当前位置:文档之家› 一级注册建筑师《物理与设备》复习要点:室内声学原理

一级注册建筑师《物理与设备》复习要点:室内声学原理

一级注册建筑师《物理与设备》复习要点:室内声学原理

室内声学原理

一、混响时间及计算公式

(一)混响时间

当室内声场达到稳态,声源停止发声后,声音衰减60dB(能量衰减到初始值的百万分之一)所经历的时间叫混响时间,符号:T60,RT,单位:s(在测量时,如果有困难,规范要求测试信号要高于背景噪声35dB)。

(二)赛宾公式(房间的平均吸声系数<0.2时可用)0.163VT=αS (三)伊林公式

二、室内声压级

(一)室内计算点的声压级

(二)混响半径

混响声能密度和直达声能密度相等的地方离开声源的距离。符号:r0

计算机辅助建筑声学设计的基本原理与应用

计算机辅助建筑声学设计的基本原理与应用 摘要:建筑声学设计中,越来越多地使用计算机辅助音质设计,市场上也有许多应用软件,如丹麦的ODEON,意大利的RAMSETE,德国的EASE等等。声模拟软件可以预测室内声学参数,评价调整声学方案,计算机辅助音质设计将是未来趋势。由于声学问题本身的复杂性和计算机的局限性,目前的辅助建筑声学设计软件研究只是处于起步阶段,还不能完全代替理论分析和实践经验。因此,深入了解计算机辅助设计的原理,强调其参考价值和局限性并重,注重与建筑声学实践经验相结合,是非常重要的。论文参考了国外有关文献,阐述了计算机辅助声学设计的基本原理,希望研究成果对建筑声学设计工作者有所帮助。 关键词:声线追踪法;虚声源法;声线束追踪法;有限元法 准确地预测房间的音质效果一直是建筑声学研究者追求的理想,谁不想在设计音乐厅图纸时就能听到她的声音效果呢?一百多年来,人们逐渐发现了一些物理指标,并揭示了它们与房间主观音质的关系,包括混响时间RT60、早期衰减时间EDT、脉冲声响应、清晰度指数等等。音质参量预估是室内声学设计的关键。目前,人们采用经典公式、缩尺比例模型、计算机模拟来预测这些参数。 室内声学的复杂性源于声音的波动性,任何一种模拟方法目前都不能获得绝对真实的结果。本文在参考研究国外计算机音质模拟文献的基础上,对室内声学的主要模拟方法进行汇编和总结,以便深入地了解计算机辅助建筑声学设计的基本原理、适用性和局限性。 1、比例缩尺模型模拟和计算机声场模拟 自塞宾时代起,比例缩尺模型就在室内声学中获得应用,但模型比较简单,无法得到定量结果。20世纪60年代,模拟理论、测试技术等逐渐发展完善,进行大量研究和实践后,比例模型在客观指标的测量方面已经基本达到了实用化。现在,声源、麦克风、模拟声学材料已经可以和实物对应,仪器的频带也扩展了,在模拟混响时间、声压级分布、脉冲响应等常用指标已经达到实用的精度。 比例模型的原理是相似性原理,根据库特鲁夫的推导,对于1:10的模型来讲,房间尺度缩 小10倍后,如果波长同样缩短10倍,即频率提高10倍时,若模型界面上的吸声系数与实际相同,那么对应位置的声压级参量不变,时间参量缩短10倍。如10倍频率的混响时间为实际频率混响时间的1/10。然而,很难依靠物理的手段完全满足相似性的要求。空气吸收、表面吸收相似性的处理是保证模拟测量精度的关键。比例模型是现阶段所知唯一能够较好模拟室内声场波动特性的实用方法,可是由于模型制作成本较高、需要利用充氮气或干燥空气法降低高频空气吸收、模拟材料吸声特性难于控制的因素,这种方法存在很大的局限性。 随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。从数学的观点来看,声音的传播由波动方程,即由Helmholtz 方程所描述。理论上,从声源到接收点的声脉冲响应可以通过求解波动方程来获得。但是,当室内几何结构和界面声学属性非常复杂时,人们根本无法获得精确的方程形式和边界条件,也不能得到有价值的解析解。如果对方程进行简化处理,所得到的结果极不精确,不能实用,完全利用波动方程通过计算机求解室内声场是不可行的。实用角度讲,

