当前位置:文档之家› 人教版九年级数学上册 二次函数专题练习(解析版)

人教版九年级数学上册 二次函数专题练习(解析版)

人教版九年级数学上册  二次函数专题练习(解析版)
人教版九年级数学上册  二次函数专题练习(解析版)

人教版九年级数学上册二次函数专题练习(解析版)

一、初三数学二次函数易错题压轴题(难)

1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:

(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】(1)2

y x2x3

=-++;3

y x

=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)

【解析】

【分析】

(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;

(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;

(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.

【详解】

解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得

930

10

b c

b c

-++=

?

?

--+=

?

2

3

b

c

=

?

?

=

?

∴抛物线的解析式为y=﹣x2+2x+3,

当x=0时,y=3,

∴点C的坐标是(0,3),

把A(3,0)和C(0,3)代入y=kx+b1中,得1

1

30

3

k b

b

+=

?

?

=

?

1

1

3

k

b

=-

?

?

=

?

∴直线AC的解析式为y=﹣x+3;

(2)如图,连接BC,

∵点D是抛物线与x轴的交点,

∴AD=BD,

∴S△ABC=2S△ACD,

∵S△ACP=2S△ACD,

∴S△ACP=S△ABC,此时,点P与点B重合,

即:P(﹣1,0),

过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,

联立①②解得,

1

x

y

=-

?

?

=

?

4

5

x

y

=

?

?

=-

?

∴P(4,﹣5),

∴即点P的坐标为(﹣1,0)或(4,﹣5);

(3)如图,

①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,

当x=1时,y=2,

∴Q'坐标为(1,2),

∵Q'D=AD=BD=2,

∴∠Q'AB=∠Q'BA=45°,

∴∠AQ'B=90°,

∴点Q'为所求,

②当点Q在x轴下方时,设点Q(1,m),

过点A1'作A1'E⊥DQ于E,

∴∠A1'EQ=∠QDA=90°,

∴∠DAQ+∠AQD=90°,

由旋转知,AQ=A1'Q,∠AQA1'=90°,

∴∠AQD+∠A1'QE=90°,

∴∠DAQ=∠A1'QE,

∴△ADQ≌△QEA1'(AAS),

∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),

∴点Q 的坐标为(1,2)和(1,﹣3).

【点睛】

本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.

2.如图,抛物线()2

1y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y

轴的负半轴交于点C .

()1求点B 的坐标.

()2若ABC 的面积为6.

①求这条抛物线相应的函数解析式.

②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不

存在,请说明理由.

【答案】(1)(1,0);(2)①2

23y x x =+-;②存在,点P 的坐标为

??或??

. 【解析】 【分析】

(1)直接令0y =,即可求出点B 的坐标;

(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到1

2

(1?a)?(?a)=6即可求a 的值,即可得到解析式;

②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】

解:()1当0y =时,()2

10,x a x a -++=

解得121,.x x a ==

点A 位于点B 的左侧,与y 轴的负半轴交于点,C

0,a ∴<

∴点B 坐标为()1,0.

()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <

1,AB a OC a ∴=-=-

ABC 的面积为6,

()()1

16,2a a ∴

--?= 123,4a a ∴=-=.

0,a <

3a ∴=-

22 3.y x x =+-

②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-

则03,k =-

3k ∴=.

,POB CBO ∠=∠

∴当点P 在x 轴上方时,直线//OP 直线,BC

∴直线OP 的函数解析式3,y x =为

则2

3,23,y x y x x =??=+-?

11x y ?=??∴??=??(舍去)

,22x y ?=????=??

∴点的P

坐标为??

; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,

则直线'OP 的函数解析式为3,y x =- 则2

3,

23,y x y x x =-??

=+-?

11152x y ?=??∴?+?=??(舍去)

,22152x y ?=???-?=?? ∴点P'

的坐标为??

综上可得,点P

的坐标为1322??++ ? ???

或515,22??

-- ? ???

【点睛】

本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.

3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 2

0x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;

(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2

121

a +是线段AB 的垂

直平分线,求实数b 的取值范围.

