当前位置:文档之家› 国网考试总结-高等电力系统分析

国网考试总结-高等电力系统分析

国网考试总结-高等电力系统分析
国网考试总结-高等电力系统分析

电力系统静态安全分析的基本概念

电力系统静态安全分析是电力系统规划和调度的常用手段,用以判断在发生预想事故(输变电设备强迫退出运行)后系统是否会过负荷或电压越限的功能。

电力系统动态安全分析用于判断在发生预想事故后系统是否会失稳的功能。

静态安全分析的基本方法:补偿法,直流潮流法,灵敏度分析法。

直流输电的基本原理及稳态数学模型

1、直流输电线路输送的电流和功率由线路两端的直流电压所决定,与两端的交流系统的频率和电压相位无关。直流电压的调节是通过调节换流器的触发角和交流系统的电压来实现的,换流器输出直流电压的改变,将决定直流电流的大小。(直流潮流的控制)

2、由于交流变压器等值电感的存在,相电流不能突变,因而换流器的供电电源从一相换到另一相时不能瞬时完成,需要经过一个换相期,换相期所对应的电角度称为换相角。(换相角定义,范围)

3、由于换相角的存在,直流电压的平均值将随直流电流的增大而减小;换流器正常工作的触发角的变化范围减小。(换相角对直流系统的影响)

4、换相电流中包含两个分量,分别为常数分量和正弦分量。其中,常数分量随着触发角的增大而减小,正弦分量滞后于换相电压90°。常数分量是短路电流中的自有分量,其产生机理是电感回路中的电流不能发生突变;正弦分量是短路电流中的强迫分量,由于短路回路是纯电感回路,所以正弦分量的相位滞后于电源电压90度。因此,换流器的稳态工况是在换相期使交流系统两相短路,在非换相期使交流系统单相断线。(换相电流的理解)

5、直流潮流的基本方程:整流器、逆变器、交流基波电流和直流电流、直流电压和交流电压的关系。

6、直流稳态运行方程中引入了等值换相电阻,等值换相电阻并不具有真实电阻的全部意义,它不吸收有功功率,其大小体现了直流电压平均值随直流电流增大而减小的斜率。等值换相电阻是一个网络参数,不随系统运行状态的改变而改变。由于等值电阻的引入,换相角不显含在直流潮流公式中,换相效应完全由换相电阻与直流电流的乘积表征。(等值换相电阻,表达式)

7、多桥换流器通常采用偶数个桥在直流侧相串,在交流侧相并的接线方法。双桥换流器采用YY接线和Y△接线,使交流侧电压相位相差30°。(多桥换流器)

8、一般的控制过程是,首先由自由控制系统调整触发角(整流侧为触发角,逆变侧为熄弧超前角)而使整个电力系统快速地达到合适的运行状态;然后通过调整换流变压器的变比使换流器的触发角运行在合适的值域;最后通过交流系统的优化调整(电压)使全系统运行在理想状态。(换流器的控制)

9、直流系统稳定运行控制注意事项:(1)交流系统电压的微小变化会引起直流电流的巨大变化,为防止直流电流的波动,快速调整换流器的触发角以跟踪交流电压的变化是直流系统正常运行的必要条件;(2)换流器的稳态运行调整应尽可能使其直流电压在额定电压附近,过低的直流电压将伴随较大的直流电流,较大的直流电流直接增大直流线路上的功率损耗,同时还增大交流系统的功率损耗。此外,直流电流越大,电流衰减越慢,导致换相角越大,大的换相角会使触发角的变化范围减小;(3)

换流器的稳定运行调整应使功率因数尽可能高,较高的功率因数可以减小在交流系统的无功补偿容量,其次可以充分利用换流器和换流变压器的容量传输较大的有功功率,再者可以降低系统的功率损耗。要想提高功率因数,对整流器而言应使触发角较小,对逆变器而言应使熄弧超前角减小。

10、直流系统常用的控制方式有:定电流控制、定电压控制、定功率控制、定控制角控制和定变比控制。其中整流器常采用定变比(定功率)和定电流控制,逆变器常采用定变比(定电压)和定熄弧角控制。(控制方法)

11、交直流混连系统的潮流计算主要有统一迭代法(联合求解法)和交替迭代法。

统一迭代法以极坐标形式下的牛顿法为基础,将交流节点电压的幅值和相角与直流系统中的直流电压、直流电流、换流变压器变比、换流器的功率因数及换流器控制角统一进行迭代求解。具有良好的收敛性,对于不同结构、参数的网络以及直流系统的各种控制方式的算例,都能可靠求解。

交替迭代法是统一迭代法的简化,将交流系统方程和直流系统方程分别求解。求解交流系统时,将直流系统用接在相应节点上的已知其有功功率和无功功率的负荷来等值;求解直流系统时,将交流系统等值为加在换流器交流母线上的一个恒定电压。当交流系统较弱时,交替迭代法收敛性变差。(交直流系统潮流计算方法)

12、以换流器直流额定功率为基准,从换流器交流侧母线处观察到的交流系统等值电抗的标幺值的倒数称为短路比(SCR)。短路比越大,系统越强。短路比小于3称之为弱交流系统,其中弱交流系统有很大的等值电抗,从而使得换流器交流母线电压对注入功率的变化非常敏感。

柔性输电的工作原理和稳态数学模型

工作原理

静止无功补偿器(static var compensator, SVC)

晶闸管控制的串联补偿器(thyristor controlled series compensator, TCSC)

静止同步补偿器(static synchronous compensator, STA TCOM)

统一潮流控制器(unified power flow controller, UPFC)

静止同步串联补偿器(static synchronous series compensator, SSSC)

晶闸管控制的移相器(thyristor controlled phase shifting transformer, TCPST)

1、柔性输电装置在系统中的连接方式可以分为串联型、并联型和综合型。其中SVC和STATCOM为并联型;TCSC和SSSC为串联型;TCPST和UPFC为综合型。

2、SVC可以看作并联在系统中的一个可变电纳,其电纳值由SVC的控制器决定。

SVC通过控制晶闸管的导通角从零到π/2的过程,Xsvc从容性最大连续地变为感性最大值,同常情况下,其控制信号为所并联节点的电压。

SVC是通过调整其中的电感介入系统时间的长短来改变自身的等值电抗,STATCOM是通过调整其交流输出电压的幅值和相位。

3、STA TCOM将电压型逆变器经电抗器或变压器并联在系统中,可以表示成并联在系统中的一个受控电流源,其幅值和相位由STA TCOM的控制器决定。(等值电路图)