01.声学简介

声学简介 声学是研究媒质中机械波的产生、传播、接收和效应的物理学分支学科. 媒质包 括各种状态的物质,可以是弹性媒质也可以是非弹性媒质;机械波是指质点运动变化的传播 现象. 声学发展简史 声音是人类最早研究的物理现象之一,声学是经典物理学中历史最悠久,并且当前 仍处在前沿地位的物理学分支学科. 从上古起直到19世纪,人们都是把声音理解为可听声的同 义语. 中国先秦时就说“情发于声,声成文谓之音”,“音和乃成乐”. 声、音、乐三者不同,但都指可以听到的现象. 同时又说“凡响曰声”, 声引起的感觉(声觉)是响,但也称为声,这与现代对声的定义相同. 西方国家也是如此,英文的词源来源于希腊文,意思就是“听觉”. 世界上最早的声学研究工作主要在音乐方面. 《吕氏春秋》记载,黄帝令伶伦取竹 作律,增损长短成十二律;伏羲作琴,三分损益成十三音. 三分损益法就是把管(笛、箫) 加长三分之一或减短三分之一,这样听起来都很和谐,这是最早的声学定律. 传说在古希腊 时代,毕达哥拉斯也提出了相似的自然律,只不过是用弦做基础. 1957年在中国河南信阳出土了蟠螭文编钟,它是为纪念晋国于公元前525年与楚 作战而铸的. 其音阶完全符合自然律,音色清纯,可以用来演奏现代音乐. 1584年,明朝 朱载堉提出了平均律,与当代乐器制造中使用的乐律完全相同,但比西方早提出300年. 古代除了对声传播方式的认识外,对声本质的认识也与今天的完全相同. 在东西方,都认为声音是由物体运动产生的,在空气中以某种方式传到人耳,引起人的听觉. 这种 认识现在看起来很简单,但是从古代人们的知识水平来看,却很了不起. 例如,很长时期内,古代人们对日常遇到的光和热就没有正确的认识,一直到牛顿 的时代,人们对光的认识还有粒子说和波动说的争执,且粒子说占有优势. 至于热学,“热质”说的影响时间则更长,直到19世纪后期,恩格斯还对它进行过批判. 对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的. 从那时 起直到19世纪,几乎所有杰出的物理学家和数学家都对研究物体的振动和声的产生原理作 过贡献,而声的传播问题则更早就受到了注意,几乎2000年前,中国和西方就都有人把声 的传播与水面波纹相类比. 1635年有人用远地枪声测声速,以后方法又不断改进,到1738年巴黎科学院利用 炮声进行测量,测得结果折合为0℃时声速为332米/秒,与目前最准确的数值331.45米/ 秒只差0.15%,这在当时“声学仪器”只有停表和人耳的情况下,的确是了不起的成绩. 牛顿在1687年出版的《自然哲学的数学原理》中推理:振动物体要推动邻近媒质,后者又推动它的邻近媒质等等,经过复杂而难懂的推导,求得声速应等于大气压与密度之比