【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b

的取值范围是﹣

4

≤b <0.

【解析】 【分析】

(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;

(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;

(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121

a +是线段AB 的垂

直平分线,从而可以求得b 的取值范围. 【详解】

解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,

即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,

∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,

设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,

即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),

∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣

b a

, ∵线段AB 中点坐标为(122x x +,122

x x

+), ∴该中点的坐标为(2b a -

,2b a

-),

∵直线y =﹣x+2121

a +是线段AB 的垂直平分线,

∴点(2b a -,2b

a -)在直线y =﹣x+2121

a +上, ∴2b

a -

=21221

b a a ++

∴﹣b =

2

21

a a ≤

+a

∴0<﹣b ≤

4

≤b <0,

即b b <0. 【点睛】

本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.

4.如图1,抛物线2

:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正

半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线

()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于

点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;

(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;

②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.

【答案】(1)11a =,12b =;(2)22132y x x =-,231

26

y x x =-;(3)①()2

2

12123

n n y x x n -=

-≥?,②20182019y y >. 【解析】 【分析】

(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;

(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.

②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】

解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),

由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(

12b ,12b ),D 1(12b ,12

b

-), ∵B 1在抛物线c 上,则

12b =(12

b )2

, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),

把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;

(2)当20y =时,有()220a x x b -=, 解得2x b =或0x =,()22,0A b ∴. 由正方形222OB A D ,得2222B D OA b ==,

222,22b b B ??∴ ???,22

2,22b

b D ??- ???

. 2B 在抛物线1C 上,2222222b b b ??∴

=- ???

. 解得24b =或20b =(不合舍去),

()22,2D ∴-

2D 在抛物线2C 上,

()22224a ∴-=-.

解得21

2

a =

. 2C ∴的解析式是()2142y x x =

-,即221

22

y x x =-. 同理,当30y =时,有()330a x x b -=, 解得3x b =,或0x =.

()33,0A b ∴.

由正方形333OB A D ,得3333B D OA b ==,

333,22b b B ??∴ ???,333,2

2b

b D ??- ???.

3B 在抛物线2C 上,

2

333122222

b b b

??∴=-? ???. 解得312b =或30b =(不合舍去),

()36,6D ∴-

3D 在抛物线3C 上,

()366612a ∴-=-.解得31

6

a =

. 3C ∴的解析式是()31126y x x =

-,即231

26

y x x =-. (3)解:①n C 的解析式是()22

1

2123

n n y x x n -=

-≥?.

②由①可得2

201820161223y x x =

-?,220192017

1223

y x x =-?. 当0x ≠时,2

2018201920162017

111

0233y y x >??-=

-

???

, 20182019y y ∴>.

【点睛】

本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标?把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.

5.如图①是一张矩形纸片,按以下步骤进行操作:

(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;

(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;

(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)

(1)证明:OBC ≌OED ;

(2)若AB =8,设BC 为x ,OB 2为y ,是否存在x 使得y 有最小值,若存在求出x 的值并求出y 的最小值,若不存在,请说明理由.

【答案】(1)见解析;(2)x=4,16 【解析】 【分析】

(1)连接EF ,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS 证明OBC ≌OED 即可;

(2)连接EF 、BE ,再证明△OBE 是直角三角形,然后再根据勾股定理得到y 与x 的函数关系式,最后根据二次函数的性质求最值即可. 【详解】

(1)证明:连接EF . ∵四边形ABCD 是矩形,

∴AD =BC ,∠ABC =∠BCD =∠ADE =∠DAF =90° 由折叠得∠DEF =∠DAF ,AD =DE

∴∠DEF=90°

又∵∠ADE=∠DAF=90°,

∴四边形ADEF是矩形

又∵AD=DE,

∴四边形ADEF是正方形

∴AD=EF=DE,∠FDE=45°

∵AD=BC,

∴BC=DE

由折叠得∠BCO=∠DCO=45°

∴∠BCO=∠DCO=∠FDE.

∴OC=OD.

在△OBC与△OED中,

BC DE

BCO FDE

OC OD

=

?

?

∠=∠

?

?=

?

