机。设计者的主导思想是力图降低飞机在航行过程中的目标特性,以提高它的突防能力和攻击能力。隐身技术、星球大战和核技术被美国列为国防的三大高科技领域。 飞机隐身有六大要素:雷达、红外、视觉、噪音、烟雾、凝迹。早期的隐身措施是:(1)使发动机排气更干净,烟道气更淡;(2)蒙皮染成灰色,提高视觉隐形;(3)提高升限和飞行速度。但这些还不是真正的隐身飞机。F-117A是第一种真正的隐身战斗机。其隐身的具体措施是:(1)设计成独特的气动外形。当入射的无线电波波长远小于飞机尺寸时,根据几何光学原理,可以看成独立反射的集合,并尽量使反射信号相互干涉。(2)为防止进气道、发动机、压气机反射雷达波,两侧设有条形隐蔽网状格栅栅条,能屏蔽10cm或更长的雷达波。(3)采用能够吸收雷达波的复合材料和吸波涂料。(4)采用有源或无源电子干扰。(5)在红外隐身方面,主要是降低飞机的红外辐射,其具体措施是降低发动机的喷口排气温度和采用屏蔽技术。 从以上几项措施可以看到:(1)隐身技术主要是指降低飞机的雷达反射截面积和红外特征。(2)隐身技术是一种综合技术。在进行雷达波隐身技术研究中,最重要的是改进飞行器的气动外形设计,其次是吸波材料的选用。(3)隐身技术是一种探测对抗技术。在一切军事行动中,交战双方的行为都具有很大的保密性、多样性。不同的隐身技术都是针对现有探测技术而发展起来的,

铁氧体

铁氧体.txt如果中了一千万,我就去买30套房子租给别人,每天都去收一次房租。哇咔咔~~充实骑白马的不一定是王子,可能是唐僧;带翅膀的也不一定是天使,有时候是鸟人。是镍铁尖晶石 尖晶石是一族矿物,在自然界中形成于熔融的岩浆侵入到不纯的灰岩或白云岩中经接触变质作用形成的。有些出现在富铝的基性岩浆岩中。宝石级尖晶石则主要是指镁铝尖晶石,是一种镁铝氧化物。晶体形态为八面体及八面体与菱形十二面体的聚形。颜色丰富多彩,有无色、粉红色、红色、紫红色、浅紫色、蓝紫色、蓝色、黄色、褐色等。尖晶石的品种是依据颜色而划分的,有红、橘红、蓝紫、蓝色尖晶石等。玻璃光泽,透明。贝壳状断口。淡红色和红色尖晶石在长、短波紫外光下发红色荧光。 H2 + 2Fe3+ +O2- ==H2O + 2Fe+ +Vo(空穴) CO2 +2Vo+ 4Fe2+ ==C +2O2- +4Fe3+ 总反应:CO2+2H2 ==2H2O +C 不同的铁磁材料磁滞现象的程度不同,磁滞回线水平方向越宽的材料,也就是磁滞回线面积越大的材料,其磁滞现象越严重。如图(a)所示,磁滞回线面积宽阔,材料的剩磁和矫顽磁力都大,其磁滞损失严重,不宜于作交变磁场中工作的铁心,而适合于作永久磁铁,这种材料称为硬磁性材料。如图(b)所示,磁滞回线瘦窄,而面积较小,这种材料称为软磁性材料,它的磁滞损失较小,适于交变磁场工作。软磁材料是电子工业中变压器、电机等电磁设备所不可缺少的材料。 软磁性材料软磁性材料的剩磁与矫顽磁力都很小,即磁滞回线很窄,它与基本磁化曲线几乎重合。这种软磁性材料适宜作电感线圈、变压器、继电器和电机的铁心。常用的软磁性材料有硅钢片,坡莫合金和铁氧体等。 1. 硅钢片硅钢片是电源变压器、电机、阻流线圈和低频电路的输入输出变压器等设备最常用的材料。硅钢片质量的好坏,通常用饱和磁感应强度B来表示。好的硅钢片饱和磁感应强度可达10000高斯以上,看上去晶粒多、片子薄、质脆、断面曲折。差的硅钢片只有6000高斯,看上去呈深黑色、片子厚、韧性大、断面平直。有一种专供C型变压器铁心用的冷轧硅钢片,它的导磁性能是有方向性的,使用时要沿导磁性强的方向制成状,用卷绕法作成“C”型变压器铁心,其饱和磁感应强度比普通硅钢片高很多,采用这种硅钢片可大大提高磁感应强度,减小铁心的体积和重量。 2. 坡莫合金坡莫合金又叫铁镍合金,它在弱磁场(小电流产生的磁场)下具有独特的优点,能满足电信工程的特殊需要。例如超坡莫合金的初始导磁率μ0可达10万以上。但坡莫合金中含有镍,比较贵重,不宜广泛地使用,只在一些要求灵敏度高、体积又必需小的电磁器件中,才采用这种材料,它是一种高级的软磁性材料。 3. 铁氧体铁氧体是目前通信设备中大量使用的磁性元件,可以用它作电感和变压器铁心。铁氧体就其形状来分有E型如图3-19,罐形如图3-20和环形如图3-21所示。E形铁氧体多用来作变压器的铁心,罐形铁氧体多用来作电感线圈和某些变压器的铁心,环形铁氧体用来作特殊要求的电感线圈。 铁氧体是一种非金属的磁性材料,其电阻率较高,在102~109欧姆—厘米之间,涡流损耗小,起始导磁率大,其值可由几十到几千。使用频率范围不同,则可选用不同类型的铁氧体,其频率可由几百赫到几百兆赫。这种磁性材料的主要缺点是机械性能脆,热稳定性差,饱和磁感应强度低。 实验表明,任何物质在外磁场中都能够或多或少地被磁化,只是磁化的程度不同.根据物质在外磁场中表现出的特性,物质可粗略地分为三类:顺磁性物质,抗磁性物质,铁磁性物质. 根据分子电流假说,物质在磁场中应该表现出大体相似的特性,但在此告诉我们物质在外磁