STA TCOM有两个控制变量,分别是相角δ和脉宽θ,其中只有δ是自由的(近似分析忽略电阻,即等值铜耗和STACOM的有功损耗时,θ为自由控制变量)。通过调整相角,补偿电流的幅值和相位都

发生变化,即可以通过保持脉宽不变,调整相角改变STA TCOM向系统中输入的无功功率,同时电容电压将随之改变;同时调整相角和脉宽可以使电容电压保持常数而只调整无功功率。

当STATCOM从系统中吸收无功功率时,Vs滞后V SVG的电角度为δ;注入无功功率时,Vs超前V SVG 的电角度为δ。电流超前V SVG时向系统注入无功功率,反之吸收无功功率。

4、TCSC可表示成串联在线路中的一个可变电抗,其容抗值由TCSC的控制器决定。

TCSC可以快速、连续地改变所补偿的输电线路的等值电抗,因此,在一定的运行范围内可以将此线路的输送功率控制为期望的数值。

调整阀的导通角将使串联在线路中的电抗XTCSC发生变化,从而使得线路的等值电抗成为一个可控参数。由于对阀的控制是由按一定的控制策略事先设计的控制器完成的,在其动态响应特性理想的条件下,可以使输电线路的输电容量达到其热稳极限。

5、SSSC是将电压型逆变器经变压器串联在线路中,可以表示为串联在系统中的一个电压源,其幅值和相位由SSSC的控制器决定。当纯无功补偿时,电压源的相位总与线路电流相垂直。

6、TCPST由并联变压器(激励变压器)、串联变压器(加压变压器)和切换开关构成,用于调整节点电压相位。对于并联变压器(一次侧为△接法),一次侧的a、b、c三相输入分别为线路的b、c、a 相。

移相器通过控制开关,即改变变比k,调整角度φ=f(k),因此,其控制参数为输出电压的模值和相位。由于移相器是无源元件,忽略自身的功率损耗,移相器输出的复功率与输入的复功率相等,即串联电压源发出的功率全部由并联电流源从系统吸收。

7、UPFC相当于STATCOM与SSSC的组合,两个由GTO实现的电压型换流器共用一个直流电容,从而使STA TCOM与SSSC发生耦合。一台UPFC有三个独立变量,分别为电流(线路参数),电压幅值和电压相位,可以同时控制3个运行变量,分别为有功功率,无功功率和电压。

UPFC为无源元件,在稳态运行条件下,必须保持电容电压为常数,因此,可以由两条阻抗与理想电压源串联的支路表示。尽管稳态运行时需要保持电容电压为常数,但是两个换流器由于直流电容的耦合,允许STATCOM从系统吸收有功功率然后经直流电容由SSSC送回系统,或者相反。这样,UPFC 中串联变压器输出电压的模值和相位都可以任意调整;UPFC中并联变压器支路除了对系统提供并联无功补偿外,还承担系统有功功率与串联变压器有功功率的交换。

8、TCSC和SSSC用于补偿线路参数,SVC和STATCOM用于控制节点电压幅值,TCPST用于调节节点电压相位。

数学模型

9、含有柔性元件的电力系统潮流计算可以分为两类:第一类,根据具体的柔性输电元件的功能和系统运行的需要给出潮流控制目标,通过计算获得电力系统潮流和柔性输电元件的控制参数;第二类,给定柔性输电元件的控制参数,通过计算获得系统潮流。

10、在潮流计算中SVC和STATCOM可以看作并联在节点上的电容或电抗,向系统注入或从系统吸收无功功率,所以在潮流计算中将其看作PV节点,控制目标是支撑该节点电压的幅值为给定值。当系统的容量约束不满足条件时,可以将控制目标改为定无功功率输出,从而将装有该装置的节点设为PQ节点,重新进行计算。

11、含有TCSC潮流计算时,相当于系统增加了一个新节点P。

12、由于SSSC自身有两个控制变量,即逆变器交流输出电压的幅值和相位,因此潮流计算方程需要增加两个。其中一个是对交流系统的控制目标,通常设定SSSC所在线路的有功功率为常数;另一个是SSSC自身的条件约束,即保持电容电压为额定常数。和TCSC相比,SSSC不需要增加节点。

13、TCPST在计算时,将其节点注入功率描述,从而使系统的节点导纳矩阵仍是对称的。

14、含有UPFC的潮流计算任务是:对于系统的某种运行方式和UPFC的控制目标,计算系统所有节点电压的幅值与相角和UPFC的控制参数。

15、采用解耦法的计算方法中,由于UPFC能独立于其串联补偿而向系统提供并联补偿,故UPFC并联变压器所连接的节点电压幅值可以控制为定值,也可以将补偿的无功功率控制为定值;UPFC的串联补偿可以同时控制两个运行变量,因而将UPFC所在线路输送的有功和无功功率控制为定值P+jQ。这样UPFC连同其所在的输电线可以从系统中移去而代之以节点注入功率。在并联变压器连接的节点,等值UPFC的节点注入功率仅仅是该输电线路两端节点电压的函数,而另一个节点注入功率即是控制目标常数P+jQ。迭代过程中不含UPFC的控制参数,因此无需对UPFC的控制参数提供初值。潮流计算完成后按照UPFC控制参数与控制目标和节点电压之间的关系求得UPFC的控制参数。

《电力系统分析》基础知识点总结复习课程

《电力系统分析》基础知识点总结

电力系统分析基础目录 稳态部分 一.电力系统的基本概念 填空题 简答题 二.电力系统各元件的特征和数学模型 填空题 简答题 三.简单电力网络的计算和分析 填空题 简答题 四.复杂电力系统潮流的计算机算法 简答题 五.电力系统的有功功率和频率调整 1.电力系统中有功功率的平衡 2.电力系统中有功功率的最优分配 3.电力系统的频率调整 六.电力系统的无功功率和频率调整 1.电力系统的无功功率平衡 2.电力系统无功功率的最优分布 3.电力系统的电压调整 暂态部分 一.短路的基本知识 1.什么叫短路 2.短路的类型 3.短路产生的原因 4.短路的危害 5.电力系统故障的分类 二.标幺制 1.数学表达式