ODEON原理---建筑声学

ODEON原理 摘要:建筑声学设计中,越来越多地使用计算机辅助音质设计,如ODEON。声模拟软件可以预测室内声学参数,评价调整声学方案,计算机辅助音质设计将是未来趋势。由于声学问题本身的复杂性和计算机的局限性,目前的辅助建筑声学设计软件研究只是处于起步阶段,还不能完全代替理论分析和实践经验。因此,深入了解计算机辅助设计的原理,强调其参考价值和局限性并重,注重与建筑声学实践经验相结合,是非常重要的。论文参考了国外有关文献,阐述了计算机辅助声学设计的基本原理,希望研究成果对建筑声学设计工作者有所帮助。 关键词:声线追踪法;虚声源法;声线束追踪法;有限元法 准确地预测房间的音质效果一直是建筑声学研究者追求的理想,谁不想在设计音乐厅图纸时就能听到她的声音效果呢?一百多年来,人们逐渐发现了一些物理指标,并揭示了它们与房间主观音质的关系,包括混响时间RT60、早期衰减时间EDT、脉冲声响应、清晰度指数等等。音质参量预估是室内声学设计的关键。目前,人们采用经典公式、缩尺比例模型、计算机模拟来预测这些参数。 室内声学的复杂性源于声音的波动性,任何一种模拟方法目前都不能获得绝对真实的结果。本文在参考研究国外计算机音质模拟文献的基础上,对室内声学的主要模拟方法进行汇编和总结,以便深入地了解计算机辅助建筑声学设计的基本原理、适用性和局限性。 1 比例缩尺模型模拟和计算机声场模拟 自塞宾时代起,比例缩尺模型就在室内声学中获得应用,但模型比较简单,无法得到定量结果。20世纪60年代,模拟理论、测试技术等逐渐发展完善,进行大量研究和实践后,比例模型在客观指标的测量方面已经基本达到了实用化。现在,声源、麦克风、模拟声学材料已经可以和实物对应,仪器的频带也扩展了,在模拟混响时间、声压级分布、脉冲响应等常用指标已经达到实用的精度。 比例模型的原理是相似性原理,根据库特鲁夫的推导,对于1:10的模型来讲,房间尺度缩小10倍后,如果波长同样缩短10倍,即频率提高10倍时,若模型界面上的吸声系数与实际相同,那么对应位置的声压级参量不变,时间参量缩短10倍。如10倍频率的混响时间为实际频率混响时间的1/10。然而,很难依靠物理的手段完全满足相似性的要求。空气吸收、表面吸收相似性的处理是保证模拟测量精度的关键。比例模型是现阶段所知唯一能够较好模拟室内声场波动特性的实用方法,可是由于模型制作成本较高、需要利用充氮气或干燥空气法降低高频空气吸收、模拟材料吸声特性难于控制的因素,这种方法存在很大的局限性。 随着软件技术的发展,使用计算机进行声场的模拟研究成为现实。从数学的观点来看,声音的传播由波动方程,即由Helmholtz 方程所描述。理论上,从声源到接收点的声脉冲

声学原理

声学原理 声波是由物体振动产生的,当振动在一定的频率和强度范围内时,人耳就可听到。振动发声的物体称为声源。 声源发声后要经过一定的介质才能向外传播,而声波是依靠介质的质点振动而向外传播声能,介质的质点只是振动而不移动,所以声音是一种波动。波是振动的传播是振动状态的传播,即振动方向、振动位相或振动能量的传播。波的传播并不是介质或物理量本身的向前运动。即声源的质点并不随声波前进,他只在原地运动,传递出的只是质点的运动状态。 由上所述,声音为一串串稀疏稠密交替变化的波,而疏和密就是空气压强的变化,再通过人的耳膜对空气压力的反映传入大脑,从而听到声音。声波是描述声音的物理现象,常用波形表示。声波具有一 切“波”的性质。所以产生声音的必要条件有两个:1、必须要有振动体或振动源。2、声波的传递必须依靠传播媒介。声波传播的空间称为声场。气体中的声波属于纵波,即波的前进方向与媒质质点的振动方向在一条直线上。同一时刻,同位相的振动传播到达点的集合叫做波阵面。波阵面是平面的波叫平面波,波阵面是球面的波叫球面波。 一般情况下,平面振动发出的波是平面波,点源振动发出的波是球面波。 人耳的听音范围是20Hz~20KHz。低于20Hz叫次声波,高于20KHz的叫超声波。 声波在振动一个周期内传播的距离叫做波长。用λ表示 声波一秒钟传播的距离叫“波速”用c表示 声波一秒钟振动的次数叫“频率”用 f表示 它们之间的关系:λ=c/f 相位:说明其声波在周期运动中所达到的精确位置,通常用圆周的度数来表示。 振动频率、振幅和传播速度相同而传播方向相反的两列波叠加合时,就产生驻波。驻波形成时,空间各处的介质或物理量只在原位置附近作振动,波停驻不前,而没有行波的感觉,所以称为驻波。 声波在传输过程中具有相互干涉作用。两个频率相同、振动方向相同且步调一致的声源发出的声波相互叠加时就会出现干涉现象。如果它们的相位相同,两波叠加后幅度增加声压加强;反之,它们的相位相反,两波叠加后幅度减小声压减弱,如果两波幅度一样,将完全抵消。由于声波的干涉作用,常使空间的声场出现固定的分布,形成波峰和波谷(从频响曲线上看似梳状滤波器的效果)。对于一般的节目素材,只要几个