∴△OBC≌△OED(SAS);

(2)连接EF、BE.

∵四边形ABCD是矩形,

∴CD=AB=8.

由(1)知,BC=DE

∵BC=x,

∴DE=x

∴CE=8-x

由(1)知△OBC≌△OED

∴OB=OE,∠OED=∠OBC.

∵∠OED+∠OEC=180°,

∴∠OBC+∠OEC=180°.

在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.

在Rt△OBE中,OB2+OE2=BE2.

在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.

∵OB2=y,∴y+y=x2+(8-x)2.

∴y =x 2-8x +32

∴当x=4时,y 有最小值是16.

【点睛】

本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.

6.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点. (1)若点()1,2,

()3,a 是一对泛对称点,求a 的值;

(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位

置关系,并说明理由;

(3)抛物线2

y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线

于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由. 【答案】(1)

2

3

;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0 【解析】 【分析】

(1)利用泛对称点得定义求出t 的值,即可求出a.

(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.

(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案. 【详解】

(1)解:因为点(1,2),(3,a )是一对泛对称点, 设3t =2

解得t=

2

3

所以a=t×1=

2

3

(2)解:设P,Q两点的坐标分别为P(p,tq),Q(q,tp),其中0<p<q,t>0.因为PA⊥x轴于点A,QB⊥y轴于点B,线段PA,QB交于点C,

所以点A,B,C的坐标分别为:A(p,0),B(0,tp),C(p,tp)

设直线AB,PQ的解析式分别为:y=k1x+b1,y=k2x+b2,其中k1k2≠0.

分别将点A(p,0),B(0,tp)代入y=k1x+b1,得

11

1

pk b tp

b tp

+=

?

?

=

?

. 解得1

1

k t

b tp

=-

?

?

=

?

分别将点P(p,tq),Q(q,tp)代入y=k2x+b2,得

22

22

pk b tp

qk b tp

+=

?

?

+=

?

. 解得2

2

k t

b tp tp

=-

?

?

=+

?

所以k1=k2.

所以AB∥PQ

(3)解:因为抛物线y=ax2+bx+c(a<0)交y轴于点D,

所以点D的坐标为(0,c).

因为DM∥x轴,

所以点M的坐标为(x M,c),又因为点M在抛物线y=ax2+bx+c(a<0)上.

可得ax M 2+bx M+c=c,即x M(ax M+b)=0.

解得x M=0或x M=-

b

a

.

因为点M不与点D重合,即x M≠0,也即b≠0,

所以点M的坐标为(-

b

a

,c)

因为直线y=ax+m经过点M,

将点M(-

b

a

,c)代入直线y=ax+m可得,a·(-

b

a

)+m=c.

化简得m=b+c

所以直线解析式为:y=ax+b+c.

因为抛物线y=ax2+bx+c与直线y=ax+b+c交于另一点N,

由ax2+bx+c=ax+b+c,可得ax2+(b-a)x-b=0.因为△=(b-a)2+4ab=(a+b)2,

解得x1=-b

a

,x2=1.

即x M=-b

a

,x N=1,且-

b

a

≠1,也即a+b≠0.

所以点N的坐标为(1,a+b+c)

要使M(-b

a

,c)与N(1,a+b+c)是一对泛对称点,

则需c=t ×1且a+b+c=t ×(-b

a ).

也即a+b+c=(-b

a )·c

也即(a+b)·a=-(a+b)·c.

因为a+b≠0,

所以当a=-c时,M,N是一对泛对称点.

因此对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形.

此时点M的坐标为(-b

a

,-a),点N的坐标为(1,b).

所以M,N两点都在函数y=b

x

(b≠0)的图象上.

因为a<0,

所以当b>0时,点M,N都在第一象限,此时 y随x的增大而减小,所以当y M>y N时,0<x M<1;

当b<0时,点M在第二象限,点N在第四象限,满足y M>y N,此时x M<0.

综上,对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0.

【点睛】

本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.

7.如图,抛物线y=ax2+bx+2经过点A(?1,0),B(4,0),交y轴于点C;

(1)求抛物线的解析式(用一般式表示);

(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=2

3

S△ABD?若存在,请求出点D

坐标;若不存在,请说明理由;

(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.