2.基准值的选取 3.基准值改变时标幺值的换算 4.不同电压等级电网中各元件参数标幺值的计算三.无限大电源 1.特点 2.产生最大短路全电流的条件 3.短路冲击电流Im 4.短路电流有效值Ich 四.运算曲线法计算短路电流 1.基本原理 2.计算步骤 3.转移阻抗 4.计算电抗 五.对称分量法 1.正负零序分量 2.对称量和不对称量之间的线性变换关系 3. 电力系统主要元件的各序参数 六.不对称故障的分析计算 1.单相接地短路 2.两相短路 3.两相接地短路 4.正序增广网络 七.非故障处电流电压的计算 1.电压分布规律 2.对称分量经变压器后的相位变化

稳态部分 一 一、填空题 1、我国国家标准规定的额定电压有 3kV 、6kV、 10kV、 35kV 、110kV 、220kV 、330kV、 500kV 。 2、电能质量包含电压质量、频率质量、波形质量三方面。 3、无备用结线包括单回路放射式、干线式、链式网络。 4、有备用界结线包括双回路放射式、干线式、链式,环式、两端供电网络。 5、我国的六大电网:东北、华北、华中、华东、西南、西北。 6、电网中性点对地运行方式有:直接接地、不接地、经消弧线圈接地三种,其中直接接地为大接地电流系统。 7、我国110kV及以上的系统中性点直接接地,35kV及以下的系统中性点不接地。 二、简答题 1、电力网络是指在电力系统中由变压器、电力线路等变换、输送、分配电能设备所组成的部分。 2、电力系统是指由发电机、各类变电所和输电线路以及电力用户组成的整体。 3、总装机容量是指电力系统中实际安装的发电机组额定有功功率的总和。 4、电能生产,输送,消费的特点: (1)电能与国民经济各个部门之间的关系都很密切 (2)电能不能大量储存 (3)生产,输送,消费电能各个环节所组成的统一整体不可分割 (4)电能生产,输送,消费工况的改变十分迅速 (5)对电能质量的要求颇为严格 5、对电力系统运行的基本要求 (1)保证可靠的持续供电 (2)保证良好的电能质量 (3)保证系统运行的经济性 6、变压器额定电压的确定: 变压器的一次侧额定电压应等于用电设备额定电压(直接和发电机相连的变压器一次侧额定电压应等于发电机的额定电压),二次侧额定电压应较线路额定电压高10%。只有漏抗很小的、二次直接与用电设备相联的和电压特别高的变压器,其二次侧额定电压才可能较线路额定电压仅高5%。 7、所谓过补偿是指感性电流大于容性电流时的补偿方式,欠补偿正好相反,实践中,一般采用欠补偿。 二

电力系统分析课程总结

电力系统分析课程总结报告 学院(部):电气学院 专业班级:电气工程 学生姓名: ** 指导教师: **** 2014年 6 月 28 日

目录 1电力系统概述和基本概念 (1) 1.1电力系统概述 (1) 1.2电力系统中性点的接地方式 (3) 2电力系统元件参数和等值电路 (3) 2.1电力线路参数和等值电路 (4) 2.2变压器、电抗器的参数和等值电路 (4) 2.3发电机和负荷的参数及等值电路 ......................................................5 2.4电力网络的等值电路 .....................................................................5 3简单电力网络潮流的分析与计算 .............................................................. 6 3.1电力线路和变压器的功率损耗和电压降落 .......................................... 6 3.2开式网络的潮流计算 .................................................................... 7 3.3环形网络的潮流分布 .................................................................... 7 4电力系统潮流的计算机算法 ................................................................... 7 4.1电力网络的数学模型 ..................................................................... 8 4.2等值变压器模型及其应用 .. (8) 4.3节点导纳矩阵的形成和修改 (8) 4.4功率方程和变量及节点分类 (9) 4.5高斯-塞德尔法潮流计算 (9) 4.6牛顿-拉夫逊法潮流计算 (9) 4.7P-Q 分解法潮流计算 (9) 5电力系统有功功率的平衡和频率调整 (10) 5.1电力系统中有功功率的平衡 (10) 5.2电力系统的频率调整 (11) 6电力系统的无功功率平衡和电压调整 (11) 6.1电力系统中无功功率的平衡 (12) 6.2电力系统的电压管理 (12) 6.3电力系统的几种调压方式 (13) 6.4电力线路导线截面的选择 (13) 7电力系统各元件的序参数和等值电路 (14) ???????????????????????????大电流接地方式中性点接地方式小电流接地方式(需要断路器遮断单 相接地故障电 流(单相接地电弧能够瞬间熄灭的)