镍锌铁氧体 镍锌材料特性

目 录 catalogue DN100H材料特性 DN100H Material Characteristics (3) DN10H 材料特性 DN10H Material Characteristics (4) DN150H 材料特性 DN150H Material Characteristics (5) DN200 材料特性 DN200 Material Characteristics (6) DN25H 材料特性 DN25H Material Characteristics (7) DN30B 材料特性 DN30B Material Characteristics (8) DN35H 材料特性 DN35H Material Characteristics (9) DN40B 材料特性 DN40B Material Characteristics (10) DN50B材料特性 DN50B Material Characteristics (11) DN5H 材料特性 DN5H Material Characteristics (12)

DN65H 材料特性 DN65H Material Characteristics (13) DN80H 材料特性 DN81H Material Characteristics (14) DN85H 材料特性 DN85H Material Characteristics (15) DN8H 材料特性 DN8H Material Characteristics (16)

频率 Frequency(MHz)0.01 0.1110I n i t i a l p e r m e a b i l i t y μi 初始磁导率 80010频率 Frequency(MHz) 20 0.1 1100

第三章 磁性材料要点

第三章磁性材料 物质磁性的研究是近代物理学的重要领域之一。磁性现象的范围很广泛。从微观粒子到宏观物体,以至于宇宙天体,都具有某种程度的磁性。 磁性现象很早就被发现,我国人民在3000多年前就发现了磁石(Fe3O4)能相互吸引及磁石吸引铁的现象。我国古代的四大发明之一指南针即是例证。 随着近代科学技术的发展,由于金属和合金磁性材料的电阻率低,损耗大,已不能满足应用的需要,尤其在高频范围。 磁性无机材料科学技术除了有高电阻、低损耗的优点以外,还具备各种不同的磁学性能,因此他们在无线电电子学、自动控制、电子计算机、信息存储,激光调制等方面,都有广泛的应用。 磁性无机材料一般是含铁及其他元素的复杂氧化物,通常称为铁氧体(ferrite),它的电阻率为10—106Ω·m,属于半导体范围。目前,铁氧体已发展成为一门独立科学。 第一节磁性的广泛 物质的磁性来源于原子的磁性。