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

室内声学基础

室内声学基础 第一章声音的基本性质 一、声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞。 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 二、声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

音乐厅中运用了什么声学原理

音乐厅中运用了什么声学原理主要是混响和回声音乐厅是乐队演出的主要场所,除了专门为乐队服务的音乐厅外,歌剧院、大会堂、大教堂、演播大厅、电影院等都可以作为音乐厅使用。反映音乐厅质量的主要因素是混响。乐器停止发音后,声音并不马上消失,而是伴有余音的,即分贝数渐渐下降,这种现象称为混响,声学上把声音衰减 60dB 的时间称为混响时间。混响是由于声音在室内反射造成的,室外是没有混响的。混响时间和以下因素有关: (1) 房间的体积:通常体积越大,混响时间越长; (2) 房间内壁的材质:如果内壁是粗糙柔软的吸声材质,那么混响时间会短些,如果内壁是坚硬光滑的反射材质,那么混响时间会长些,房间的内壁指的是墙壁、天花板、地板,以及音乐厅内一切影响声音传播的障碍物,特别是坐椅,增加有软垫的坐椅数量会缩短混响时间; (3) 声音的频率:由于高频声音的反射和衍射能力比低频声音差,所以高频声音的混响时间比低频声音短。 混响时间太短会使声音变得干涩,太长则会使音乐失去清晰的线条,两者都不利于音乐的欣赏。实践表明,适合乐队演奏的音乐厅,混响时间应在 1.5 到 2 秒之间,当然,最佳的混响时间并不是唯一的,它取决于听众的爱好、音乐的类型、乐队的规模等诸多因素。例如,重视音响效果的听众希望混 响时间长些,重视音乐细节(旋律、节奏等)的欣赏者希望混响

时间短些;演奏交响乐时可以采用混响时间较长的音乐厅,而歌剧院的混响时间必须控制在 2 秒以内,否则歌手就无法听清自己的声音;小规模的乐队希望在混响时间长的音乐厅中演出,以增加音响,而过长的混响时间对于大规模的乐队(四管制,由两个交响乐团组合而成的乐队)有时反而不利。和混响类似的一种现象称为回声,语言和音乐都会在回声的作用下变得模糊不清,因此回声是音乐厅中必须避免的。产生回声的主要原因在于声音的反射体,如果很平滑,那么声音会作镜面反射,同一束声线(几何光学中“光线”的概念沿用在声学中)很有可能同时到达某个地方,由此产生回声,如果凹凸不平,那么声音会作漫反射,同一束声线被反射到不同的方向,然后以不同的时间到达某个地方,形成混响。音乐厅的天花板通常有避免回声的装饰,例如很多形状不规则的吊顶。此外,管弦乐和合唱表演必须使用乐队罩,也就是乐队背后的音板,这样,向上和向后传播的声音就会尽可能多地被音板反射回来,使得乐队罩起到聚光灯后凹面镜的作用,反之,把音板换成绒布,那么音量将减轻很多。