(完整版)电力系统分析基础知识点总结

一.填空题 1、输电线路的网络参数是指(电阻)、(电抗)、(电纳)、(电导)。 2、所谓“电压降落”是指输电线首端和末端电压的(相量)之差。“电压偏移”是指输电线某点的实际电压和额定 电压的(数值)的差。 3、由无限大的电源供电系统,发生三相短路时,其短路电流包含(强制/周期)分量和(自由/非周期)分量,短路 电流的最大瞬时的值又叫(短路冲击电流),他出现在短路后约(半)个周波左右,当频率等于50HZ时,这个时间应为(0.01)秒左右。 4、标么值是指(有名值/实际值)和(基准值)的比值。 5、所谓“短路”是指(电力系统正常运行情况以外的相与相之间或相与地之间的连接),在三相系统中短路的基本 形式有(三相短路),(两相短路),(单相短路接地),(两相短路接地)。 6、电力系统中的有功功率电源是(各类发电厂的发电机),无功功率电源是(发电机),(电容器和调相机),(并联 电抗器),(静止补偿器和静止调相机)。 7、电力系统的中性点接地方式有(直接接地)(不接地)(经消弧线圈接地)。 8、电力网的接线方式通常按供电可靠性分为(无备用)接线和(有备用)接线。 9、架空线是由(导线)(避雷线)(杆塔)(绝缘子)(金具)构成。 10、电力系统的调压措施有(改变发电机端电压)、(改变变压器变比)、(借并联补偿设备调压)、(改变输电线路参 数)。 11、某变压器铭牌上标么电压为220±2*2.5%,他共有(5)个接头,各分接头电压分别为(220KV)(214.5KV)(209KV) (225.5KV)(231KV)。 二:思考题 1.电力网,电力系统和动力系统的定义是什么?(p2) 答: 电力系统:由发电机、发电厂、输电、变电、配电以及负荷组成的系统。 电力网:由变压器、电力线路、等变换、输送、分配电能的设备组成的部分。 动力系统:电力系统和动力部分的总和。 2.电力系统的电气接线图和地理接线图有何区别?(p4-5) 答:电力系统的地理接线图主要显示该系统中发电厂、变电所的地理位置,电力线路的路径以及它们相互间的连接。但难以表示各主要电机电器间的联系。 电力系统的电气接线图主要显示该系统中发电机、变压器、母线、断路器、电力线路等主要电机电器、线路之间的电气结线。但难以反映各发电厂、变电所、电力线路的相对位置。 3.电力系统运行的特点和要求是什么?(p5) 答:特点:(1)电能与国民经济各部门联系密切。(2)电能不能大量储存。(3)生产、输送、消费电能各环节所组成的统一整体不可分割。(4)电能生产、输送、消费工况的改变十分迅速。(5)对电能质量的要求颇为严格。 要求:(1)保证可靠的持续供电。(2)保证良好的电能质量。(3)保证系统运行的经济性。 4.电网互联的优缺点是什么?(p7) 答:可大大提高供电的可靠性,减少为防止设备事故引起供电中断而设置的备用容量;可更合理的调配用电,降低联合系统的最大负荷,提高发电设备的利用率,减少联合系统中发电设备的总容量;可更合理的利用系统中各类发电厂提高运行经济性。同时,由于个别负荷在系统中所占比重减小,其波动对系统电能质量影响也减小。联合电力系统容量很大,个别机组的开停甚至故障,对系统的影响将减小,从而可采用大容高效率的机组。 5.我国电力网的额定电压等级有哪些?与之对应的平均额定电压是多少?系统各元件的额定电压如何确定? (p8-9) 答:额定电压等级有(kv):3、6、10、35、110、220、330、500 平均额定电压有(kv):3.15、6.3、10.5、37、115、230、345、525 系统各元件的额定电压如何确定:发电机母线比额定电压高5%。变压器接电源侧为额定电压,接负荷侧比额定电压高10%,变压器如果直接接负荷,则这一侧比额定电压高5%。 6.电力系统为什么不采用一个统一的电压等级,而要设置多级电压?(p8) S 。当功率一定时电压越高电流越小,导线答:三相功率S和线电压U、线电流I之间的固定关系为

电力系统分析考试重点总结全

1.同步发电机并列的理想条件表达式为:f G=f S、U G=U S、δe=0。实际要求:冲击电流较小、 不危及电气设备、发电机组能迅速拉入同步运行、对待并发电机和电网运行的影响较小。 2.同步发电机并网方式有两种:将未加励磁电流的发电机升速至接近于电网频率,在滑差 角频率不超过允许值时进行并网操作属于自同期并列;将发电机组加上励磁电流,在并列条件符合时进行并网操作属于准同期并列。 3.采用串联补偿电容器可以补偿输电线路末端电压,设电容器额定电压为U NC=0.6kV,容 量为Q NC=20kVar的单相油浸纸制电容器,线路通过的最大电流为I M=120A,线路需补偿的容抗为X C=8.2Ω,则需要并联电容器组数为m=4,串联电容器组数为n=2。 4.常用的无功电源包括同步发电机、同步调相机、并联电容器、静止无功补偿器。 6同步发电机常见的励磁系统有直流励磁机、交流励磁机、静止励磁系统,现代大型机组采用的是静止励磁系统。 7励磁系统向同步发电机提供励磁电流形式是直流。 8电力系统的稳定性问题分为两类,即静态稳定、暂态稳定。 9电力系统负荷增加时,按等微增率原则分配负荷是最经济的。 10.同步发电机励磁系统由励磁调节器和励磁功率单元两部分组成。 11.AGC属于频率的二次调整,EDC属于频率的三次调整。 12.发电机自并励系统无旋转元件,也称静止励磁系统。 13.采用同步时间法(积差调频法)的优点是能够实现负荷在调频机组间按一定比例分配,且可以实现无差调频,其缺点是动态特性不够理想、各调频机组调频不同步,不利于利用调频容量。 14.频率调整通过有功功率控制来实现,属于集中控制;电压调整通过无功功率控制来实现,属于分散控制。 15.当同步发电机进相运行时,其有功功率和无功功率的特点是向系统输出有功功率、同时吸收无功功率。 16自动励磁调节器的强励倍数一般取1.6~2.0。 重合器与普通断路器的区别是普通断路器只能开断电路,重合器还具有多次重合功能。 17同步发电机并网方式有两种,这两种方法为:自同期并网、准同期并网 18同步发电机与无穷大系统并联运行时,调节发电机的励磁不改变有功功率,改变无功功率。 19励磁系统向同步发电机的转子提供励磁电流,励磁电源由发电机本身提供的励磁系统称之为自励系统。 20变压器可以调节系统电压,不是无功电源 21调频方法:1主导发电机法2同步时间法(积差调节) 22画出发电机组功率频率特性: 静态调节方程表达式: 1什么是发电机准同期并列和自同期并列?各自的特点?⑴自同期并列:先将励磁绕组经过一个电阻短路,在不加励磁的情况下,原动机带动发电机转子旋转。特点:自同期并列的优

考博必看--电力系统分析上册(诸骏伟)-课程总结

第一章能量管理系统 1.EMS的含义和作用 1).EMS 是以计算机为基础的现代电力系统的综合自动化系统,是预测、计划、控制和 培训的工具。 2).EMS 主要针对发电和输电系统,用于大区级电网和省级电网的调度中心。 3).EMS 涉及计算机硬软件的各个方面。它最终是通过EMS 应用软件来实现对电力系统 的监视、控制和管理。 2.EMS的主要内容 数据收集级(SCADA) ,能量管理级(GMS&OPS) 包括实时发电控制,系统负荷预测,发 电计划(火电调度计划),机组经济组合,水电计划(水火电协调计划),交换功率计划,燃料调度计划,机组检修计划. 网络分析级(NAS)包括实时网络状态分析,网络 结线分析,母线负荷预测,潮流,网络等值,网络状态监视,预想故障分析,安全约束调度,无功优化,最优潮流,短路电流计算,电压稳定分析,暂态分析.培训模拟级。 3.现有EMS存在的问题 1).EMS已得到了广泛的应用,但目前只停留在分布式独立计算分析阶段,多数高级应用 软件都需要人工调用,然后由调度员进行综合决策。2).在电网事故状态下,没有良好的事故分析、定位和恢复手段.3)电力改革使得情况更加复杂。 4.EMS的发展趋势 针对现有的EMS存在的问题,需加入决策系统,增强、扩充了网络分析功能,未来向着调度机器人的方向发展。 第二章电力系统潮流计算 1.潮流计算的定义 2.各种潮流计算的模型和算法的特点、适用范围以及相互之间的区别和联系。