原子的磁性包括三个部分:电子的自旋磁矩、电子的轨道磁矩(由电子绕原子核的运动产生)和原子核的磁矩。 原子核的磁矩一般比电子的磁矩小的多(相差三个数量级),可以忽略不计。所以原子的总磁矩是电子的自旋磁矩和轨道磁矩的总和。 电子绕原子核运动产生的轨道磁矩和角动量的比值r为: 电子的自旋磁矩和角动量的比值为: 这表明,电子自旋运动的磁矩比轨道运动的磁矩大一倍。 实验证明,原子组成分子或宏观物体后,其平均磁矩往往不等于孤立原子的磁矩,因为原子之间的相互作用会引起磁矩的变化。 很多磁性材料的电子自旋磁矩要比电子轨道磁矩大。这是因为在晶体中,电子的轨道磁矩受晶体(格)场的作用,或者说轨道磁矩被“猝灭”或“冻结”了,

镍锌系软磁铁氧体材料

镍锌系软磁铁氧体材料 Ni-Zn系软磁铁氧体材料是另一类产量大、应用广泛的高频软磁材料。当应用频率在1MHz以下时其性能不如Mn-Zn系铁氧体,而在1MHz以上时,由于它具有多孔性及高电阻率,其性能大大优于Mn-Zn铁氧体,非常适宜在高频中使用。 用镍锌软磁铁氧体材料做成的铁氧体宽频带器件,使用频率可以做到很宽,其下限频率可做到几千赫兹,上限频率可达几千兆赫兹,大大扩展了软磁材料的频率使用范围,主要功能是在宽频带范围内实现射频信号的能量传输和阻抗变换。由于它们具有频带宽、体积小、重量轻等特点而被广泛应用在雷达、电视、通讯、仪器仪表、自动控制、电子对抗等领域。 世界上现已工业化生产镍锌铁氧体的国家中,目前,日本TDK、FDK、德国西门子、美国Stealword等公司的产品技术水平被公认为是世界上最高的,射频宽带Ni-Zn(磁芯)的工作频率可达0.1MHz~1.5GHz,品种规格上千种。而国内起步较晚,仅有少数厂家在开发低噪声滤波器和铁氧体吸收与抑制元件,但与国外的差距较大,尚未系列化、标准化。 目前,随着信息网络技术的飞速发展,在有线电视系统和闭路电视系统的基础上迅速发展起来的光纤同轴电缆混合(HFC)网络系统,作为综合信息宽带网络,具有显著的优势。 HFC网络系统的改造和建设,需要各种射频宽带铁氧体器件,而射频宽带铁氧体材料(磁芯)系列是制造上述铁氧体器件的关键磁性材料。HFC的发展,大大刺激了对射频宽带铁氧体材料及器件的需求。Ni-Zn软磁铁氧体材料除广泛用于HFC宽带网络外,还大量用于抗电磁干扰。使用镍锌系软磁铁氧体材料制成的滤波器、铁氧体抑制器是其中最有效、简单、经济的办法之一。因此,在各种电子、电子线路中使用大量各种特性和各种形状的EMI软磁铁氧体磁芯,以满足抗电磁干扰和电磁兼容的要求。抗电磁干扰产品和电磁兼容产品发展的方向是各类磁芯向高磁导率、高频化、高速、小型化和片式高组装密度化发展。如今用Ni-Zn等软磁材料做成的铁氧体桨料和导体桨料交替叠层厚膜印刷和烧结而成、实现小型化表面安装的器件已经实用化,发展前途光明。

