当前位置:文档之家› 6《整式及整式的加减》要点梳理及经典例题

6《整式及整式的加减》要点梳理及经典例题

6《整式及整式的加减》要点梳理及经典例题
6《整式及整式的加减》要点梳理及经典例题

一、 知识点回顾

1、单项式的概念

单项式:由数与字母的乘积组成的代数式称为单项式。

补充:单独 一个数或一个字母也是单项式,如a ,5……:

注意:单项式中数与字母或字母与字母之间是乘积关系,例如:2x 可以看成12x ?,所以2x 是单项式;而2x 表示2与x 的商,所以2x 不是单项式,凡是分母中含有字母的就一定不是单项式. 单项式系数和次数:单项式是一般由数字因数和字母因数两部分组成的。

系数:单项式中的字母因数

次数:单项式中所有字母的指数和

注意1:①单项式的系数包括其前面的符号;②当一个单项式的系数是1或1-时,“1”通常省略不写,但符号不能省略. 如:23,xy a b c -等;③π是数字,不是字母.

注意2:①计算单项式的次数时,不要漏掉字母的指数为1的情况. 如322xy z 的次数为1326++=,而不是5;②切勿加上系数上的指数,如522xy 的次数是3,而不是8;322x y π-的次数是5,而不是6.

2、单项式的规范书写

数与字母相乘,数写在字母的前面

数与字母相乘、字母与字母相乘省略乘号。

除号要写成分数线

3、多项式的概念

几个单项式的和叫做多项式。在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。

多项式里次数最高项的次数,就是这个多项式的次数。例如,多项式3x-2最高的项就是一次项3x ,这个多项式的次数是1,它是一次二项式

注意:要防止把多项式的次数与单项式的次数相混淆,而误认为多项式的次数是各项次数之和. 例如:多项式2242235x y x y xy -+中,222x y 的次数是4,43x y -的次数是5,2

5xy 的次数是3,故此多项式的次数是5,而不是45312++=.

4.降幂排列与升幂排列

(1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来叫做把这个多项式按这

个字母的降幂排列.

(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来叫做把这个多项式按这个字母的升

幂排列.

注意:①降(升)幂排列的根据是:加法的交换律和结合律;②把一个多项式按降(升)幂重新排

列,移动多项式的项时,需连同项的符号一起移动;③在进行多项式的排列时,要先确定按哪个字母的

指数来排列. 例如:多项式24423332xy x y x y x y ----按x 的升幂排列为:

42233432y xy x y x y x -+---;按y 的降幂排列为:42323432y x y xy x y x --+--.

5、整式的概念:单项式与多项式统称整式

二、整式的加减

1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都

是同类项。注意:同类项与其系数及字母的排列顺序无关. 例如:232a b 与323b a -是同类项;

而232a b 与32

5a b 却不是同类项,因为相同的字母的指数不同. 合并同类项:把多项式中同类项合并在一起,叫做合并同类项。

注意:①合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,如235a b ab +=显然不

正确;②不能合并的项,在每步运算中不要漏掉.

合并同类项法则:合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。

注意:①合并同类项,只是系数上的变化,字母与字母的指数不变,不能将字母的指数相加;②合并同

类项的依据是加法交换律、结合律及乘法分配律;③两个同类项合并后的结果与原来的两个单项式仍是

同类项或者是0.

2、(1)去括号的法则

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号 相同 ;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号 相反 .

注意:①去括号的依据是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏

乘;②明确法则中的“都”字,变符号时,各项都变;若不变符号,各项都不变. 例如:

()();a b c a b c a b c a b

c +-=+---=-+;③当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号.

(2)填括号法则:

所添括号前面是“+”号,添到括号内的各项都不变号;所添括号前面是“-”号,添到括号内的各项都

改变符号.

注意:①添括号是添上括号和括号前面的“+”或“-”,它不是原来多项式的某一项的符号“移”出来

的;②添括号和去括号的过程正好相反,添括号是否正确,可用去括号来检验. 例如:

()();.a b c a b c a b c a b c +-=+--+=--

3、整式加减的运算法则(整式的加减实质上是去括号和合并同类项)

(1)如果有括号,那么先去括号。

(2)如果有同类项,再合并同类项。

注意:整式运算的结果仍是整式.

三、重要考点例析

考点一、考查整式的有关概念

1.指出下列各式中哪些是整式,哪些不是。 (1)

x +1;(2)a =2;(3)π;(4)S =πR 2;(5);(6)

总结升华:判断是不是整式,关键是了解整式的概念,注意整式与等式、不等式的区别,等式含有

等号,不等式含有不等号,而整式不能含有这些符号。

举一反三:

[变式]把下列式子按单项式、多项式、整式进行归类。

x 2y ,

a -

b , x +y 2-5, , -29, 2ax +9b -5, 600xz , axy , xyz -1, 。

分析:本题的实质就是识别单项式、多项式和整式。单项式中数和字母、字母和字母之间必须是相

乘的关系,多项式必须是几个单项式的和的形式。

答案:单项式有:x 2y ,-

,-29,600xz ,axy 多项式有:a -b ,x +y 2-5,2ax +9b -5,xyz -1

整式有:x 2y ,

a -

b ,x +y 2-5,-,-29,2ax +9b -5,600xz ,axy ,xyz -1。 2、代数式2356y xy x +-

中共有 项,36x 的系数是 ,5

xy -的系数是 ,2y +的系数是 .