(一) 高斯——塞德尔迭代法 该算法具有存储量小,程序设计简单的优点。 但收敛速度慢,阶梯式逼近时台阶的高度越来越小,以至于迭代次数过多。 算法特点: 1)在系统病态的情况下(重负荷节点负电抗支路较长辐射型线路长短线路接在同一节点上,且长短线路的比值很大),收敛困难。计算速度缓慢每次迭代速度很快,但由于结构松散耦合,节点间相互影响太小,造成迭代次数增加,收敛缓慢。 2)程序编制简便灵活 (二)、牛顿——拉夫逊迭代法(N_L)算法特点 1)平方收敛,开始时收敛比较慢,在几次迭代后,收敛得非常快,其迭代次数和系统的规模关系不大,如果程序设计良好,每次迭代的计算量仅与节点数成正比。 2)对初值很敏感,有时需要其他算法为其提供初值。 3)对函数的平滑性敏感,所处理的函数越接近线性,收敛性越好,为改善功率方程的非线性,实用中可以通过限制修正量的幅度来达到目的。但幅度不能太小。 4)对以节点导纳矩阵为基础的G_S法呈病态的系统,N_L法一般都能可靠收敛。牛顿迭代法有明显的几何解释:收敛速度:平方收敛收敛性:局部收敛 (三)、PQ分解法潮流 N_L法的J阵在每次迭代的过程中都要发生变化,需要重新形成和求解,这占据了N_L法的大部分计算时间,这也是N_L法速度不能提高的原因。 可能性:N_L法可以简化成为定雅可比矩阵法,如果固定的迭代矩阵构造得当,定雅可比矩阵法可以收敛,但只有线性收敛速度。 算法特点 1)用两个阶数几乎减半的方程组代替原方程组,显著减少了内存量和计算量 2)迭代矩阵为常数阵,只需形成求解一次,大大缩短每次迭代所需时间 3)迭代矩阵对称,可上(下)三角存储,减少内存量和计算量 4)基于以上原因,该算法内存需要量为N_L法的60%,每次迭代所需时间为N_L 法的1/5。5)线性收敛,收敛次数多于N_L法,但总的计算速度任能大幅度提高。 6)对R/X过大的病态条件以及线路特别重载的情况下,可能不收敛,一般适用于110kv及以上的电网。 7)由于算法的精确程度取决于 ,P-Q分解法的近似处理只影响计算过程,并不影响结果的精度。 3.影响潮流收敛性的因素以及如何改善潮流计算的收敛性。 (如果计算潮流不收敛,应该采用何种方法改进) 云杰的答案:主要是看潮流方程组本身是否有解,当方程组有解或者无实数解,或者方程组

电路基础知识总结(精华版)

