当前位置:文档之家› 微观经济学 数学基础 第10章 随机过程II

微观经济学 数学基础 第10章 随机过程II

微观经济学 数学基础 第10章 随机过程II
微观经济学 数学基础 第10章 随机过程II

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为 t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。 解:由定义,有: )(2)0()0()}()({2)0()0()]} ()()][()({[2)] ([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D (2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马 尔可夫过程。 证明:我们要证明: n t t t <<<≤? 210,有 } )()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P 形式上我们有: } )()(,,)(,)({} )()(,,)(,)(,)({} )(,,)(,)({} )(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤= ======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P 因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2 ,,2,1,)(-=n j t X j 相互独立即可。 由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量 )0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即 有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与 2,,2,1,)(-=n j t X j 相互独立,结果成立。 (3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程, 且对每个0>t ,),(~2t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么? 解:任取n t t t <<<≤? 210,则有: n k W W W k i t t t i i k ,,2,1][1 1 =-=∑=-

最新第1章 随机过程的基本概念习题答案

第一章 随机过程的基本概念 1.设随机过程 +∞<<-∞=t t X t X ,cos )(0ω,其中0ω是正常数,而X 是标准正态变量。试求X (t )的一维概率分布 解:∵ 当0cos 0=t ω 即 πω)2 1 (0+ =k t 即 πω)21(10+=k t 时 {}10)(==t x p 若 0cos 0≠t ω 即 πω)2 1 (1 0+≠ k t 时 {}{}x t X P x x X P t x F ≤=≤=0cos )(),(ω 当 0cos 0>t ω时 ξπ ωωξd e t x X P t x F t x ? - = ??? ? ??≤=02 cos 0 2 021cos ),( 此时 ()t e x t x F t x f t x 0cos 2cos 1 21,),(022ωπ ω? =??=- 若 0cos 0

?? ?= ,2 ,cos )(出现反面出现正面t t t X π 假定“出现正面”和“出现反面”的概率各为21。试确定)(t X 的一维分布函数)2 1 ,(x F 和)1,(x F ,以及二维分布函数)1,2 1;,(21x x F 解:(1)先求)21,(x F 显然???=?? ???-=??? ??出现反面出现正面 出现反面出现正面10,212,2cos 21π X 随机变量?? ? ??21X 的可能取值只有0,1两种可能,于是 21 021= ??????=?? ? ??X P 2 1121=??????=??? ??X P 所以 ?????≥<≤<=??? ?? 11102 1 0021,x x x x F 再求F (x ,1) 显然? ??-=???=出现反面出现正面出现反面出现正面 2 1 2 cos (1)πX {}{}2 1 2)1(-1 (1)====X p X p 所以 ???? ???≥<≤<=2 121- 2 1-1 0,1)(x x x x F (2) 计算)1,2 1 ;,(21x x F ???-=???=出现反面出现正面出现反面出现正面 2 1)1(, 1 0)2 1 ( X X 于是

第2章 随机过程习题及答案

第二章 随机过程分析 1.1 学习指导 1.1.1 要点 随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。 1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。 2. 随机过程的分布函数和概率密度函数 如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为 F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1) 如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为 1111111 (,) (, ) (2 - 2)?=?F x t f x t x 对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率 {}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤ 称为随机过程ξ (t )的二维分布函数。如果 2212122121212 (,;,) (,;,) (2 - 4)F x x t t f x x t t x x ?=??? 存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。 对于任意时刻t 1,t 2,…,t n ,把 {}n 12n 12n 1122n n ()(),(), ,() (2 - 5) =≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。如果 n n 12n 12n n 12n 12n 12n (x ) () (2 - 6)?=???F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,, 存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。 3. 随机过程的数字特征 随机过程的数字特征主要包括均值、方差、自相关函数、协方差函数和互相关函数。 随机过程ξ (t )在任意给定时刻t 的取值ξ (t )是一个随机变量,其均值为 []1()(, )d (2 - 7)E t xf x t x ξ∞ -∞ =?

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

第二章随机过程的基本概念

第二章随机过程的基本概念 §1随机过程及其概率分布 、随机过程概念: 一、随机过程概念: 初等概率论所研究的随机现象,基本上可以用随机变量或随机向量来描述.但在实际中有些随机现象要涉及(可列或非可列)无穷多个随机变量.