第四章 室内声学

第四章 室内声学 4-1 室内声的组成 1.直达声和反射声 2.前期反射声和混响声 延迟不超过50ms的反射声计为前期反射声 4-2 闭室的混响声与混响时间 1.闭室的简正频率:反射声在室内往返传播要产生干涉引起驻波现象。这些复杂的驻波现象可看成是由许多简正波叠加组成,每一简正波都有其对应的简正频率,或固有频率: f0=C0 2 ( nx l x )2+( n y l y )2+( n z l z )2 式中l x、l y、l z为室内长、宽、高,C0为声速, n x、n y、n z为零或正整数2.简正频率特点 (1) 相邻简正频率间的平均频率间隔断△f:△f≈ C03 4πV f2 f为计算△f处频率V为闭室容积 在相对的低频,简正频率之间间隔较大;而随着频率的增高,简正频率的分布密度会逐渐增加,例如:长×宽×高=10米×6米×4米 fo : 17.2 ; 28.7 ; 33.4 ; 34.4 ; 43 ; 44.8 ; 46.3 ; 51.6 ; 51.7 赫兹 (2)染色现象:如只有个别的频率分量能激发出简正波,会使室内的声音在这些个 别频率分量上突出地加强和拖尾,导致一种在听觉上的染色现象。容积小的闭室低 频就是如此。 (3)房间应有的起码容积Vmin≥4λ3max λmax声音频谱中最低频率分量所对应的声波波长(米) 对一个矩形闭室,其长、宽、高比例最好取无理数,切忌整数倍避免发生过多的简并现象。扬声器箱内尺寸亦如此。最好按黄金分割1.618 : 1 : 0.618 3.混响时间(reverberation time) 混响时间定义:声源停止后,声压级减少60dB所需的时间。对小型录播室:0.5秒;礼堂、影院:1秒;剧院、音乐厅:1.5秒。 在一闭空间内,当某一频率或频带的声音在声源已被停止后,在此闭空间内声压级减少60dB所需要的时间T60,叫混响时间。 房间愈大,房间内吸声量愈小,混响时间愈长,反之就愈短。 4.赛宾公式:赛宾是建筑声学创始人,他在本世纪初设计了波士顿音乐厅,至今仍是一座建筑声学经典作品。 赛宾公式:T60≈KV A= 0.161V a ?S (K为与温度有关的常量,常温下K≈0.161(秒/米),V 为闭室容积,S为表面总面积,A-室内的总吸声量A=a S,a为平均吸声系数,)当考虑到空气对声波的衰减率m

建筑声学原理基础学习

建筑声学原理基础Post By:2007-1-24 9:11:21 一、室内声音的传播 1. 反射与前次反射 声波在传播过程中,若遇到比它波长大的物体表面,便会产生反射。当反射面比声波的波长大很多时,反射规律与几何光学相似,即声线的反射角等于入射角。这时,我们可以用几何声学来研究反射的情况。 我们把听到直达声后50ms以内到达的反射声称为前次反射或早期反射。由于哈斯效应,前次反射声人耳不但分辨不出来,而且还会将它当作直达声的一部分,在主观效果上增加了声音的响度但又不会影响清晰度。这也是为什么在室内讲话时要比在室外讲话听起来声音响一些的缘故。 剧场与音乐厅的前次反射强弱程度是一个很重要的声学条件,18世纪在欧洲建造的一些古典音乐厅,以音质效果极佳而著称于世,曾使很多声学家和建筑学家感到迷惑。但后来的研究和工程实践表明,一些优秀的古典音乐厅,除了良好的声扩散与适度混响之外,很重要的原因是这些剧场或音乐厅的观众席有足够的前次反射,尤其是来自侧向和顶棚的前次反射声增加了室内声能密度,提高了音乐的空间感和丰满度。 2. 混响与最佳混响时间 混响是建筑声学中最重要的参数之一,适度的混响,可以明显的改善声音质量,改变音乐的音色和风格。 我们已经知道,室内的声波遇到四周墙面以及地面和顶棚会产生反射,而这种反射过程是往复多次的,从而延长了到达听者的时间。如果这些反射声在直达声到达听者50ms后仍多次反射而继续存在,直到一段时间后才衰减消失,听起来有一种余音不绝的感觉。这种过程与现象,我们称为混响,即交混回响之意。 那么,如何确定混响从建立到消失的时间呢?也就是说,如何确定混响时间呢?上个世纪初,声学家赛宾(W.C.Sabie)通过研究后提出:当声源停止发声后,残余的声能在室内往复反射,经吸收衰减,其声能密度下降为原来值的百万分之一所需要的时间,或者说,室内声能密度衰减60dB所需要的时间称为混响时间。 混响时间的实测值与计算值会有一定的差值。一般来说,低频混响时间的实测值小于计算值,高频混响时间的实测值大于计算值。在实际计算时应根据经验作一些修正。 混响时间对声学品质的影响是众所周知的,过长过短都会使观众感到疲劳。只有适当的混响时