【答案】(1)213

222

y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10 【解析】 【分析】

(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;

(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;

(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长. 【详解】

解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),

∴2016420a b a b -+=??++=?,解得:12

32a b ?

=-????=??

∴抛物线解析式为:213

222

y x x =-

++; (2)由题意可知C (0,2),A (-1,0),B (4,0), ∴AB=5,OC=2,

∴S △ABC =12AB?OC=1

2×5×2=5, ∵S △ABC =2

3S △ABD ,

∴S △ABD =315

522

?=,

设D (x ,y ), ∴11155222

AB y y ?=??=, 解得:3y =;

当3y =时,213

2322

y x x =-

++=, 解得:1x =或2x =,

∴点D 的坐标为:(1,3)或(2,3); 当3y =-时,213

2322

y x x =-

++=-, 解得:5x =或2x =-(舍去), ∴点D 的坐标为:(5,-3);

综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3); (3)∵AO=1,OC=2,OB=4,AB=5,

∴22125AC =+=,222425BC =+=, ∴222AC BC AB +=,

∴△ABC 为直角三角形,即BC ⊥AC ,

如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,

由题意可知∠FBC=45°, ∴∠CFB=45°, ∴25CF BC == ∴

AO AC OM CF =,即15

25OM = 解得:2OM =, ∴

OC AC FM AF =,即25

35

FM = 解得:6FM =,

∴点F 为(2,6),且B 为(4,0), 设直线BE 解析式为y=kx+m ,则

2640k m k m +=??+=?,解得3

12

k m =-??

=?,

∴直线BE 解析式为:312y x =-+; 联立直线BE 和抛物线解析式可得:

231213

222y x y x x =-+??

?=-++??

, 解得:40x y =??=?

或53x y =??=-?,

∴点E 坐标为:(5,3)-,

∴BE == 【点睛】

本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.

8.已知二次函数y =ax 2+bx +c (a ≠0).

(1)若b =1,a =﹣

1

2

c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;

(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1?y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323

b a <-< 【解析】 【分析】

(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;

(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1?y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】

解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣

1

2

c , ∴△=b 2﹣4ac =1﹣4(﹣1

2

c )c =1+2c 2, ∵2c 2≥0,

∴1+2c 2>0,即△>0,

∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,

∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,

∴顶点纵坐标2

14b a

-≤,

∴﹣b 2≥4a , ∴4a+b 2≤0;

(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1?y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,

∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,

24

()()033

b b a a ++<, ∴203403b a b a ?+??或203403

b a b a ?+>????+

∴42

33

b a -

<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12

323

b a <-<. 【点睛】

本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.

9.如图,已知顶点为M (

32,25

8

)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点. (1)求抛物线的解析式;

(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.

【答案】(1)213

222

y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 的坐标为(13,9313

2

-+). 【解析】 【分析】

(1)用待定系数法求解即可;

(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;

(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213

222

a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可. 【详解】

解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258

, 将点D 的坐标代入上式得:2=a (3﹣32)2+25

8

, 解得:a =﹣

1

2

, ∴抛物线的表达式为:213

222y x x =-

++; (2)当x =0时,y =﹣1

2x 2+32

x +2=2,

即点C 坐标为(0,2),

同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),

过点P 作y 轴的平行线交AD 于点H , 由点A

、D 的坐标得,直线AD 的表达式为:y =1

2

(x +1), 设点P (x ,﹣

12x 2+32

x +2),则点H (x ,12x +1

2), 则△PAD 面积为: S =S △PHA +S △PHD =

12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣1

2x 12

-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,

当x =1时,S 有最大值,则点P (1,3);

(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣

12a 2+3

2

a +2),

当P 点在y 轴右侧时(如图2),CQ =a , PQ =2﹣(﹣

12a 2+32a +2)=1

2a 2﹣32

a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°, ∴∠FQ ′P =∠OCQ ′, ∴△COQ ′∽△Q ′FP ,

'''

Q C Q P CO FQ =,即213

222'a a

a Q F

-=, ∴Q ′F =a ﹣3,

∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+=

此时a 13P 139313

-+). 【点睛】

此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.