怎样区分锰锌还是镍锌铁氧体

怎样区分锰锌还是镍锌铁氧体 锰锌铁氧体和镍锌铁氧体是目前生产的软磁铁氧体中品种最多、应用最广泛的两大系列磁芯元件。我们知道,用于电视机中作行输出变压器的U形磁芯、偏转磁芯、还有作变压器的E 形磁芯,一般都是锰锌铁氧体材料制成的。用于收音机中的磁性天线,有锰锌也有镍锌,但可从棒端不同颜色来区别。例如,有的工厂在锰锌中波磁棒的棒端喷有黑漆,在镍锌短波磁棒的棒端喷有大红色漆。另外,各种环形磁芯也有锰锌、镍锌之分。 但是遇到体积较小的螺纹形、圆柱形、工形和帽形磁芯,有的用锰锌材料制成,也有的用镍锌材料制成,而滋芯上又没有色标,当这些磁芯混在一起时,如何来区分呢?下面介绍两种具体方法。 一、目测法:由于锰锌铁氧体一般磁导率μ比较高,晶粒较大,结构也比较紧密,常呈黑色。而镍锌铁氧体一般磁导率μ比较低,晶粒细而小,并且是多孔结构,常呈棕色,特别是在生产过程中烧结温度比较低时尤为突出。根据这些特点,我们可用目测法来区分。在光线比较亮的地方,如果看到铁氧体的颜色发黑、有较耀眼的亮结晶,此磁芯为锰锌铁氧体;如果看到铁氧体带棕色、光泽暗淡、晶粒不耀眼,此磁芯为镍锌铁氧体。目测法是一种比较粗略的方法,经过一定实践也是可以掌握的。 二、测试法:这种方法比较可靠,但需要一些测试仪器,例如高阻计、高频Q表等。 1.利用锰锌和镍锌铁氧体的电阻率ρ不同来区分。由于锰锌铁氧体的电阻率比较低,约在103Ω·cm 以下,而镍锌铁氧体的电阻率较高,约105~108Ω·cm。所以,我们可以用高阻计或能测量电阻率的其它任何仪表来测量。测试前,要在磁心上作两个任意位置的电极,为了测试方便,可选螺纹形、圆柱形、工形磁心两个圆柱体端面作电极,帽形磁心可选在同一圆平面上作两个电极,这时,用砂皮轻轻磨去待测部位磁心的氧化层,然后可涂上导电性好的材料作为测试电极,一般可用6B铅笔涂上两个石墨电极,作成如图2圆柱形磁心、帽形磁心所示的石墨电极,测直流电压在几十伏以上时的电阻率。在作好两个石墨电极后,也可用500型万用表(量程选择开关可放在10K档)测磁心的阻值来区分锰锌还是镍锌铁氧体。一般阻值在150KΩ以下的是锰锌;阻值相当大、万用表表头指针基本不动的则是镍锌铁氧体。 2.我们还可利用锰锌和镍锌铁氧体使用频率f不同来区分。由于锰锌铁氧体材料的使用频率一般在2 MHz以下,它的Q值较低;而镍锌铁氧体使用频率在2~200MHz,它的Q值较高。我们可以利用现成的高频线圈,例如图3所示那种(要求此线圈不装磁心时,电感量小于20μH),先把磁心取出来,再把要测试的铁氧体磁心分别装入,在QBG—3高频Q表或其它同精度的仪表上测Q值,Q值高的为镍锌;Q值低的(一般要低几倍)是锰锌。 目前,有的工厂为了降低成本,以镁锌代镍锌,镁锌也适用高频,所以,无论目测还是测试得到的高频磁心元件也有可能不是镍锌,而是镁锌铁氧体,这一点提请注意。