3、在代数式26358422-+-+-x x x x 中,24x 和 是同类项,x 8-和 是同类项,2-和

也是同类项,合并后是 .4、若y x n 2

1与m y x 3是同类项,则=m ,=n . 考点二、去括号、化简绝对值

1、若53<

2、若x

A.2x-2z

B.0

C.2x-2y

D.2z-2x

3、)]([n m ---去括号得 ( )

A.n m -

B.n m --

C.n m +-

D.n m +

类型三:同类项

3.若与是同类项,那么a ,b 的值分别是( )

(A )a =2, b =-1。 (B )a =2, b =1。

(C )a =-2, b =-1。 (D )a =-2, b =1。

思路点拨:解决此类问题的关键是明确同类项定义,即字母相同且相同字母的指数相同,要注意同类

项与系数的大小没有关系。

解析:由同类项的定义可得:a -1=-b ,且 2a +b =3,

解得 a =2, b =-1,

故选A 。

举一反三:

[变式]在下面的语句中,正确的有( )

①-a 2b 3与a 3b 2是同类项; ②x 2yz 与-zx 2y 是同类项; ③-1与是同类项;

④字母相同的项是同类项。

A、1个

B、2个

C、3个

D、4个

解析:①中-a2b3与a3b2所含的字母都是a,b,但a的次数分别是2,3,b的次数分别是3,2,所

以它们不是同类项;②中所含字母相同,并且相同字母的指数也相同,所以x2yz与-zx2y是同类项;不含字母的项(常数项)都是同类项,③正确,根据①可知④不正确。故选B。

类型四:整式的加减

4.化简m-n-(m+n)的结果是()

(A)0。(B)2m。

(C)-2n。(D)2m-2n。

思路点拨:按去括号的法则进行计算,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

解析:原式=m-n-m-n=-2n,故选(C)。

举一反三:

[变式] 计算:2xy+3xy=_________。

分析:按合并同类项的法则进行计算,把系数相加所得的结果作为系数,字母和字母的指数不变。注意不要出现5x2y2的错误。

答案:5xy。

5.(化简代入求值法)已知x=-,y=-,求代数式(5x2y-2xy2-3xy)-(2xy+5x2y-2xy2)

思路点拨:此题直接把x、y的值代入比较麻烦,应先化简再代入求值。

解析:原式=5x2y-2xy2-3xy-2xy-5x2y+2xy2=-5xy

当x=-,y=-时,原式=-5×。

总结升华:求代数式的值的第一步是“代入”,即用数值替代整式里的字母;第二步是“求值”,即按照整式中指明的运算,计算出结果。应注意的问题是:当整式中有同类项时,应先合并同类项化简原式,再代入求值。

举一反三:

[变式1] 当x=0,x=,x=-2时,分别求代数式的2x2-x+1的值。

解:当x=0时,2x2-x+1=2×02-0+1=1;

当x=时,2x2-x+1=2×;

当x=-2时,2x2-x+1=2×(-2)2-(-2)+1=2×4+2+1=11。

总结升华:一个整式的值,是由整式中的字母所取的值确定的,字母取值不同,一般整式的值也不同;当整式中没有同类项时,直接代入计算,原式中的系数、指数及运算符号都不改变。但应注意,当字母的取值是分数或负数时,代入时,应将分数或负数添上括号。

[变式2] 先化简,再求值。

3(2x 2y -3xy 2)-(xy 2-3x 2y),其中x =,y =-1。

解: 3(2x 2y -3xy 2)-(xy 2-3x 2y)=(6x 2y -9xy 2)-xy 2+3x 2y

=6x 2y -9xy 2-xy 2+3x 2y =9x 2y -10xy 2。

∴当x =,y =-1时,原式=9××(-1)-10××(-1)2=-。

总结升华:解题的基本规律是先把原式化简为9x 2y -10xy 2,再代入求值,化简降低了运算难度,使

计算更加简便,体现了化繁为简,化难为易的转化思想。

[变式3] 求下列各式的值。

(1)(2x 2-x -1)-,其中x =

(2)2[mn +(-3m)]-3(2n -mn),其中m +n =2,mn =-3。

解析:(1) (2x 2-x -1)-

=2x 2-x -1-x 2+x ++3x 2-3=4x 2-4

当x =时,原式=4×-4=9-4=5。

(2) 2[mn +(-3m)]-3(2n -mn)

=2mn -6m -6n +3mn

=5mn -6(m +n)

当m +n =2,mn =-3时 原式=5×(-3)-6×2=-27。

、计算

(1)144

mn mn -; (2)2237(43)2x x x x ??----??;

(3)(2)()xy y y yx ---+ ; (4) 2 222223(2)a b a b --+

化简求值

(1))522(2)624(22-----a a a a 其中 1-=a .

(2))3123()21(22122b a b a a ----- 其中 3

2,2=-=b a .

类型五:整体思想的应用

6.已知x 2+x +3的值为7,求2x 2+2x -3的值。

思路点拨:该题解答的技巧在于先求x 2+x 的值,再整体代入求解,体现了数学中的整体思想。

解析:由题意得x 2+x +3=7,所以x 2+x =4,所以2(x 2+x)=8,即2x 2+2x =8,所以2x 2+2x -3

=8-3=5。

总结升华:整体思想就是在考虑问题时,不着眼于它的局部特征,而是将具有共同特征的某一项或某一类看成一个整体的数学思想方法。运用这种方法应从宏观上进行分析,抓住问题的整体结构和本质特征,全面关注条件和结论,加以研究、解决,使问题简单化。在中考中该思想方法比较常见,尤其在化简题中经常用到。

举一反三:

[变式1] 已知x2+x-1=0,求代数式x3+2x2-7的值。

分析:此题由已知条件无法求出x的值,故考虑整体代入。

解析:∵x2+x-1=0,∴x2=1-x,

∴x3+2x2-7=x(1-x)+2(1-x)-7=x-x2+2-2x-7

=-x2-x-5=(-x2-x+1)-6 =-6。

[变式2] 当x=1时,代数式px3+qx+1的值为2003,则当x=-1时,代数式px3+qx+1的值为( )

A、-2001

B、-2002

C、-2003

D、2001

分析:这是一道求值的选择题,显然p,q的值都不知道,仔细观察题目,不难发现所求的值与已知值之间的关系。

解析:当x=1时,px3+qx+1=p+q+1=2003,而当x=-1时,px3+qx+1=-p-q+1,可以把p+q看做一个整体,由p+q+1=2003得p+q=2002,于是-p-q=-(p+q)=-2002,所以原式=-2002+1=-2001。故选A。

[变式3] 已知A=3x3-2x+1,B=3x2-2x+1,C=2x2+1,则下列代数式中化简结果为3x3-7x2-2的是( )

A、A+B+2C

B、A+B-2C

C、A-B-2C

D、A-B+2C

分析:将A,B,C的式子分别代入A,B,C,D四个选项中检验,如:A-B-2C=3x3-2x+1-(3x2-2x+1)-2(2x2+1)=3x3-2x+1-3x2+2x-1-4x2-2=3x3-7x2-2。故选C。

答案:C

[变式4] 化简求值。

(1)3(a+b-c)+8(a-b-c)-7(a+b-c)-4(a-b-c),其中b=2

(2)已知a-b=2,求2(a-b)-a+b+9的值。

分析:(1)常规解法是先去括号,然后再合并同类项,但此题可将a+b-c,a-b-c分别视为一个“整体”,这样化简较为简便;(2)若想先求出a,b的值,再代入求值,显然行不通,应视a-b为一个“整体”。

解析:(1)原式=3(a+b-c)-7(a+b-c)+8(a-b-c)-4(a-b-c)

=-4(a+b-c)+4(a-b-c)

=-4a-4b+4c+4a-4b-4c=-8b。

因为b=2,所以原式=-8×2=-16。

(2)原式=2(a-b)-(a-b)+9

=(a-b)+9

因为a-b=2,所以原式=2+9=11。

类型六:综合应用

7.已知多项式3(ax2+2x-1)-(9x2+6x-7)的值与x无关,试求5a2-2(a2-3a+4)的值。

思路点拨:要使某个单项式在整个式子中不起作用,一般是使此单项式的系数为0即可.

解析:3(ax2+2x-1)-(9x2+6x-7)=3ax2+6x-3-9x2-6x+7=(3a-9)x2+4。

因为原式的值与x无关,故3a-9=0,所以a=3。

又因为5a 2-2(a 2-3a +4)=5a 2-2a 2+6a -8=3a 2+6a -8,

所以当a =3时,原式=3×32+6×3-8=37。

总结升华:解答此类题目一定要弄清题意,明确题目的条件和所求,当题目中的条件或所求发生了

变化时,解题的方法也会有相应的变化。

举一反三:

[变式1]当a (x≠0)为何值时,多项式3(ax 2+2x -1)-(9x 2+6x -7)的值恒等为4。

解析:3(ax 2+2x -1)-(9x 2+6x -7)=3ax 2+6x -3-9x 2-6x +7=(3a -9)x 2+4。

因为(3a -9)x 2+4=4,所以(3a -9)x 2=0。又因为x≠0,故有3a -9=0。即a =3,

所以当a =3时,多项式3(ax 2+2x -1)-(9x 2+6x -7)的值恒等于4。

[变式2]当a =3时,多项式3(ax 2+2x -1)-(9x 2+6x -7)的值为多少?

解析:3(ax 2+2x -1)-(9x 2+6x -7)=3ax 2+6x -3-9x 2-6x +7

=(3a -9)x 2+4,当a =3时,原式=(3×3-9)x 2+4=4。

8.已知关于x 的多项式(a -1)x 5+x |b +

2|-2x +b 是二次三项式,则a =____,b =____。

分析:由题意可知a -1=0,即a =1,|b +2|=2,即b =-4或0,但当b =0时,不符合题意,所以

b =-4。

答案:1,-4

举一反三:

[变式]若关于的多项式:

,化简后是四次三项式,

求m ,n 的值

答案:m=5,n=-1

文博教育《整式的加减》周末把作业6

一、选择题

1、用代数式表示a 与-5的差的2倍是( )

A 、a-(-5)×2 B、a+(-5)×2 C、2(a-5) D 、2(a+5)

2、用字母表示有理数的减法法则是( )

A 、a-b=a+b

B 、a-b=a+(-b)

C 、a-b=-a+b

D 、a-b=a-(-b)

3、某班共有学生x 人,其中女生人数占35%,那么男生人数是( )

A 、35%x

B 、(1-35%)x

C 、35%x

D 、135%

x - 4、若代数式473b a x + 与代数式 y b a 24- 是同类项,则 y x 的值是( )

A 、9

B 、9-

C 、4

D 、4-

5、把-x-x 合并同类项得( )

A 、0

B 、-2

C 、-2x

D 、-2x 2

6、一个两位数,十位上的数字是x ,个位上的数字是y ,如果把十位上的数与个位上的数对

调,所得的两位数是( )

A 、yx

B 、y+x

C 、10y+x

D 、10x+y

7、如果代数式4252y y -+的值为7,那么代数式21

2y y -+的值等于( ) A 、2 B 、3 C 、-2

D 、4

8、下面的式子,正确的是( ) A 、3a 2+5a 2=8a 4 B 、5a 2b-6ab 2=-ab 2 C 、6xy-9yx=-3xy D 、2x+3y=5xy