(完整版)初三数学二次函数所有经典题型

初三数学二次函数经典题型 二次函数单元检测 (A) 姓名___ ____ 一、填空题: 1、函数2 1 (1)21m y m x mx +=--+是抛物线,则m = . 2、抛物线2 23y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2 y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大. 4.抛物线2)1(62 -+=x y 可由抛物线262 -=x y 向 平移 个单位得到. 5.抛物线342 ++=x x y 在x 轴上截得的线段长度是 . 6.抛物线() 422 2-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2 ,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线 相同,又过原点,那么a = ,b = ,c = . 9、二次函数2 y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 . 10、已知二次函数2 1(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点 A (-2,4)和 B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题: 11.下列各式中,y 是x 的二次函数的是 ( ) A .2 1xy x += B . 2 20x y +-= C . 2 2y ax -=- D .2 2 10x y -+= 2 2 3x y -=

12.在同一坐标系中,作2 2y x =、2 2y x =-、2 12 y x = 的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线12 2+--=m mx x y 的图象过原点,则m 为( ) A .0 B .1 C .-1 D .±1 14.把二次函数122 --=x x y 配方成为( ) A .2 )1(-=x y B . 2)1(2--=x y C .1)1(2 ++=x y D .2)1(2 -+=x y 15.已知原点是抛物线2 (1)y m x =+的最高点,则m 的范围是( ) A . 1-m D . 2->m 16、函数2 21y x x =--的图象经过点( ) A 、(-1,1) B 、(1 ,1) C 、(0 , 1) D 、(1 , 0 ) 17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、2 3(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、2 3(1)2y x =-+ 18、已知h 关于t 的函数关系式2 12 h gt = ( g 为正常数,t 为时间)如图,则函数图象为 ( ) 19、下列四个函数中, 图象的顶点在y 轴上的函数是( ) A 、2 32y x x =-+ B 、25y x =- C 、2 2y x x = -+ D 、2 44y x x =-+ 20、已知二次函数2 y ax bx c =++,若0a <,0c >,那么它的图象大致是( ) 21、根据所给条件求抛物线的解析式: (1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0) 22.已知二次函数c bx x y ++=2 的图像经过A (0,1),B (2,-1)两点. (1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上? 23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边

九年级数学二次函数应用题 含答案

九年级数学专题二次函数的应用题 一、解答题 1.一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为 2.5米时,达到最大高度 3.5米,然后准确落入篮圈。已知篮圈中心到地面的距离为3.05米。 (1)建立如图所示的直角坐标系,求抛物线的解析式; (2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少? 2.某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.(1)试求y与x之间的关系式; (2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少? 3.在体育测试时,初三的一名高个子男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5)(1)求这个二次函数的解析式; 米,)2)该男同学把铅球推出去多远?(精确到0.01 ( 元的价钱购进一种服装,根据试销得知:这种服装每天的销售量(件)某商场以每件42,4.

件)可看成是一次函数关系:/(元与每件的销售价 之间的函数关系式(每天的销售与每件的销售价写出商场卖这种服装每天的销售利润1. 利润是指所卖出服装的销售价与购进价的差); 2.通过对所得函数关系式进行配方,指出:商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适;最大销售利润为多少? 5.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路 线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为已知条件),在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面10米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误。 (1)求这条抛物线的解析式; (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3米,问此次跳水会不会失误?并通过计算说明理由 6.某服装经销商甲,库存有进价每套400元的A品牌服装1200套,正常销售时 每套600元,每月可卖出100套,一年内刚好卖完,现在市场上流行B品牌服装,此品牌服装进价每套200元,售出价每套500元,每月可买出120套(两套服装的市场行情互不影响)。目前有一可进B品牌的机会,若这一机会错过,估计一年内进不到这种服装,可是,经销商手头无流动资金可用,只有低价转让A品牌服装,经与经销商乙协商,达成协议,转让价格(元/套)与转让数量(套)有 如下关系: 转让数量(套)120011001000900800700600500400300200100 价格(元/套)240250260270 280290 300310 320330 340 350 方案1:不转让A品牌服装,也不经销B品牌服装; 方案2:全部转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装; 方案3:部份转让A品牌服装,用转让来的资金购B品牌服装后,经销B品牌服装,同时经销A品牌服装。 问: ①经销商甲选择方案1与方案2一年内分别获得利润各多少元?