电路知识总结(精简) 1.电流的参考方向可以任意指定,分析时:若参考方向与实际方向一致,则i>0,反之i<0。 电压的参考方向也可以任意指定,分析时:若参考方向与实际方向一致,则u>0反之u<0。?2. 功率平衡 一个实际的电路中,电源发出的功率总是等于负载消耗的功率。?3.全电路欧姆定律:U=E-RI 4. 负载大小的意义: 电路的电流越大,负载越大。 电路的电阻越大,负载越小。 5. 电路的断路与短路 电路的断路处:I=0,U≠0?电路的短路处:U=0,I≠0 二. 基尔霍夫定律 1.几个概念: 支路:是电路的一个分支。?结点:三条(或三条以上)支路的联接点称为结点。 回路:由支路构成的闭合路径称为回路。?网孔:电路中无其他支路穿过的回路称为网孔。?2.基尔霍夫电流定律: (1) 定义:任一时刻,流入一个结点的电流的代数和为零。?或者说:流入的电流等于流出的电流。?(2) 表达式:i进总和=0 或: i进=i出?(3)可以推广到一个闭合面。 3.基尔霍夫电压定律?(1) 定义:经过任何一个闭合的路径,电压的升等于电压的降。?或者说:在一个闭合的回路中,电压的代数和为零。 或者说:在一个闭合的回路中,电阻上的电压降之和等于电源的电动势之和。 (2) 表达式:1?或: 2?或: 3 (3) 基尔霍夫电压定律可以推广到一个非闭合回路?三. 电位的概念?(1)定义:某点的电位等于该点到电路参考点的电压。 (2)规定参考点的电位为零。称为接地。?(3) 电压用符号U表示,电位用符号V表示 (4) 两点间的电压等于两点的电位的差。 (5)注意电源的简化画法。?四. 理想电压源与理想电流源 1.理想电压源?(1)不论负载电阻的大小,不论输出电流的大小,理想电压源的输出电压不变。理想电压源的输出功率可达无穷大。?(2) 理想电压源不允许短路。?2. 理想电流源?(1) 不论负载电阻的大小,不论输出电压的大小,理想电流源的输出电流不变。理想电流源的输出功率可达无穷大。?(2)理想电流源不允许开路。 3.理想电压源与理想电流源的串并联 (1) 理想电压源与理想电流源串联时,电路中的电流等于电流源的电流,电流源起作用。 (2)理想电压源与理想电流源并联时,电源两端的电压等于电压源的电压,电压源起作用。?4. 理想电源与电阻的串并联?(1)理想电压源与电阻并联,可将电阻去掉(断开),不影响对其它电路的分析。 (2) 理想电流源与电阻串联,可将电阻去掉(短路),不影响对其它电路的分析。?5. 实际的电压源可由一个理想电压源和一个内电阻的串联来表示。 实际的电流源可由一个理想电流源和一个内电阻的并联来表示。 五. 支路电流法 1.意义:用支路电流作为未知量,列方程求解的方法。?2. 列方程的方法:?(1)电路中有b条支路,共需列出b个方程。?(2)若电路中有n个结点,首先用基尔霍夫电流定律列出n-1个电流方程。 (3)然后选b-(n-1)个独立的回路,用基尔霍夫电压定律列回路的电压方程。?3. 注意问题:?若电路中某条支路包含电流源,则该支路的电流为已知,可少列一个方程(少列一个回路的电压方程)。?六. 叠加原理 1. 意义:在线性电路中,各处的电压和电流是由多个电源单独作用相叠加的结果。 2. 求解方法:考虑某一电源单独作用时,应将其它电源去掉,把其它电压源短路、电流源断开。?3.注意问题:最后叠加时,应考虑各电源单独作用产生的电流与总电流的方向问题。 叠加原理只适合于线性电路,不适合于非线性电路;只适合于电压与电流的计算,不适合于功率的计算。 七.戴维宁定理 1.意义:把一个复杂的含源二端网络,用一个电阻和电压源来等效。 2.等效电源电压的求法: 把负载电阻断开,求出电路的开路电压UOC。等效电源电压UeS等于二端网络的开路电压UOC。 3. 等效电源内电阻的求法:?(1) 把负载电阻断开,把二端网络内的电源去掉(电压源短路,电流源断路),从负载两端看进去的电阻,即等效电源的内电阻R0。?(2)把负载电阻断开,求出电路的开路电压UOC。然后,把负载电阻短路,求出电路的短路电流ISC,则等效电源的内电阻等于UOC/ISC。 八.诺顿定理 1.意义:?把一个复杂的含源二端网络,用一个电阻和电流源的并联电路来等效。 2.等效电流源电流IeS的求法:?把负载电阻短路,求出电路的短路电流ISC。则等效电流源的电流IeS等于电路的短路电流ISC。?3.等效电源内电阻的求法: 同戴维宁定理中内电阻的求法。 本章介绍了电路的基本概念、基本定律和基本的分析计算方法,必须很好地理解掌握。其中,戴维宁定理是必考内容,即使在本章的题目中没有出现戴维宁定理的内容,在第2章<<电路的瞬态分析>>的题目中也会用到。?第2章电路的瞬态分析?一. 换路定则:?1.换路原则是: 换路时:电容两端的电压保持不变,Uc(o+) =Uc(o-)。 电感上的电流保持不变, Ic(o+)= Ic(o-)。?原因是:电容的储能与电容两端的电压有关,电感的储能与通过的电流有关。 2. 换路时,对电感和电容的处理?(1)换路前,电容无储能时,Uc(o+)=0。换路后,Uc(o-)=0,电容两端电压等于零,可以把电容看作短路。 (2)换路前,电容有储能时,Uc(o+)=U。换路后,Uc(o-)=U,电容两端电压不变,可以把电容看作是一个电压源。

最新电力系统分析总结(复习资料)