9、一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( )

A 、3x 2y-4xy 2;

B 、x 2y-4xy 2;

C 、x 2y+2xy 2;

D 、-x 2y-2xy 2

10、若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是( )

(A )A>B (B )A=B (C )A

二、填空题11、单项式23

35

a bc -的系数是______,次数是______; 12、2143

x x -+-是 次 项式,它的项分别是 ,其中常数项是 13、为鼓励节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度电价按a 元收费;如果超过100度,那么超过部分每度电价按b 元收费。某户居民在一个月内用电160度,他这个月应缴纳电费是 元;(用含a 、b 的代数式表示)

14、三个连续偶数中,2n 是最小的一个,这三个数的和为______ _;

15、如图1是小明用火柴搭的1条、2条、3条“金鱼” ,则搭n 条“金鱼”需要火柴 根.

16、根据如图所示的程序计算,

若输入x 的值为1,则输出y 的值为 ;17、若012=-+m m ,求2007223++m m =

三、解答题:

18、化简(1) 7-3x-4x 2+4x-8x 2-15 (2) 2(2a 2-9b)-3(-4a 2+b)

(3) 8x 2-[-3x-(2x 2

-7x-5)+3]+4x

19、先化简,后求值;(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y

(2)若()0322=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值; 20、有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中

x=0.25,y=-1;甲同学把“x=0.25”,错抄成“x=-0.25”,但他的计算结果也是正确的,你说这是为什么?

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

整式的加减典型例题

整式的加减典型例题 类型一:用字母表示数量关系 1.填空题: (1)商店运来一批梨,共9箱,每箱n个,则共有___________个梨. (2)小明x岁,小华比小明的岁数大5岁,则小华___________岁. (3)一个正方体边长为a,则它的体积是___________. (4)一个梯形,上底为3 cm,下底为5 cm,高为h cm,则它的面积是___________cm2. (5)一辆客车行驶在长240千米的公路,设它行驶完共用a个小时,则它的速度是每小时_______千米. 解析:1.9n 2.x+5 3.a3 4.4h 5. 总结升华:用字母表示实际问题中的数量关系时,若式子是积或商形式,则将单位名称写在式子的后面即可;若式子是和或差的形式,则应把整个式子用括号括起来,再将单位名称写在后面。 举一反三: [变式一] (1)香蕉每千克售价3元,m千克售价____________元。 (2)温度由5℃上升t℃后是__________℃。 (3)每台电脑售价x元,降价10%后每台售价为____________元。 (4)某人完成一项工程需要a天,此人的工作效率为__________。 解析:用字母表示数量关系,关键是理解题意,抓住关键词句,再用适当的式子表达出来。 答案:(1)3m (2)(5+t) (3) 0.9x (提示:(1-10%)x=0.9x)(4) [变式二]某校学生给“希望小学”邮寄每册元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。 解析:邮费是书价的5%,因此,共需邮费是元。 答案:12a

类型二:整式的概念 2.把下列式子按单项式、多项式、整式进行归类。 x2y,a-b,x+y2-5,,-29,2ax+9b-5,600xz,axy,xyz -1,。 思路点拨:本题的实质就是识别单项式、多项式和整式。单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式。 解析:单项式有:x2y,-,-29,600xz,axy 多项式有:a-b,x+y2-5,2ax+9b-5,xyz-1 整式有:x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。 举一反三: [变式]指出下列各式中哪些是整式,哪些不是。 (1)x+1;(2)a=2;(3)π;(4)S=πR2;(5);(6). 分析:根据整式的定义,x+1是整式;单独的一个数或一个字母也是整式,所以π和也是整式;而a=2,S=πR2,,含有等号或不等号,因此它们都不是整式。 答案:(1) x+1,(3)π,(5) 都是整式; (2)a=2,(4)S=πR2,(6)都不是整式。 总结升华:判断是不是整式,关键是了解整式的概念,注意整式与等式、不等式的区别,

高一数学集合知识点归纳及典型例题

高一数学集合知识点归纳及典型例题 Revised on November 25, 2020

集合 一、知识点: 1、元素: (1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ?; (2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1);,,A B B A A A A A ?=?=?=?φφ (2) ;,A B B A A A ?=?=?φ (3) );()(B A B A ??? (4);B B A A B A B A =??=??? (5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ?=??=? 二、典型例题 例1. 已知集合 }33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。 例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。 例3. 已知集合 },01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。 \ 例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b , c 的值。 例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A , (1)若Φ=B A , 求m 的范围; (2)若A B A = , 求m 的范围。 例6. 已知A ={0,1}, B ={x|x ?A},用列举法表示集合B ,并指出集合A 与B 的关系。 三、练习题 1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ? C. a = M D. a > M

(完整版)集合练习题及答案-经典

集合期末复习题12.26 姓名 班级________________ 一、选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=-的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2 |20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A=}{ 12x x <<,B=}{ x x a <,若A ?B ,则a 的取值范围是 ( ) A }{ 2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{ 2a a ≤ 9、 满足条件M U }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈, {}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 二、填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U={} 22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________. 15、已知集合A={x|20x x m ++=}, 若A ∩R=?,则实数m 的取值范围是 16、50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.