声学原理

声学原理z; C+ \/ ?6 i2 y6 [, N E 声波是由物体振动产生的,当振动在一定的频率和强度范围内时,人耳就可听到。振动发声的物体称为声源。 声源发声后要经过一定的介质才能向外传播,而声波是依靠介质的质点振动而向外传播声能,介质的质点只是振动而不移动,所以声音是一种波动。波是振动的传播是振动状态的传播,即振动方向、振动位相或振动能量的传播。波的传播并不是介质或物理量本身的向前运动。即声源的质点并不随声波前进,他只在原地运动,传递出的只是质点的运动状态。 由上所述,声音为一串串稀疏稠密交替变化的波,而疏和密就是空气压强的变化,再通过人的耳膜对空气压力的反映传入大脑,从而听到声音。声波是描述声音的物理现象,常用波形表示。声波具有一切“波”的性质。所以产生声音的必要条件有两个:1、必须要有振动体或振动源。2、声波的传递必须依靠传播媒介。声波传播的空间称为声场。气体中的声波属于纵波,即波的前进方向与媒质质点的振动方向在一条直线上。同一时刻,同位相的振动传播到达点的集合叫做波阵面。波阵面是平面的波叫平面波,波阵面是球面的波叫球面波。一般情况下,平面振动发出的波是平面波,点源振动发出的波是球面波。 人耳的听音范围是20Hz~20KHz。低于20Hz叫次声波,高于20KHz的叫超声波。 声波在振动一个周期内传播的距离叫做波长。用λ表示 声波一秒钟传播的距离叫“波速”用c表示 声波一秒钟振动的次数叫“频率”用 f表示 它们之间的关系:λ=c/f 相位:说明其声波在周期运动中所达到的精确位置,通常用圆周的度数来表示。 振动频率、振幅和传播速度相同而传播方向相反的两列波叠加合时,就产生驻波。驻波形成时,空间各处的介质或物理量只在原位置附近作振动,波停驻不前,而没有行波的感觉,所以称为驻波。 声波在传输过程中具有相互干涉作用。两个频率相同、振动方向相同且步调一致的声源发出的声波相互叠加时就会出现干涉现象。如果它们的相位相同,两波叠加后幅度增加声压加强;反之,它们的相位相反,两波叠加后幅度减小声压减弱,如果两波幅度一样,将完全抵消。由于声波的干涉作用,常使空间的声场出现固定的分布,形成波峰和波谷(从频响曲线上看似梳状滤波器的效果)。对于一般的节目素材,只要几个峰和谷产生于每个1/3倍频程的频带内,那么这种梳状滤波器的影响并不特别明显。人耳的临界频带宽度是非常接近1/3倍频程的。 在厅堂内扩声时由于墙壁的反射也会出现声波的干涉现象。如果是纯音(正弦波)信号,这种干涉现象必然会引起空间声场的很大差异,即:有的地方声波会加强、有的地方声波会减弱甚至完全抵消,成为“死点”(听不到声音)。好在语言和音乐不是正弦波而是复杂的波形,这种复杂的波形用傅立叶级数展开是多个不同频率、不同幅度的正弦波。所以有“此起彼落”“填平补齐”的效果,使干涉效应不太明显。但是!由于不同的频率信号所产生的干涉效果不同,某些频率信号加强,另一些频率信号减弱,所以常常导致房间传输特性不均匀。房间共振可以用波动声学的驻波原理加以说明。简单地说,驻波是驻定的声压起伏,由两列在相反方向上传播的同频率、同振幅的声波相互叠加而形成。当声源持续发声时,在两平行墙之间、始终维持驻波状态,即产生轴向共振,其共振频率为:f=nc/2L,在矩形房间的三对平行表面间,只要其距离为半波长的整数倍,就可产生相应方向上的轴向共振。在矩形房间中,除了上述三个方向的轴向驻波外,声波还可在两维空间内产生驻波,称切向驻波;同样,还会出现三维的斜向驻波.