1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成的整体,称为电力系统 2、按电压等级的高低,电力网可分为:1低压电网(<1kv)2中低电网(11000kv) 3、负荷的分类:1.按物理性能分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4.按负荷对供电的可靠性分:一级、二级、三级负荷 4、我国电力系统常用的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4.中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性差(任何一处故障全跳) 5、消弧线圈的工作原理:在单相接地时,可以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数,如I、V、P等。 8、分裂导线用在什么场合,有什么用处?一般用在大于350kv的架空线路中。可避免电晕的产生和增大传输容量。 9、导线是用来反映的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流,它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位,且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数:同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,②发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示,即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关,只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件,一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点:平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡,故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时,线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络,在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以搞一些,这种方式称为顺调节。③恒调压:对于负荷变动较小,供电线路上电压损耗也较小的电力网络,无论是最大负荷还是最小负荷,只要中枢点电压维持在允许电压偏移范围内的某一个或较小范围内,就是可以保证各负荷点的电压质量。36、变压器的分接头:一般设在高压和中压绕组上。对于6300kv?A 及以下的变压器中,高压侧有三个分接头。每个分接头可使电压变化5%,各分接头电压分别为:0.95Un、Un、1.05Un。对于容量为8000kv?A 及以上的变压器,高压侧有5个分接头。各分接头电压分别为:0.95Un、0.975Un、Un、1.025Un、1.05Un,记为:Un(+/-)2*2.5% 37绕组变压器:三绕组变压器除高压侧有分接头外,一般中压侧也有分接头可供选择。首先根据低压侧母线的调压要求,在高—低压绕组之间进行计算,选取高压侧的分接头电压,即变比Uth/Un;然后根据中压侧母线的调压要求及选取的高压侧分接头电压Uth在高—中压侧绕组之间进行计算,选取中压侧的分接头电压Utm。确定变比为Uth/Utm/Un1 38、频率的一次调整:当负荷波动时,将引起频率的变化。这时发电机组的出力在调速器的作用下,也将作适当的调整;负荷从系统中吸收的实际功率也将作一定调整,从而在新的频率下,达到新的功率平衡。 39、频率的二次调整:一次调整是由调速器来调节,其结果是发电机增加的输入功率小于实际增加的负荷功率,此时频率仍旧小于fn。为了使系统稳定运行在fn下,此时用自动调频装置去调整,使发电机的静态曲线向上平移,直至系统发电机组的输入功率能符合负荷功率的增长的需要使系统频率运行于fn 上。序参数:对称的三相电路中流过不同序列的电流时,所遇到的阻抗是不同的,然而同一相序的电压和电流间仍符合欧姆定律。40、降低网损的技术措施:①提高用户处的功率因数,避免无功功率还距离传送;②在闭式网络中实行功率经济分布;③组织变压器经济运行; ④合理组织各发电厂经济运行; ⑤合理选择导线的截面积;⑥调整用户的负荷曲线,调峰节电。⑦合理安排检修计划;⑧适当提高电力网的运行电压水平。41、等微增率准则:就是运行的发电机组按微增率相等的原则来分配负荷,这样就是使系统总的燃料消耗 为最小,从而是最经济的。42、提高电力系统静态稳定性的措施:①减小元件 的电抗、②采用自动调节励磁装置、③改善系统的结构和采用中间补偿设备。 1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成 的整体,称为电力系统2、按电压等级的高低,电力网可分为:1低压电网 (<1kv)2中低电网(11000kv)3、负荷的分类:1.按物理性能 分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、 和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4. 按负荷对供电的可靠性分:一级、二级、三级负荷4、我国电力系统常用 的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4. 中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能 高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济 性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优 点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性 差(任何一处故障全跳)5、消弧线圈的工作原理:在单相接地时,可 以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全 补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容 性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、 电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络 参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数, 如I、V、P等。8、分裂导线用在什么场合,有什么用处?一般用在大于 350kv的架空线路中。可避免电晕的产生和增大传输容量。9、导线是用来反映 的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原 则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般 采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简 化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基 准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的 基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动 稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护 装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的 主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优 设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含 一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出 无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对 称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流, 它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有 关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之 和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位, 且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负 序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相 许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各 相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数: 同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中 各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,② 发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故 障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开 或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两 相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状 态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏 移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示, 即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压 U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输 电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的 功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关, 只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向 提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方 向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上 提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中 电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的 电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的 电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的 主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的 