《整式的加减》知识点归纳及典型例题分析

整式的加减知识点归纳及典型例题分析 一、认识单项式、多项式 1、下列各式中,书写格式正确的是 ( ) A.4· 21 B.3÷2y C.xy ·3 D .a b 2、下列代数式书写正确的是( ) A 、48a B 、y x ÷ C 、)(y x a + D 、2 1 1abc 3、在整式5abc,-7x 2+1,- 52x ,2131,2 4y x -中,单项式共有 ( ) A.1个 B.2个 C.3个 D.4个 4、代数式,21 a a + 4 3,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D、6 5、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。 6、下列说法正确的是( ) A 、0不是单项式 B 、x 没有系数 C 、 37 x x +是多项式 D 、5xy -是单项式 二、整式列式 .1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简; (2)当第1排座位数是A 时,即n=A,座位总数是140;当第1排座位数是B,即n=B 时,座位总数是160,求A 2+B 2的值. 2、若长方形长是2a +3b ,宽为a+b,则其周长是( ) A.6a+8b B.12a +16b ? C.3a+8b ? D.6a +4b 3、a是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( )

A.b+a B.10b +a C. 100b +a D . 1000b+a 4、(1)某商品先提价20%,后又降价20%出售,现价为a 元,则原价为 元。 (2)香蕉每千克售价3元,m千克售价____________元。 (3)温度由5℃上升t ℃后是__________℃。?(4)每台电脑售价x 元,降价10%后每台售价为____________元。?(5)某人完成一项工程需要a 天,此人的工作效率为__________。 三、同类项的概念 1、2 275b a b a k m m k ++与为同类项,且k 为非负整数,则满足条件的k 值有( ) A.1组?? B.2组?? ? C.3组 D.无数组 2、合并下列各题中的同类项,得下列结果: ①4x +3y=7xy;② 4xy -y=4x;③ 7a-2a +1=5a+1;④ m n-3mn+2m=4mn;⑤ -2x 2 +12 x 2-x 2 =-\f(5,2)x 2; ⑥ p 2q-q 2p=0.其中结果正确的是( ) A.③⑤ ? B .⑤⑥ ? C.②③④ ?? D.②③④⑥ 3、已知y x x n m n m 2652与-是同类项,则( ) A.1,2==y x B.1,3==y x C.1,2 3 ==y x D.0,3==y x 4、下列各对单项式中,不是同类项的是( ) A .130与1 3 B.-3x n+2ym 与2y mx n+2 C.13x2y 与25yx 2? D .0.4a 2b 与0.3a b2 5、下列各组中,不是同类项的一组是( ) A.b a ab 2 272.036.0与 B.222013yx y x 与 C.1324 1-和 D .n n n n x y y x 11++与 四、去括号、添括号 1、计算:)2008642()200953(m m m m m m m m ++++-++++ = 。 2、-bc a 2+的相反数是 , π-3= ,最大的负整数是 。 3、下列等式中正确的是( ) A 、)25(52x x --=- B 、)3(737+=+a a C 、-)(b a b a --=- D、)52(52--=-x x

高考集合知识点总结与典型例题

集合 一.【课标要求】 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主。 预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体 三.【要点精讲】 1.集合:某些指定的对象集在一起成为集合 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或 者不是A的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系: (1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?); 集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ; (2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 4.交集与并集:

集合典型例题

集合·典型例题 能力素质 例用符号∈或填空1 ? 1________N , 0________N , -3________N , 0.5N N ,;2 1________Z , 0________Z , -3________Z , 0.5Z Z ,;2 1________Q , 0________Q , -3________Q , 0.5Q Q ,;2 1________R , 0________R , -3________R , 0.5R R ,;2 分析元素在集合内用符号∈,而元素不在集合内时用符号. ? 解∈, ∈,-,,; 1N 0N 3N 0.5N N ???2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈, ∈,-∈,,;∈,∈,-∈,??2 0.5Q Q 1R 0R 3R 0.5R R ∈,; ∈,∈,-∈,∈,; 22?? 说明:要注意符号的规范书写. 例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来; (2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0). 解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}. (2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.

整式的加减知识点总结与典型例题(人教版初中数学)

整式的加减知识点总结与典型例题 一、整式——单项式 1、单项式的定义: 由数或字母的积组成的式子叫做单项式。 说明:单独的一个数或者单独的一个字母也是单项式. 2、单项式的系数: 单项式中的数字因数叫这个单项式的系数. 说明:⑴单项式的系数可以是整数,也可能是分数或小数。如2 3x 的系数是3;3 2 ab 的 系数是 3 1 ;a 8.4的系数是4.8; ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, 如24xy -的系数是4-;() y x 22-的系数是2-; ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如2 ab -的 系数是-1;2 ab 的系数是1; ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将 其作为系数的一部分,而不能当成字母。如2πxy 的系数就是2. 3、单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1 的情况。如单项式z y x 2 4 2的次数是字母z ,y ,x 的指数和,即4+3+1=8, 而不是7次,应注意字母z 的指数是1而不是0; ⑵单项式的指数只和字母的指数有关,与系数的指数无关。如单项式 43242z y x -的次数是2+3+4=9而不是13次; ⑶单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式 是单独的一个常数时,一般不讨论它的次数; 4、在含有字母的式子中如果出现乘号,通常将乘号写作“? ”或者省略不写。 例如:t ?100可以写成t ?100或t 100 5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数. ※典型例题 考向1:单项式 1、代数式 中,单项式的个数是( ) A .1 B .2 C .3 D .4 2、下列式子: 中,单项式的个数是( ) A .1 B .2 C .3 D .4