铁氧体

铁氧体 中文名称:铁氧体 英文名称:ferrite 定义:由以三价铁离子作为主要正离子成分的若干种氧化物组成,并 呈现亚铁磁性或反铁磁性的材料。 铁氧体是一种具有铁磁性的金属氧化物。就电特性来说,铁氧体的电阻率比金属、合金磁性材料大得多,而且还有较高的介电性能。铁氧体的磁性能还表现在高频时具有较高的磁导率。因而,铁氧体已成为高频弱电领域用途广泛的非金属磁性材料。由于铁氧体单位体积中储存的磁能较低,饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因而限制了它在要求较高磁能密度的低频强电和大功率领域的应用。 简介 铁氧体(ferrites)铁氧体是一种非金属磁性材料,又叫铁淦氧。它是由三氧化二铁和一种或几种其他金属氧化物(例如:氧化镍、氧化锌、氧化锰、氧化镁、氧化钡、氧化锶等)配制烧结而成。它的相对磁导率可高达几千,电阻率是金属的1011倍,涡流损耗小,适合于制作高频电磁器件。铁氧体有硬磁、软磁、矩磁、旋磁和压磁五类。旧称铁淦氧磁物或铁淦氧,其生产过程和外观类似陶瓷,因而也称为磁性瓷。铁氧体是铁和其他一种或多种适当的金属元素的复合氧化物。性质属于半导体,通常作为磁性介质应用,铁氧体磁性材料与金属或合金磁性材料之间最重要的区别在于导电性。通常前者的电阻率为102~108Ω·cm,而后者只有 10-6~10-4Ω·cm。 历史沿革 中国最早接触到的铁氧体是公元前 4世纪发现的天然铁氧体,即磁铁矿(Fe3O4),中国所发明的指南针就是利用这种天然磁铁矿制成的。到20世纪30年代无线电技术的发展,迫切地要求高频损耗小的铁磁性材料。而四氧化三铁的电阻率很低,不能满足这一要求。1933年日本东京工业大学首先创制出含钴铁氧体的永磁材料,当时被称为OP磁石。30~40年代,法国、日本、德国、荷兰等国相继开展了铁氧体的研究工作,其中荷兰菲利浦实验室物理学家J.L.斯诺克于1935年研究出各种具有优良性能尖晶石结构的含锌软磁铁氧体,于1946年实现工业化生产。1952年,该室J.J.文特等人曾经研制成了以 BaFe12O19为主要成分的永磁性铁氧体。这种铁氧体与1956年该室的G.H.永克尔等人所研究的四种甚高频磁性铁氧体具有类似的六角结构。1956年E.F.贝尔托和F.福拉又报道了亚铁磁性的Y3Fe5O12的研究结果。其中代换离子Y有Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、 Tm、Yb和Lu等稀土离子。由于这类磁性化合物的晶体结构与天

锰锌铁心与镍锌铁心的区别

锰锌铁心与镍锌铁心的区别 磁导率MnZn>>NiZn 还有些什么区别,为什么高频功率变压器都采用MnZn而不用NiZn? 高手们请不吝赐教 MnZn和NiZn材料的主要区别在于磁道率和电阻率以及功耗.磁道率的话你是对的MnZn>>NiZn.而对于电阻率以及功耗(相同尺寸在相同的B和f下测试)正好相反NiZn>>MnZn.我们知道铁心加上线圈通交流电后由于电磁感应会产生感应电动势,电动势除以电阻(和材料的电阻率成正比)就是电流,也就是我们所说的涡流效应.涡流效应带来的后果是发热,热量和电流成正比.所以当变压器处于中频阶段时(10K-1MHz)考虑到磁道率和功耗的原因一般选用MnZn材料,而高频 (>1MHz)时用NiZn材料.其实在f>?MHz后,MnZn材料绕上线圈通电流后由于和线圈的分布电容共振,到达截至频率后就不能使用了,磁道率越高的材料的截至频率越低.所以一般MnZn的使用频率是10K-500KHz,做成功率器件,而NiZn用于高频(因为磁道率比较低,所以截至频率很高,有的可以达到GHz水平),做成电感,射频器件等.顺便说一下,MnZn的电阻率是0.1-100左右,NiZn是10的7次方到9次方左右.当然MnZn和NiZn材料的不同点还有一些,但影响工作环境的主要是以上3点,其它的就不在这里累述了! 再补充一下:1频率越大,就是电场变化越快,形成的磁场变化越快,激发的感应电场的感应电动势就越高,所以高频下只能用电阻率很高的材料.2MnZn材料一般用在频率是10-500KHz(如TDK的PC95材料),而>500KHz<截至频率的区域一般认为是不稳定的,所以一般不用.3一般磁心行业内的频率划分是1Hz-10KHz为低频(可用来代替直流电测试Bmax),10K-1MHz为中频,>1MHz为高频.而我们通常所说的高频变压器是指10KHz-1MHz和磁心行业有所区别. 1MnZn低频磁导率高于NiZn,而高频是低于NiZn