例1.某人扔一枚硬币,无限制的重复地扔下去,要表示无限多次扔的结果,我们不妨记正面为1,反面为0.第次扔的结果是一个,其分布,无限多次扔n n r vX ?{}{}1012n n P X P X ====,无限制的重复地扔,要表示无限多次扔的结果,我们不妨反面为其分布无限多次扔的结果是一个随机过程,可用一族相互独 立,,或表示.r v ?1X ,2X {},1n X n ≥

n n X 0n n 0 1 2 3 4 5 6 7 8 910 ……

例2.当固定时,电话交换站在时间内来到的呼叫次数是,记, ,其中是单位时间内平均来到的呼叫次数,而,若从变到,时刻来到的呼叫次数需用一族随机变量表 它为非降的阶,在有呼唤来到的时刻阶跃地增加,假定在任一呼唤来到的时刻不可能来到多)(0)t t ≥[0,] t r v ?()X t ()()X t P t λ λ0λ>t 0∞t {}(),[0,)X t t ∈∞()X t ,电话交换站在记,若时刻示, 是一个随机过程. 对电话交换站作一次观察可得到一条表示以前来到的呼唤曲线,它为非降的阶梯曲线,在有呼唤来到的时刻阶跃地增加,(假定在任一呼唤来到的时刻不可能来到多于一次呼唤). E t 1()x t

同理,第二次观察,得到另一条阶梯形曲线; 同理,第n 次观察,得到另一条阶梯形曲线. 2()x t ()n x t ,第二次观察,得到另一条阶梯形曲,第,得到另一条阶梯形曲 总之,一次试验得到阶梯形曲线形状具有随机性

最新随机过程练习(第二章)

随机变量巩固练习―――重点:“函数的函数”相关运算 定理 1 设X 为连续型一维随机变量,其概率密度函数为()X f x ,则对于Y =g(X)的概率密度函数,有下列结果: (1)若g(x)是严格单调可微函数,则Y=g(X)的概率密度函数为 (())'(),()0, X Y f h y h y y I f y y I ?∈?=???? 其中h(y)是y=g(x)的反函数. (2)若g(x)不是严格单调可微函数,则将g(x)在其定义与上分成若干个单调分支,在每个单调分支上应用(1)的结果得Y=g(X)的概率密度函数为 1122(())'()(())'(),()0, X X Y f h y h y f h y h y y I f y y I ?++∈?=???? 其中I 是在每个单调分支上按照(1)确定的y 的取值公共部分。 练习1 设~[,],tan 22X U Y X ππ-=,试求Y 的概率密度函数()Y f y . 练习2 设 随机变量X 在(0,1)区间内服从均匀分布,试求 (1)X Y e =的概率密度函数 (2)2ln Y X =-的概率密度函数

随机过程巩固练习 1 设随机过程(),(0,),X t Vt b t b =+∈∞为常数,V 为服从正态分布N(0,1)的随机变量。求:X(t)的一维概率密度函数、均值和相关函数。 2 设随机变量Y 具有概率密度函数f(y),令 (),0,0Yt X t e t Y -=>> 求随机过程X(t)的一维概率密度函数、均值和相关函数。 3 设有随机过程()cos()sin()X t A wt B Wt = +,其中w 为常数,A ,B 是相互独立的且服从正态分布2(0,)N σ的随机变量。求随机过程的均值和相关函数。 4 已知随机过程X(t)的均值函数()X m t 和协方差函数12(,),()X B t t t ?为普通函数,令()()()Y t X t t ?=+,求随机过程Y(t)的均值和协方差函数。 5 设随机过程()cos()X t A wt =+Θ,其中,A w 为常数,随机变量Θ服从(,)ππ-上 的均匀分布。令2()()Y t X t = ,求(,)Y R t t s + 6 设X(t)为实随机变量,x 为任意实数,令 1,()()0,()X t x Y t X t x ≤?=?>? 证明随机过程 Y(t)的均值函数和相关函数分别是X(t)的一维和二维分布函数。

随机过程习题第2章

2.1 设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<<ΛΛ121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n ΛΛ 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= ΛΛΛΛΛΛ 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n ΛΛΛΛ 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n ΛΛ 2.2 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第二章 随机过程汇总

第 2 章 随机过程 2.1 引言 ?确定性信号是时间的确定函数,随机信号是时间的不确定函数。 ?通信中干扰是随机信号,通信中的有用信号也是随机信号。 ?描述随机信号的数学工具是随机过程,基本的思想是把概率论中的随机变量的概念推广到 时间函数。 2.2 随机过程的统计特性 一.随机过程的数学定义: ?设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t) 是第i 次试验的样本函数或实现,每次试验得到一个样本函数,所有可能出现的结果的总体就构成一随机过程,记作)(t g 。 随机过程举例:

二.随机过程基本特征 其一,它是一个时间函数; 其二,在固定的某一观察时刻1t ,)(1t g 是随机变量。 随机过程具有随机变量和时间函数的特点。 ● 随机过程)(t g 在任一时刻都是随机变量; ● 随机过程)(t g 是大量样本函数的集合。 三.随机过程的统计描述 设)(t g 表示随机过程,在任意给定的时刻T t ∈1, )(1t g 是一个一维随机变量。 1.一维分布函数:随机变量)(t g 小于或等于某一数值x 的概率,即 })({);(1x t g P t x P ≤= 2.2.1 2.一维概率密度函数:一维概率分布函数对x 的导数. x t x P t x p ??= ) ;(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的二维分布 })(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.3 4.二维分布密度定义为 2 12121221212) ,;,(),;,(x x t t x x P t t x x p ???= 2.2.4 四.随机过程的一维数字特征 设随机过程)(t g 的一维概率密度函数为),(1t x p . 1.数学期望(Expectation) dx t x xp t g E t g );()]([)(1?∞ ∞ -==μ 2.2.5 2.方差(Variance)

随机过程的基本概念

随机过程的基本概念 马尔可夫性质: 马尔可夫性质,或称作无记忆性,或称作无后效性。 马尔可夫过程和马尔可夫链,分别表示具有马尔可夫性质的随机过程和随机序列。马尔可夫性质是说过程的历史对将来的影响,都是通过当前状态对将来的影响来表示,即当前的状态概括了过去历史对将来的影响。这样一来,任意维数的马尔可夫过程和马尔可夫链的概率分布,都可以用它们的初始分布和条件转移概率分布来表示。 定义1,马尔可夫过程(使用条件概率密度函数,或条件概率分布函数来表示) 设有一个随机过程{}T t t ∈),(ξ,T t t t t m m ∈<<<<+121 ,若在这些时刻观察到随机过程的值是121,,,+m m x x x x ,若它的条件概率密度和条件分布函数满足条件, )/(),,/(1/211,/1211m m t t m m t t t t x x f x x x x f m m m m ++++= 或 )/(),,/(1/211,/1211m m t t m m t t t t x x F x x x x F m m m m ++++= 则称这类随机过程为具有马尔可夫性质的随机过程或马尔可夫过程。 性质,马尔可夫过程的有限维概率密度 ) ()/()/()/() ,,,(112/1/1/121,,11211121x f x x f x x f x x f x x x x f t t t m m t t m m t t m m t t t t m m m m m m ???=-++-++ 定义2,马尔可夫链(使用转移概率、条件概率) 设有一个随机过程{} 2,1,0),(=n n ξ是离散状态的随机过程,且)(n ξ满足条件, {}{} n n i n j n P i n i i j n P ==+=====+)(/)1()(,)1(,)0(/)1(10ξξξξξξ 则称这类随机过程是马尔可夫链。 性质,马尔可夫链的有限维概率密度 {} {}{}{}{} 001110)0()0(/)1()(/)()(/)1()1(,)(,)1(,)0(i P i i P i n i n P i n j n P j n i n i i P n n n n =?====?==+==+===-ξξξξξξξξξξξ 二阶矩过程: 定义1,二阶矩过程

《随机过程》第二章题目与答案

第二章 一、填空题 1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类. 2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度. 3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__. 4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__. 5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__. 二、计算题 1、已知Γ分布,X~Γ(α,β), 若 其中α,β>0,试求Γ分布的特征函数. 2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数. 3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.

4、设随机过程:0),sin()cos( )(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数. 5、设随机变量Y 具有概率密度f(y),令 )0,0(,)(>>=-Y t t X e Yt , 求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2). 6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从 N(0, )的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t }的均值函数m(t)和相关函 数R(s,t).