【离散数学】知识点典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

集合经典例题总结

集合经典例题讲解 集合元素的“三性”及其应用 集合的特征是学好集合的基础,是解集合题的关键,它主要指集合元素的确定性、互异性和无序性,这些性质为我们提供了解题的依据,特别是元素的互异性,稍有不慎,就易出错. 例1 已知集合A={a ,a +b ,a +2b },B={a ,a q ,a 2q },其中a 0≠,A=B,求q 的值. 例2 设A={x∣2x +(b+2)x+b+1=0,b∈R },求A中所有元素之和. 例3 已知集合=A {2,3,2a +4a +2},B ={0,7,2a +4a -2,2-a },且A I B={3,7},求a 值. 分析: 集合易错题分析 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解. 2.你会用补集的思想解决有关问题吗? 3.求不等式(方程)的解集,或求定义域(值域)时,你按要求写成集合的形式了吗? 1、忽略φ的存在: 例题1、已知A={x|121m x m +≤≤-},B={x|25x -≤≤},若A ?B ,求实数m 的取值范围. 2、分不清四种集合:{}()x y f x =、{}()y y f x =、{},)()x y y f x =(、{}()()x g x f x ≥的区别. 例题2、已知函数()x f y =,[]b a x ,∈,那么集合 ()()[]{}(){}2,,,,=∈=x y x b a x x f y y x I 中元素的个数为…………………………………………………………………………() (A )1(B )0(C )1或0(D )1或2 3、搞不清楚是否能取得边界值: 例题3、A={x|x<-2或x>10},B={x|x<1-m 或x>1+m}且B ?A ,求m 的范围. 例4、已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P I 等于() A.(0,2),(1,1)B.{(0,2),(1,1)}C.{1,2}D. {}2≤y y 集合与方程 例1、已知{}φ=∈=+++=+R A R x x p x x A I ,,01)2(2,求实数p 的取值范围。 例2、已知集合(){}(){}20,01,02,2≤≤=+-==+-+=x y x y x B y mx x y x A 和,如果φ≠B A I ,求 实数a 的取值范围。 例3、已知集合()(){} 30)1()1(,,123,2=-+-=??????+=--=y a x a y x B a x y y x A ,若φ=B A I ,求实数a 的值。 集合学习中的错误种种 数学是一门严谨的学科,在集合学习中,由于对概念理解不清或考虑问题不全面等,稍不留心就会不知不觉地产生错误,本文归纳集合学习中的种种错误,认期帮助同学们避免此类错误的再次发生. 一、混淆集合中元素的形成 例 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B =I 忽视空集的特殊性 例 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ?,则m 的值为 没有弄清全集的含义

《整式的加减》专项练习题(有答案)

1、3(a+5b)-2(b-a) 2、3a-(2b-a)+b > 3、2(2a2+9b)+3(-5a2-4b) 4、(x3-2y3-3x2y)-(3x3-3y3-7x2y) 5、3x2-[7x-(4x-3)-2x2] ] 6、(2xy-y)-(-y+yx) 7、5(a2b-3ab2)-2(a2b-7ab) — 8、(-2ab+3a)-2(2a-b)+2ab 9、(7m2n-5mn)-(4m2n-5mn) ` 10、(5a2+2a-1)-4(3-8a+2a2) 11、-3x2y+3xy2+2x2y-2xy2 # 12、2(a-1)-(2a-3)+3 13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] ^ 14、(x2-xy+y)-3(x2+xy-2y)

15、3x2-[7x-(4x-3)-2x2] ? 16、a2b-[2(a2b-2a2c)-(2bc+a2c)] 17、 17、-2y3+(3xy2-x2y)-2(xy2-y3) 18、2(2x-3y)-(3x+2y+1) } 19、-(3a2-4ab)+[a2-2(2a+2ab)] 20、5m-7n-8p+5n-9m-p ` 21、(5x2y-7xy2)-(xy2-3x2y) 22、 22、3(-3a2-2a)-[a2-2(5a-4a2+1)-3a] ) 23、3a2-9a+5-(-7a2+10a-5) 24、-3a2b-(2ab2-a2b)-(2a2b+4ab2) 25、(5a-3a2+1)-(4a3-3a2) 26、 ! 26、-2(ab-3a2)-[2b2-(5ab+a2)+2ab] 27、(8xy-x2+y2)+(-y2+x2-8xy) > 28、(2x2- 2 1 +3x)-4(x-x2+ 2 1 )

函数定义域知识点梳理、经典例题及解析、高考题带答案

函数的定义域 【考纲说明】 1、理解函数的定义域,掌握求函数定义域基本方法。 2、会求较简单的复合函数的定义域。 3、会讨论求解其中参数的取值范围。 【知识梳理】 (1) 定义:定义域是在一个函数关系中所有能使函数有意义的 的集合。 (2) 确定函数定义域的原则 1.当函数y=f(x)用列表法给出时,函数的定义域指的是表格中所有实数x 的集合。 2.当函数y=f(x)用图象法给出时,函数的定义域指的是图象在x 轴上的投影所覆盖的实数的集合。 3.当函数y=f(x)用解析式给出时,函数定义域指的是使解析式有意义的实数的集合。 4.当函数y=f(x)由实际问题给出时,函数定义域要使函数有意义,同时还要符合实际情况。 3、.确定定义域的依据: ①f(x)是整式(无分母),则定义域为 ; ②f(x)是分式,则定义域为 的集合; ③f(x)是偶次根式,则定义域为 的集合; ④对数式中真数 ,当指数式、对数式底中含有变量x 时,底数 ; ⑤零次幂中, ,即x 0中 ; ⑥若f(x)是由几个基本初等函数的四则运算而合成的函数,则定义域是各个函数定义域的 。 ⑦正切函数x y tan = 4、抽象函数的定义域(难点) (1)已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可 得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 (2)已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