铁氧体吸波材料

铁氧体吸波材料 资料整理:夏益民 一、电磁辐射防护材料概述与分类 电磁辐射防护材料可分为电磁波屏蔽材料和电磁波吸收材料。 电磁波屏蔽材料是指对入射电磁波有强反射的材料,主要有金属电磁屏蔽涂料、导电高聚物、纤维织物屏蔽材料。 将银、碳、铜、镍等导电微粒掺入到高聚物中可形成电磁波屏蔽涂料其具有工艺简单、可喷射、可刷涂等优点,成本也较低,因此得到广泛应用。据调查,美国使用的屏蔽涂料占屏蔽材料的80%以上,镍系屏蔽涂料化学稳定性好,屏蔽效果好,是目前欧美等国家电磁屏蔽涂料的主流。 导电高聚物屏蔽材料主要有两类,一类是通过在高聚物表面贴金属箔、镀金属层等方法形成很薄的导电性很高的金属层,具有较好的屏蔽效果;另一类是由导电填料与合成树脂构成,导电填料主要有金属片、金属粉、金属纤维、金属合金、碳纤维、导电碳黑等。 金属纤维与纺织用纤维相互包覆可用来制备金属化织物!此类织物既保持了原有织物的特性!又具有电磁屏蔽效能。 电磁波吸收材料指能吸收,衰减入射的电磁波,并将其电磁能转换成热能耗散掉或使电磁波因干涉而消失的一类材料。吸波材料由吸收剂、基体材料、黏结剂、辅料等复合而成,其中吸收剂起着将电磁波能量吸收衰减的主要作用,吸波材料可分为传统吸波材料和新型吸波材料# 传统的吸波材料按吸波原理可分为电阻型、电介质型和磁介质型。 电阻型吸波材料的电磁波能量损耗在电阻上!吸收剂主要有碳纤维、碳化硅纤维、导电性石墨粉、导电高聚物等;金属短纤维、钛酸钡陶瓷等属于电介质型吸波材料;铁氧体、羰基铁粉、超细金属粉等属于磁介质型吸波材料,它们具有较高的磁损耗角正切,主要依靠磁滞损耗、畴壁共振和自然共振、后效损耗等极化机制衰减吸收电磁波,研究较多且比较成熟的是铁氧体吸波材料。 二、铁氧体

铁氧体磁环种类

铁氧体磁环种类 铁氧体是一种具有铁磁性的金属氧化物。就电特性来说,铁氧体的电阻率比金属、合金磁性材料大得多,而且还有较高的介电性能。铁氧体的磁性能还表现在高频时具有较高的磁导率。因而,铁氧体已成为高频弱电领域用途广泛的非金属磁性材料。由于铁氧体单位体积中储存的磁能较低,饱合磁化强度也较低(通常只有纯铁的1/3~1/5),因而限制了它在要求较高磁能密度的低频强电和大功率领域的应用。 铁氧体软磁磁环 这类材料在较弱的磁场下,易磁化也易退磁,如锌铬铁氧体磁环和镍锌铁氧体磁环等。软磁铁氧体磁环是目前用途广,品种多,数量大,产值高的一种铁氧体材料。它主要用作各种电感元件,如滤波器磁芯、变压器磁芯、无线电磁芯,以及磁带录音和录像磁头等,也是磁记录元件的关键材料。 铁氧体硬磁磁环 铁氧体硬磁材料磁化后不易退磁,因此,也称为永磁材料或恒磁材料。如钡铁氧体、钢铁氧体等。它主要用于电信器件中的录音器,拾音器、扬声器,各种仪表的磁芯等。 铁氧体旋磁材料 磁性材料的旋磁性是指在两个互相垂直的稳恒磁场和电磁波磁场的作用下,平面偏振的电磁波在材料内部虽然按一定的方向传播,但其偏振面会不断地绕传播方向旋转的现象。金属、合金材料虽然也具有一定的旋磁性,但由于电阻率低、涡流损耗太大,电磁波不能深入其内部,所以无法利用。因此,铁氧体旋磁材料旋磁性的应用,就成为铁氧体独有的领域。旋磁材料大都与输送微波的波导管或传输线等组成各种微波器件。主要用于雷达、通信、导航、遥测等电子设备中。 铁氧体矩磁材料 这是指具有矩形磁滞回线的铁氧体材料。它的特点是,当有较小的外磁场作用时,就能使之磁化,并达到饱和,去掉外磁场后,磁性仍然保持与饱和时一样。如镁锰铁氧体磁环,锂锰铁氧体磁环等就是这样。这种铁氧体材料主要用于各种电子计算机的存储器磁芯等方