计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功 功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件, 一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电 压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点: 平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此 网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡, 故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计 算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点 选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功 率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项 计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动 机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线 路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时, 线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电 压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷 点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的 调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络, 在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以 搞一些,这种方式称为顺调节。③恒调压:对于负荷变动较小,供电线路上电压 损耗也较小的电力网络,无论是最大负荷还是最小负荷,只要中枢点电压维持在 允许电压偏移范围内的某一个或较小范围内,就是可以保证各负荷点的电压质 量。36、变压器的分接头:一般设在高压和中压绕组上。对于6300kv?A 及以 下的变压器中,高压侧有三个分接头。每个分接头可使电压变化5%,各分接头 电压分别为:0.95Un、Un、1.05Un。对于容量为8000kv?A 及以上的变压器, 高压侧有5个分接头。各分接头电压分别为:0.95Un、0.975Un、Un、1.025Un、 1.05Un,记为:Un(+/-)2* 2.5% 37绕组变压器:三绕组变压器除高压侧有分 接头外,一般中压侧也有分接头可供选择。首先根据低压侧母线的调压要求,在 高—低压绕组之间进行计算,选取高压侧的分接头电压,即变比Uth/Un;然后根 据中压侧母线的调压要求及选取的高压侧分接头电压Uth在高—中压侧绕组之 间进行计算,选取中压侧的分接头电压Utm。确定变比为Uth/Utm/Un1 38、频率的一次调整:当负荷波动时,将引起频率的变化。这时发电机组 的出力在调速器的作用下,也将作适当的调整;负荷从系统中吸收的实际功率也 将作一定调整,从而在新的频率下,达到新的功率平衡。 39、频率的二次调整:一次调整是由调速器来调节,其结果是发电机增加 的输入功率小于实际增加的负荷功率,此时频率仍旧小于fn。为了使系统稳定 运行在fn下,此时用自动调频装置去调整,使发电机的静态曲线向上平移,直 至系统发电机组的输入功率能符合负荷功率的增长的需要使系统频率运行于fn 上。序参数:对称的三相电路中流过不同序列的电流时,所遇到的阻抗是不 同的,然而同一相序的电压和电流间仍符合欧姆定律。40、降低网损的 技术措施:①提高用户处的功率因数,避免无功功率还距离传送;②在闭式网络 中实行功率经济分布;③组织变压器经济运行; ④合理组织各发电厂经济运行; ⑤合理选择导线的截面积;⑥调整用户的负荷曲线,调峰节电。⑦合理安排检修 计划;⑧适当提高电力网的运行电压水平。41、等微增率准则:就是 运行的发电机组按微增率相等的原则来分配负荷,这样就是使系统总的燃料消耗 为最小,从而是最经济的。42、提高电力系统静态稳定性的措施:①减小元件 的电抗、②采用自动调节励磁装置、③改善系统的结构和采用中间补偿设备。 1、有发电厂中的电气部分、各类变电所、输配电线路及各种类型的用电器组成 的整体,称为电力系统2、按电压等级的高低,电力网可分为:1低压电网 (<1kv)2中低电网(11000kv)3、负荷的分类:1.按物理性能 分:有功负荷、无功负荷 2.按电力生产与销售过程分:发电负荷、供电负荷、 和用电负荷 3.按用户性质分:工业、农业、交通运输业和人民生活用电负荷 4. 按负荷对供电的可靠性分:一级、二级、三级负荷4、我国电力系统常用 的4种接地方式:1.中性点接地 2.中性点经消弧线圈接地3.中性点直接接地 4. 中性点经电阻的电抗接地小电流接地方式:(1.2)优点:①可靠性能 高②单相接地时,不易造成人身或轻微轻微的人身和设备安全事故缺点:经济 性差、容易引起谐振,危及电网的安全运行。大接地电流方式:(3.4)优 点:①能快速的切除故障、安全性能好②经济性好。缺点:系统供电可靠性 差(任何一处故障全跳)5、消弧线圈的工作原理:在单相接地时,可 以线圈的电流Il补偿接地点的容性电流消除接地的不利影响补偿方式:①全 补偿:Ik=Il时,Ie=0.容易发生谐振,一般不用②负补偿,Il< Ik时,Ie为纯容 性,易产生谐振过电压③过补偿:Il>Ik时,Ie为纯感性,一般都采用过电压法。 6、架空线路的组成:①导线、②避雷线、③杆塔、④绝缘子、⑤金具 7、 电力网的参数一般分为两类:一类是由元件结构和特性所决定的参数,称为网络 参数,如R、G、L等;另一类是系统的运行状态所决定的参数,称为运行参数, 如I、V、P等。8、分裂导线用在什么场合,有什么用处?一般用在大于 350kv的架空线路中。可避免电晕的产生和增大传输容量。9、导线是用来反映 的架空线路的泄漏电流和电晕所引起的有功损耗的参数。 10、三绕组变压器的绕组排列方式:①中、高、低②低、中、高排列原 则:①高压绕组电压高,故绝缘要求也高,一般在最外层、②升压变压器一般 采用:---- 1、标么值:是指实际有名值与基准值得的比值。优点:可以用来简 化计算缺点:同一实际值可能对应着多个不同的标么值。基准值的选取:①基 准值的单位应与有名值的单位相同、②所选取的基准值物理量之间应符合电路的 基本关系、③P33 12、短路:指一切不正常的相与相之间的或相与地面之间的通路。形式: ①三相电路、②单相短路接地、③两相短路、④两相短路接地。 13、短路计算的任务; ①在选择电气设备时,要保证电气设备要有足够的动 稳定性和热稳定性,这都要以短路计算为依据。②为了合理地配置各种继电保护 装,并正确整定其参数,必须进行短路电流的计算。③在设计发电厂的变电所的 主接线时,需要对各种可能的设计方案进行详细的技术经济比较,以便确定最优 设计方案,这也要以短路计算为依据。④进行电力系统暂态稳定的计算,也包含 一些电流计算的内容。 14、无穷大电源:是一种为了理论上简化分析的需要,所假定的可以输出 无穷大的功率的电源。特点:①电源频率和电压保持不变、②电源的内阻为零。 15、短路要做的假设:①由无穷大电源供电、②短路前处于稳态、③电路三相对 称。16、短路电流实际上包括两个分量:①是周期性分量,即稳态短路电流, 它是短路电流中的强迫分量,其幅值Im取决于电源电动势的幅值和电路参数。 ②是非周期分量,它是短路电流中的自由分量,按指数形式衰减。17、 短路冲击电流:是指短路电流中最大可能的瞬时值,同非周期分量有 关。18、对称分量法:是将一组不对称的三相量看成三组不同的对称三相量之 和。三相量为:①正序分量:各相量的绝对值相等、相互之间有120°的相位, 且与系统在正常对称运行下的相序相同。Ib1=Ia1?e-j120、Ic1= Ia1?ej120; ②负 序分量:各相量的绝对值相等,相互之间有120°的相位差但与正常运行时的相 许相反,以A相为基准相,有Ib2=Ia2?ej120、Ic2=Ia2?ej-120;③零序分量:各 相量的绝对值相等,相位相同,也即Ia0=Ib0=Ic0。19、力系统元件的序参数: 同步发电机的负序和零序阻抗:正序电抗、负序电抗、零序电抗。20、电网中 各发电机之间合并的条件:①发电机的特性(类型、参数等)是否大致相同,② 发电机到短路点的电气距离是否大致相等。 21、短路功率主要用来校验断路器的切断能力。22、不对称故 障:①纵向故障:指的是网络中的两个相邻节点k和k′之间出现不正常的断开 或三相阻抗不相等的情况。②横向故障:23、非全相断线:是指一相断线和两 相断线的非全线断线形式。非全相断线的运行是在故障口出现了某种不对称状 态,系统的其余某部分的参数还是三相对称的,可以运用对称分量法进行分析。 24、潮流计算的几个量:①电压降落:指供电支路首末端电压的相位差; ②电压损耗:指供电支路首末端两端电压的数量差,即为(U1-U2);③电压偏 移:指电网中某点的实际电压U与其额定电压UN之差,有时用百分数表示, 即:电压偏移=(U-Un)/Un*100% ; ④电压调整:指线路末端在空载时的电压 U20与负载时的电压U2的数量差。由于输电线路的电容效应,特别是超高压输 电线路的电容效应,在空载时线路末端电压值上升较大。25、电源输出的 功率由两部分组成:①一部分与负荷和线路阻抗有关、②第二部分与负荷无关, 只与两端电源的电压差和线路阻抗有关,称为循环功率。 26、通过对负荷节点的功率流向的分析会发现:①有的负荷只需要单方向 提供电力就能满足负荷供电的要求,②而有的负荷必须从两个方向或两个以上方 向同时同时提供电力才能满足负荷的供电要求。这种必须同时从两个方向或以上 提供电力才能满足负荷供电要求的负荷节点,称为功率分点。27、闭式网络中 电压最低点的判断:功率分点就是整个电力网电压的最低点。①在较高电压级的 电网中,由于X>>R,此时电压最低点往往是无功功率分点。②在较低电压级的 电网中,由于R>>X,此时电压最低点往往是有功功率分点。28、潮流计算的 主要内容:①电流和分布的计算、②节点电压和电压损耗的计算、③功率损耗的 计算。29、对每个节点i来讲,通常有四个变量:①发电机发出的有功 功率和无功功率、②电压幅值和相位30、根据电力系统的实际运行条件, 一般将节点分为以下三种类型:①PQ节点:这类节点P和Q是给定的,节点电 压(幅值、相位)是待求量。电力系统中的绝大多数节点属于这一类型。②PU 节点:这类节点是P和U是给定的,节点的Q和电压的相位待求。③平衡节点: 平衡节点只有一个,它的电压幅值U和相位已给定,P和Q为待求量。31、 ①平衡节点:在潮流分布算出之,网络中的功率损耗是未知的。因此 网络中至少有一个节点的P不能给定,这个节点承担了系统的有功功率平衡, 故称为平衡节点。②基准节点:必须选定一个节点,指定电压相位为0,作为计 算各点电压相位的参考。这个节点称为基准节点。习惯上把基准节点和平衡节点 选为同一点,称为平衡节点。32、高斯—塞得尔潮流计算步骤:P130 功 率因数:cos@=Pmax/Sn 33、每一次选代中,对于PU节点,必须作以下几项 计算:①修正节点电压、②计算节点无功功率、③无功功率超限检查。 34、几种常见的无功功率电源:①同步发电机、②同步调相机及同步电动 机、③并联电容器、④静止无功功率补偿器svc、⑤高压输电线的充电功率。 35、中枢点电压的调节方式:①逆调压:对于中枢点至各负荷点的供电线 路较长,各负荷变化规律大致相同,且负荷波动较大的网络中,在最大负荷时, 线路上电压损耗增大,适当提高中枢电压以抵偿增大的电压损耗防止负荷点的电 压过低;在最小负荷时,线路上电压损耗减小,适当降低中枢点电压以防止负荷 点的电压过高。这种在最大负荷时提高中枢电压,在最负荷时降低中枢点电压的 调压方式i,称为逆调压。②顺调压:对于负荷变化较小哦,线路不长的网络, 在允许电压偏移范围内,最大负荷时,电压可以低一些;最小负荷时,电压可以 精品文档

相关主题
文本预览
相关文档 最新文档