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数? ∞ -=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞ ∞ -=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = n p q DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX

随机过程作业题及参考答案(第二章)

第二章 平稳过程 P103 2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。试证 (1)若t T ∈,而{}12T =,,,则(){}12X t t =,,, 是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){} 0X t t ≥,不是平稳过程。 证明: 由题意,U 的分布密度为:()1 0220u f u π π?<

随机过程期末复习题

随机过程期末复习题库(2015) 一、填空题 1.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 2.对于具有常数均值的二阶矩过程,为宽平稳过程当且仅当二元函 数只与有关, 而与和无关。 3.设随机变量服从泊松分布,且,则 2 . 4.已知随机变量的二阶矩存在,且的矩母函数为,则. 5.已知随机变量的二阶矩存在,且的特征函数为,则 . 6.设是平稳序列,其协方差函数为,请给出的均值具有遍 历性的一个充分条件:. 7.设是平稳过程,其协方差函数为,请给出的均值具有遍历性 的一个充分条件:. 8.已知平稳过程的均值,协方差函数为,则该过程的自相关函数 . 9.设为两个随机事件,,则 0.6 . 10.设为二随机变量,,则 2 . 11.已知随机变量的矩母函数为,则服从的分布是参数为的 泊松分布. 12.是二维正态分布,即,. 13.设随机变量的数学期望均存在,则. 14.为随机事件,随机变量的数学期望存在,则 . 15.在强度为的泊松过程中,相继事件发生的间隔时间是相互独立的随机变量,且服从均 值为的同一指数分布. 16.设是强度为的泊松过程,表示第个事件发生的时刻,则的分布函 数为. 17.设是强度为的泊松过程,表示第个事件发生的时刻,则. 18.设是强度为的泊松过程,表示第个事件发生的时刻,则

. 解由定理3.2.3,在已知的条件下,事件发生的个时刻的条件联合分布函数与个在区间上相互独立同均匀分布的随机变量的顺序统计量的联合分布函数相同.故对,有 从而, 19.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 20.设,是速率为的泊松过程. 则对于, . 21.设,是速率为的泊松过程. 对于, . 解对于,有 增量与独立 22.是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔.则对,. 解题思路:注意到与独立,且同服从参数为的指数分布即得. 23.设是强度为的泊松过程,表示第个事件与第个事件发 生的时间间隔,则. 24.设是强度为的泊松过程,表示第个事件发生的时刻,则 . 25.设是强度为的泊松过程,表示第个事件发生的时刻,则服从参 数为和的分布. 26.非齐次泊松过程,其强度函数为,则 . 解对于,有

随机过程习题第2章

设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<< 121。试证明: )/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n 即一个马尔可夫过程的反向也具有马尔可夫性。 证明:首先,由条件概率的定义式得 ) ,,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++= 根据马尔可夫性将上式中的分子和分母展开,并化简得 ) () ()/()()/()/() ()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++== n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n 于是, )/() (),(),,/(1/11,1,,/1111++++++++++== n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。试证明: )/()/()/,(23/21/231/,2321231x x f x x f x x x f t t t t t t t = 证明:首先,由条件概率的定义式得 ) () ,,()/,(2321,,231/,2321231x f x x x f x x x f t t t t t t t = 然后,根据马尔可夫性将上式中的分子展开,并化简得 ) (),() /()() ()/()/()/,(221,23/2112/23/231/,22123211223231x f x x f x x f x f x f x x f x x f x x x f t t t t t t t t t t t t t t ==

第二章随机过程基本概念.

2随机过程的基本概念 §2.1 基本概念 随机过程是指一族随机变量 . 对随机过程的统计分析称为随机过程论 , 它是随机数学中的一个重要分支,产生于本世纪的初期 . 其研究对象是随机现象 ,而它特别研究的是随“ 时间” 变化的“ 动态” 的随机现象 . 一随机过程的定义 1 定义设 E 为随机试验, S 为其样本空间,如果 (1对于每个参数 t ∈ T , X(e,t为建立在 S 上的随机变量, (2对每一个 e ∈ S , X(e,t为 t 的函数,那么称随机变量族 {X(e,t, t∈ T, e∈ S}为一个随机过程,简记为 {X(e,t, t∈ T}或 X(t。 ((((({} {} [](为随机序列。时,通常称 , 取可列集合当可以为无穷。 通常有三种形式: 参数一般表示时间或空间, 或有时也简写为一个轨道。 随机过程的一个实现或过程的样本函数,或称随机的一般函数,通常称为为对于 :上的二元单值函数。 为即若用映射来表示注意:

t X T T T b a b a T T T T t X t X t e X T t e X S e S T t e X R S T t e X t 21321, , , , 3, 2, 1, 0, 1, 2, 3, , 3, 2, 1, 0T , . 4, . 3, , 2, :, . 1=---==??×?′?′L L L 为一个随机过程。则令 掷一均匀硬币, 例 , ( (cos (}, {1 t e X t X R t T e t H e t t X T H S =??íì====p2 随机过程举例 例 2:用 X(t表示电话交换台在 (0, t 时间内接到的呼唤的次数 , 则 (1对于固定的时刻 t, X(t为随机变量 , 其样本空间为{0, 1, 2, …..}, 且对于不同的 t, 是不同的随机变量 . (2对于固定的样本点 n, X(t=n是一个 t 的函数 . (即:在多长时间内来 n 个人 ? 所以 {X(t,t>0}为一个随机过程 . 相位正弦波。为随机过程,称为随机则令例 (