高一数学集合练习题及答案-经典

选择题(每题4分,共40分) 1、下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数 2、集合{a ,b ,c }的真子集共有 个 ( ) A 7 B 8 C 9 D 10 3、若{1,2}?A ?{1,2,3,4,5}则满足条件的集合A 的个数是 ( ) A. 6 B. 7 C. 8 D. 9 4、若U={1,2,3,4},M={1,2},N={2,3},则C U (M ∪N )= ( ) A . {1,2,3} B. {2} C. {1,3,4} D. {4} 5、方程组 1 1x y x y +=-=- 的解集是 ( ) A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1} 6、以下六个关系式:{}00∈,{}0??,Q ?3.0, N ∈0, {}{},,a b b a ? , {}2|20,x x x Z -=∈是空集中,错误的个数是 ( ) A 4 B 3 C 2 D 1 7、点的集合M ={(x,y)|xy≥0}是指 ( ) A.第一象限内的点集 B.第三象限内的点集 C. 第一、第三象限内的点集 D. 不在第二、第四象限内的点集 8、设集合A= }{12x x <<,B=}{x x a <,若A ?B ,则a 的取值范围是 ( ) A }{2a a ≥ B }{1a a ≤ C }{1a a ≥ D }{2a a ≤ 9、 满足条件M }{1=}{1,2,3的集合M 的个数是 ( ) A 1 B 2 C 3 D 4 10、集合{}|2,P x x k k Z ==∈,{}|21,Q x x k k Z ==+∈,{}|41,R x x k k Z ==+∈,且,a P b Q ∈∈,则有 ( ) A a b P +∈ B a b Q +∈ C a b R +∈ D a b +不属于P 、Q 、R 中的任意一个 填空题 11、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 12、集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若B ?A ,则a=__________ 13、设全集U= {}22,3,23a a +-,A={}2,b ,C U A={}5,则a = ,b = 。 14、集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ?=____________.

整式的加减知识点总结与题型汇总

整式的加减 整式知识点 1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一 类代数式叫单项式. 2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数 不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式. 4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多 项式里,次数最高项的次数叫多项式的次数; 注意:(若a、b、c、p、q 是常数)ax2+bx+c 和x2+px+q 是常见的两个二次三项式. 5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 整式分类为: 单项式 整式. 多项式 6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变. 8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边 是“- ”号,括号里的各项都要变号. 9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并. 10. 多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列). 注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 11. 列代数式 列代数式首先要确定数量与数量的运算关系,其次应抓住题中的一些关键词语,如和、差、积、商、平 方、倒数以及几分之几、几成、倍等等. 抓住这些关键词语,反复咀嚼,认真推敲,列好一般的代数式就不太 难了. 12. 代数式的值 根据问题的需要,用具体数值代替代数式中的字母,按照代数式中的运算关系计算,所得的结果是代数 式的值. 13. 列代数式要注意 ①数字与字母、字母与字母相乘,要把乘号省略; ②数字与字母、字母与字母相除,要把它写成分数的形式; ③如果字母前面的数字是带分数,要把它写成假分数。 1

整式的加减经典练习题集合

'
一.填空题
1、单项式 5x2 y 的系数是
6
,次数是
15.一船从甲港口出发顺水航行 4 小时到达乙港口,从乙港口返回到甲港口则用时 6 小时.若此船在静
水中的速度为 40km/h,则水流速度是

2.已知 x+y=3,则 7-2x-2y 的值为

2. x 是两位数,y 是三位数,y 放在 x 左边组成的五位数是______________.
3.有一棵树苗,刚栽下去时,树高米,以后每年长米,则 n 年后的树高为_____________.
4.某音像社对外出租光盘的收费方法是:每张光盘在出租后的头两天每天收元,以后每天收元,那么一
张光盘在出租后第 n 天(n>2 的自然数)应收租金_________________________元.
5.某品牌的彩电降价 30%以后,每台售价为 a 元,则该品牌彩电每台原价为__________元.

6.一台电视机成本价为 a 元,销售价比成本价增加了 25 0 0 ,因库存积压,所以就按销售价的 70 0 0 出
售,那么每台实际售价为____________________元.
8、- a 2bc 的相反数是
, 3 =
7.如果某商品连续两次涨价 10%后的价格是a元,那么原价是_______________
2.单项式 1.2 105a2b 的系数是
,次数是

5. a 与 b 的平方差列式为_________________
m 3.若 3xm5 y2与x3 y n 的和是单项式,则 n

若x 1时,代数式ax3 bx 1 6,则x 1时,ax3 bx 1 .
5.已知 x 2 3x 5 的值为 3,则代数式 3x 2 9x 1的值为

8.已知一个三位数的个位数字是 a, 十位数字比个位数字大 3,百位数字是个位数字的 2
倍,这个三位数可表示为________________.
9. 已知实数 a、b 与 c 的大小关系如图所示:
求 2a b 3(c a) 2 b c =
10.某书每本定价 8 元,若购书不超过 10 本,按原价付款;若一次购书 10 本以上,超过 10 本部分打
八折.设一次购书数量为 x 本,付款金额为 y 元,请填写下表:
x(本)
2
y(元)
16
>
10
22
7
>
11.长方形的一条边长为 3a+2b,另一条边比它小 b-2a.则这个长方形的周长是
13.如图,每一幅图中均含有若干个正方形,第 1 幅图中有 1 个正方形;第 2 幅图中有 5 个正方形;…按这
样的规律下去,第 6 幅图中有(
)个正方形.
12.下面的一列单项式:x,-2x2,4x3,-8x4,…根据你发现的规律,第 7 个单项式为______;第 n 个单 项式为______.
4、已知: x 1 1 ,则代数式 (x 1)2010 x 1 5 的值是

x
x
x
5、张大伯从报社以每份元的价格购进了 a 份报纸,以每份元的价格售出了 b 份报纸,剩余的以每份元
的价格退回报社,则张大伯卖报收入
元。
、计算: (m 3m 5m 2009m) (2m 4m 6m 2008m) =