音响技术及声学原理

音响技术及声学原理 声学原理 (1)声学历史 当森林中有一棵树倒塌下来时,发出一阵轰然大响声音,但是没有人在这个原始森林中,所以就听不到这声音。这算不算有声音发出来呢?声音是肯定发出来了,因为当树干及树枝接触地面时,它们都会产生某些声音,但是没有人听见,但这声音对于人类或其他动物所听到的是有所不同,所以这就是声学上所说的心理(Psychoacoustics)。 我在这里讲的声学原理,最主要是让一个调音员能够了解声学的各方面,而不是进行声学研究,或是硕士、博士的声学论文,所以我在这书内讲的声学理论都是实际可以给在现场操作音响的人用得上的。 1915年,有一个美国人名叫E.S.Pridham将一个当时的电话收听器套在一个播放唱片音响的号角上,而声音可以给一群在旧金山市庆祝圣诞的群众听时,电声学就诞生了。当第一次世界大战结束之后,在美国哈定总统(Harding)就职典礼上,美国贝尔公司把电话的动圈收听器连接在当时的唱片唱机的号角上,就能够把声音传给观看总统就职典礼的一大群群众,因此就产生了很多专业的音响研究及开发了扩声工程这门学问。音响研究人员不单纯是努力地把音响器材进行改进,也做了各类不同的实验来了解人类对听觉的反应。但最高级的音响研究人同都明白音响学是要整体的研究,要了解音响器材的每一个环节,及人类对听觉的生理反应,他们在过去多年内直至现在都作出了很大的贡献。早在1877年,英国的莱李爵士(Lord Raleigh)就已经做过声学的研究,他曾经说过:“所有不论直接或间接有关音响的问题,一定要用我们的耳朵来做决定,因为它是我们的听觉的器官,而耳朵的决定就应该算是最后决定,是不需要再接受上诉的。但这不是等于所有的音响研究都是单靠用耳朵来进行。当我们发现声音的根基是一个物理的现象时,我们探测这个音响境界就要转到另外一个领域范围,它就是物理学。重要的定率是可以从研究这方面而来,而我们的听觉感应也一定要接受这些定率。”我们可以从以上一段文字看到,就算在没有电声音响学产生的时候,老前辈科学家都认为这个是物理的领域。 著名科学家英国的卡尔文勋爵常常说:“当你度量你所述的事物,而能用数字来表达它,你对这事物已有些知识。但如果你不能用数字来表达它,那么你的知识仍然是简陋的和不完满的;对任何事物而言,这可能是知识的始源,但你的意念还未达到科学的境界。”卡尔文勋爵(1824—1907)是19世纪最出色的科学家之一,后世的科学家为了要纪念这位伟人,把绝对温度—273.16摄氏度命名为0度卡尔文度。 戴维斯夫妇(Don&Carolyn Davis)是《音响系统工程》(Sound System Engineering)的作者。这本书被称为音响圣经,几乎是每一个外国研究音响的人必读之物。我引述他书内这一段:“具有数学和物理学的知识,是实质上了解音响工程学的必要条件。对这两种科学认识越深,越能使你跨越从感觉上所得到的意念,而达到用科学来引证事实。著名音响家占士摩亚曾经说过:…在音响学中,任何在表面看来很明显的事情,通常都是错误的?。” 我在以上引述了几位科学家及音响学家的训言,主要是因为现在大部分做音响的