随机过程知识点汇总

第一章随机过程的基本概念与基本类型一.随机变量及其分布1.随机变量,分布函数离散型随机变量的概率分布用分布列分布函数连续型随机变量的概率分布用概率密度分布函数2.n 维随机变量其联合分布函数离散型联合分布列连续型联合概率密度 3 .随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4?特征函数离散连续 重要性质:,,, 5 ?常见随机变量的分布列或概率密度、期望、方差 0 — 1分布 二项分布泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增 量过程,马尔可夫过程,平稳过程等。 2 .随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。 (1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。 (5)互相关函数:,是两个二阶距过程,则下式称为它们的互协方差函数。 ,那么,称为互相关函数。若,则称两个随机过程不相关。 3 ?复随机过程 均值函数方差函数 协方差函数相关函数 4?常用的随机过程 (1)二阶距过程:实(或复)随机过程,若对每一个,都有(二阶距存在) ,则称该随机过程为二 阶距过程。 (2)正交增量过程:设是零均值的二阶距过程,对任意的,有 ,则称该随机过程为正交增量过程。

随机过程的基本概念和基本类型

第二章 随机过程的基本概念和基本类型 教学目的:(1)掌握随机过程的定义; (2)了解有限维分布族和Kolmogorov 定理; (3)掌握独立增量过程和独立平稳增量过程概念。 教学重点:(1)有限维分布和Kolmogorov 定理; (2)随机过程的基本类型。 教学难点:(1)有限维分布和Kolmogorov 定理。 2.1 基本概念 教学目的:掌握随机过程的定义;了解随机过程的按状态集和参数的分类。 教学重点:随机过程的定义。 在概率论中,我们研究了随机变量,n 维随机向量。在极限定理中,我们研究了无穷多个随机变量,但局限在它们相互独立的情形。将上述情形加以推广, 即研究一族无穷多个、相互有关的随机变量,这就是随机过程。 定义2.1:设),,(P ∑Ω是一概率空间,对每一个参数T t ∈,),(ωt X 是一定义在概率空间),,(P ∑Ω上的随机变量,则称随机变量族});,({T t t X X T ∈=ω,为该概率空间上的一随机过程。T 称为参数集。 随机过程的两种描述方法:用映射表示T X ,R T t X →Ω?:),(ω,即),(??X 是一定义在Ω?T 上的二元单值函数,固定,T t ∈),(?t X 是一定义在样本空间Ω上的函数,即为一随机变量;对于固定的Ω∈0ω,),(0ωt X 是一个关于参数T t ∈的函数,通常称为样本函数,或称随机过程的一次实现。记号),(ωt X 有时记为)(ωt X 或简记为).(t X 参数T 一般表示时间或空间。参数常用的一般有:

(1) },,2,1,0{0 ==N T 时间此时称之为随机序列或随机序列写为序列.,)({n X }0≥n }.,1,0,{ =n X n 或 (2) },2,1,0{ ±±=T (3) ],[b a T =.,0∞+∞-可以取或可以取其中b a 当参数取可列集时,一般称随机过程为随机序列。随机过程});({T t t X ∈可能取值的全体所构成的集合称为此随机过程的状态空间,记作S. S 中的元素称为状态。状态空间可以由复数、实数或更一般的抽象空间构成。 同的类:的不同过程可以分成不和根据S T 参数空间分类:?? ?≥==}0|{}2,1,0{t t T T 如连续参数如离散参数 状态空间分类:?? ?取值是连续的 连续状态取值是离散的离散状态 S S 随机过程分为以下四类: (1) 离散参数离散型随机过程; (2)连续参数离散型随机过程; (3)连续参数连续型随机过程; (4)离散参数连续型随机过程。 以随机过程的统计特征或概率特征的分类,一般有: 独立增量过程; 二阶矩过程; 平稳过程; Poission 过程; 更新过程;

相关主题
文本预览
相关文档 最新文档