9.电影院第一排有 a 个座位,后面每排比前一排多 2 个座位,则第 x 排的座位有____________个.
32.当 a b =3 时,代数式 5(a b) - 3(a b) =__________.
ab
ab ab
>
29.代数式 9-(x-a)2 的最大值为_______,这时 x=_______.
24. 如果 Axy3 By3 x 0 ,则 A+B=( ) 2xy
A. 2
B. 1
C. 0
21.如果多项式 x4-(a-1)x3+5x2+(b+3)x-1 不含 x3 和 x 项,则 a=________,
b=_________.
D. –1
9、如图 15-3 所示,用代数式表示图中阴影部分的面积为______________
4.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴
在了上面.
x2
3xy
1 2
y2


1 2
x2
4xy
3 2
y2

1 2
x2
y 2 ,阴影部分即为被墨迹弄污的部
分.那么被墨汁遮住的一项应是 ( )A . 7xy
B. 7xy C. xy D . xy
2 a2b2m 3 a2nb4
3.如果 3
与2
是同类项,那么 m=
;n=

4.当 2y–x=5 时, 5x 2 y2 3 x 2 y 60 =


4、已知单项式 3amb2 与 1 a b4 n1 的和是单项式,那么= 2
,=


高一数学集合知识点归纳与典型例题

集合 一、知识点: 1、元素: a 是集合A的元素,记作a A ;若b不是集合A的 ( 1)集合中的对象称为元素,若 元素,记作 b A ; ( 2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:N; N*; N ;Z; Q;R 2、集合的关系: 子集 相等 3、全集 交集 并集 补集 4、集合的性质: (1)A A A,A,ABBA; (2)A A, A B B A; (3)( A B)(A B); (4)A B A B A ABB; (5) C S(A B) (C S A) (C S B),C S( A B) (C S A) (C S B); 二、典型例题 例1.已知集合 A { a 2, (a 1)2 ,a 23a 3} ,若1 A ,求a。 例 2. 已知集合M =x R | ax 2 2x10 中只含有一个元素,求a的值。

例3.已知集合 A { x | x2x 6 0}, B { x | ax 1 0}, 且B A ,求 a 的值。\ 例 4. 已知方程x2bx c 0 有两个不相等的实根x , x 2.设 C= {x , x 2},A={1,3, 11 5,7,9}, B={1 ,4,7,10} ,若A C,C B C ,试求 b, c 的值。 例 5.设集合A { x | 2 x 5}, B { x | m 1 x 2m 1} , (1)若A B,求 m 的范围;(2)若A B A ,求m的范围。

例 6. 已知 A ={0 ,1} , B = {x|x A} ,用列举法表示集合 B ,并指出集合 A 与 B 的关系。 三、练习题 1. 设集合 M = { x | x 17}, a 4 2,则( ) A. a M B. a M C. a = M D. a > M 2. 有 下 列 命 题 : ① { } 是 空 集 ② 若 a N, b N , 则 a b 2③ 集合 100 N , x Z} 为无限集,其中正确命 { x | x 2 2x 1 0} 有两个元素 ④ 集合 B { x | x 题的个数是( ) A. 0 B. 1 C. 2 D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={ (3, 2)} , N ={ (2, 3)} B. M ={3 ,2} , N ={( 2,3)} C. M ={ ( x , y ) |x + y = 1} , N = {y|x + y = 1} D.M ={1 ,2} , N ={2,1} 4. 设集合 M { 2,3, a 2 1}, N { a 2 a 4,2a 1},若M N { 2} , 则 a 的取值集 合是( ) { 3,2, 1 } B. { -3} C. { 3, 1 } D. { - 3,2} A. 2 2 5. 设集合A = {x| 1 < x < 2} , B = {x| x < a} , 且 A B , 则实数 a 的范围是 ( ) A. a 2 B. a 2 C. a 1 D. a 1 {( x, y) | y 1} 6. x 设 x ,y ∈ R ,A = {( x ,y )|y = x} , B = , 则集合 A ,B 的关系是( ) A.A B B.B A C. A =B D.A B 7. 已知 M = {x|y = x 2- 1} , N = {y|y =x 2 -1} , 那么 M ∩ N =( ) A. Φ B. M C. N D. R 8. 已知 A = {-2,- 1,0,1} , B = {x|x = |y|,y ∈ A} ,则集合 B = _________________ 9. 若 A { x | x 2 3x 2 0}, B { x | x 2 ax a 1 0}, 且B A ,则 a 的值为 _____ 10. 若 {1,2, 3} A {1 , 2,3, 4, 5} , 则 A = ____________ 11. 已知 M = {2 , a , b} , N = {2a , 2,b 2 } ,且 M =N 表示相同的集合,求 a , b 的值 12. 已知集合 A { x | x 2 4x p 0}, B { x | x 2 x 2 0}且A B, 求实数 p 的范 围。 13. 已知 A { x | x 2 ax a 2 19 0}, B { x | x 2 5x 6 0} ,且 A , B 满足下列三 个条件:① A B ② A B B ③ Φ A B ,求实数 a 的值。

相关主题
文本预览
相关文档 最新文档