铁氧体

1.引言 1.1铁氧体的种类及特性[1、2] 铁氧体为一种具有软磁性的金属氧化物。是由铁和其它一种或多种金属合成的金氧化物。尖晶石型铁氧体的化学分子式为MeFe2O4或MeO·Fe2O3,Me是指离子半与二价铁离子相近的二价金属离子(Mn2+﹑Zn2+﹑Cu2+ Ni2+﹑Mg2+)或平均化学价为二价的多种金属离子组成。使用不同的替代金属,可以合成不同类型的铁氧体。以Mn2+替代Fe2+所合成的复合氧化物MnOFe2O3(MnFe2O4)称为锰铁氧体,以Zn2+替代Fe2+所组成的复合物ZnO.Fe2O3(ZnFe2O4)称为锌铁氧体。通过控制替代金属,可以达到控制材料磁特性的目的。由一种金属离子替代而成的铁氧体为单组分铁氧体;由两种或两种以上的金属离子替代可以合成出双组分铁氧体和多组分铁氧体。锰锌铁氧体(Mn-ZnFe2O4)和镍锌铁氧体(Ni-ZnFe2O4)就是双组分铁氧体,而锰镁铁氧体(Mn-Mg-ZnFe2O4))则是多组分铁氧体。 1.2软磁铁氧体现状与发展 由于我国的电子信息产业取得空前的发展,作为软磁铁氧体的重要应用领域无论是传统消费的电子音像产品,还是新崛起的移动通信设施和家用电脑及外部设备,都处于蓬勃发展的状态;而基础设施建设的大规模开展使节能照明产品的需求也在快速增长;由于电磁兼容要求的提高,EMI 专用器件需求猛增。这些都对软磁铁氧体产业提出更高的要求。纵观电子信息产业发展的态势,可以得到一个结论:当前软磁铁氧体的最大市场在中国,市场增长最快的地区也是中国国内电子工业产品需求量将会以15%左右年增长率向前发展,高档产品和出口产品的比率将会很快提高,国内需要高档产品量也不断增加。据统计,珠江三角洲地区磁环年需量30亿只左右,磁芯约2亿只,美国的PULSE,台商YCL等在大陆办厂的企业用量也比较大,仅美国PULSE公司一年要用1亿美元进口高磁导率铁氧体系列产品,还有国内华为、中兴、大唐、东方通讯等程控交换机生产厂,也需要高档软磁铁氧体产品代替进口产品。今年国内电子产品需要软磁铁氧体3.8万吨,其中长虹公司仅彩电需要的软磁铁氧体磁芯用量6000吨,还有联想、长城等公司电脑和显示器和

磁性材料料基础知识培训

磁性材料料基础知识培训 磁性材料: 概述:磁性是物质的基本属性之一。磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性。一切物质都具有磁性。自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料。 磁性材料的分类,性能特点和用途: 1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物。他们大多具有亚铁磁性。特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。饱和磁化强度低,不适合高磁密度场合使用。居里温度比较低。 2 铁磁性材料:指具有铁磁性的材料。例如铁镍钴及其合金,某些稀土元素的合金。在居里温度以下,加外磁时材料具有较大的磁化强度。 3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。

4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等。 铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等。 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 磁性材料是一种重要的电子材料。早期的磁性材料主要采用金属及合金系统,随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。 铁氧体磁性材料按其晶体结构可分为:尖晶石型(MFe2O4);石榴石型(R3Fe5O12);磁铅石型(MFe12O19);钙钛矿型(MFeO3)。

相关主题
文本预览
相关文档 最新文档