建筑声学设计原理.doc

建筑声学设计原理-txt免费下载|在线阅读| 全集|电子书 基本信息·出版社:中国建筑工业出版社 ·页码:244页 ·出版日期:2000年12月 ·ISBN:7112042275 ·条形码:9787112042272 ·版本:第1版 ·装帧:平装 ·开本:16 ·正文语种:中文 ·丛书名:高校建筑学城市规划专业系列教材 内容简介《建筑声学设计原理》系统、深入地介绍20世纪建筑声学尤其是观演建筑声学的成果和声学设计的原理、经验与技术措施,着重介绍近年来这一领域的新成果、新趋势。《建筑声学设计原理》内容包括观演建筑史、建筑声学基本知识、室内声学原理、音质评价、吸声和隔声、室内噪声控制等,重点介绍各类观演建筑的音质设计和建筑设计。《建筑声学设计原理》内容翔实,插图丰富,并提供大量国内外重要观演建筑的实例,具有新颖性、先进性、趣味性和权威性。《建筑声学设计原理》作为建筑系本科生和研究生推荐教材,并作为广大建筑师和室内设计装修以及环保、广播音响和音像制作等技术人员的参考读物。

目录 前言 第一章绪论 第二章建筑声学基础知识 第三章语言声和音乐声的特性 第四章室内声场 第五章音质评价 第六章吸声材料和吸声结构 第七章建筑隔声 第八章建筑中的噪声控制 第九章音质设计概论 第十章音乐厅音质设计 第十一章剧场音质设计 第十二章多功能厅音质设计 第十三章体育馆音质设计 第十四章电影院音质设计 第十五章录演播室音质设计 第十六章家庭影院和听音室的音质设计第十七章其它建筑的声学设计 第十八章户外公共观演空间声学设计第十九章电声系统 第二十章室内声场的计算 第二十一章声学设计中的缩尺模型试验第二十二章建筑声学测量 附录一常用材料和结构的吸声系数 附录二常用墙板空气声隔声量

各类建筑的声学设计原理

对于各类声学用房,由于其使用要求的不同,其声学设计也不同,现在就不同的几个典型的室内做以下介绍: 一、电影院 在这里,南京myvideo首先要介绍电影录音的过程,电影录音的过程大致是在录音棚完成后,录制在电影的的胶片上。观众在放映时听到的声音是通过扬声器重放出来的。由于电影表现的场面不同,在声学环境中表现的声音混响时间相差很大。例如,表现大教堂内的声音的混响时间可以8s。为使观众在观看时有一个非常真实的现场感,而不受观众厅内的声学环境影响,观众厅内应具有较短的混响时间,但不宜过于太短。因此在电影院设计过程中,应注意以下几点: 1、保持混响时间到达最佳值; 2、每座容积可选择3~4m3,并尽可能的取下限值; 3、地面沿纵向应有适当的坡度,以保证整个观众席有充分的直达声和清晰的视线; 4、避免观众厅过长,这是因为一方面不使扬声器输出功率过大影响前部观众,另一方面避免远离银幕的观众席产生声、影不同步的缺陷; 5、由于使用了电声设备,电声设备一般是指向观众厅的后部的,因此后墙面极有可能产生延时和回声,所以一般处理时做强吸声处理; 6、对于特殊造型的房间,一定要做认真的升学处理,防止产生声聚焦,回声,颤抖等声学缺陷。 7、在噪声控制方面,由于使用了较高声级的扬声器,所以允许有较高的背景噪音,但是,设计时一定要处理好来自观众厅外的外界噪音和来自放映室的设备噪音。因为它们可能影响临近的观众。因此,我们做隔声效果较好的隔声门和隔声窗。 二、播音室、演播室 播音室、演播室等一类的房间有一个共同的特点,即通过房间内的传声器拾音,然后通过反射系统播送出去,最后通过收音机、电视机接受。在这一过程中,房间内的传声器拾音相当于人用单耳听音的效果。单耳听音缺乏辨别声音方位的能力,而对于房间内的声音缺陷反而更敏感,因此声学设计比一般的声学用房要求更高。 1、合适的房间尺寸和比例。 演播室规模高宽长 小型演播室1 1.25 1.60 中型演播室1 1.50 2.50 顶棚较低时1 2.50 3.20 房间长宽比相对较大时1 1.25 3.20 2、混响时间及频率特性 演播室、播音室一类的房间混响时间一般要短于用双耳听音的剧场和音乐厅。大型演播

相关主题
文本预览
相关文档 最新文档