九年级数学《二次函数》综合练习题及答案

九年级数学《二次函数》综合练习题 一、基础练习 1把抛物线y=2x 2向上平移1个单位,得到抛物线 _____________ ,把抛物线y=-2x 2?向下平移3个单位,得到 抛物线 _________ . 2 ?抛物线y=3x 2-1的对称轴是 ______ ,顶点坐标为 ________ ,它是由抛物线 y=3x 2?向 _________ 平移 _____ 个单位得到的. 3 .把抛物线y=J 2x 2向左平移1个单位,得到抛物线 _____________ ,把抛物线y=-J2x 2?向右平移3个单位, 得到抛物线 __________ . 4. _____________________________________ 抛物线y=j 3 ( x-1 ) 2的开口向 _____________ ,对称轴为 ,顶点坐标为 __________________________________ , ?它是由抛物线 y=乔x 2向 _______ 平移 _______ 个单位得到的. 1 1 1 5 .把抛物线y=- 1 (X+1) 2向 __________ 平移 _______ 个单位,就得到抛物线 y=-」x 2. 3 2 3 6. _____________________________ 把抛物线y=4 (x-2 ) 2向 平移 个单位,就得到函数 y=4 (x+2) 2的图象. 1 2 1 7. ____________________________________ 函数y=- (x- 1) 2的最大值为 ________ ,函数y=-x 2- 1的最大值为 _________________________________________ . 3 3 &若抛物线y=a (x+m ) 2的对称轴为x=-3,且它与抛物线y=-2 x 2的形状相同,?开口方向相同,则点(a , m )关于原点的对称点为 __________________ . 9. ___________________________________________________________________ 已知抛物线y=a (x-3 ) 2过点(2, -5 ),则该函数y=a (x-3 ) 2当x= _______________________________________?时,?有最 __ 值 _______ . 10. ________________________________________________________________________________________ 若二次函数y=ax 2+b ,当x 取X 1, X 2 (X 1^x)时,函数值相等,则x 取x 什X 2时,函数的值为 ___________________ . 11. 一台机器原价50万元.如果每年的折旧率是 x ,两年后这台机器的价格为 y?万元,则y 与x 的函数 关系式为( ) A . y=50 (1-x ) 2 B . y=50 (1-x ) 2 C . y=50-x 2 D . y=50 (1+x ) 2 12. 下列命题中,错误的是( ) 13 .顶点为(-5 , 0)且开口方向、形状与函数 1 1 A . y=- (x-5) 2 B . y=- x 2-5 C 3 3 .抛物线 y=- J 3X 2-1不与 x 轴相交; 2 .抛物线 尸孚2-1与 y= 3 (x-1 ) 2 2 形状相同,位置不同 .抛物线 .抛物线 1 y=-- 2 1 y= 2 (x- 1) 2 1 (x+ —) 2 2 的顶点坐标为 2 的对称轴是直线 1 , 0); 2 1 x=— 2 1 y=- =x 2的图象相同的抛物线是( ) 3 1 1 y=- (x+5) 2 D . y= (x+5) 2 3 3

(精)人教版数学九年级上册《二次函数》全章教案(最新)

22.1二次函数的图像和性质(一) 一、学习目标 1.知识与技能目标: (1)理解并掌握二次函数的概念; (2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式; (3)能根据实际问题中的条件确定二次函数的解析式。 二、学习重点难点 1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。 三、教学过程 (一)创设情境、导入新课: 回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流: 问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。问题2:n边形的对角线数d与边数n之间有怎样的关系? 问题3:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 问题4:观察以上三个问题所写出来的三个函数关系式有什么特点? 小组交流、讨论得出结论:经化简后都具有的形式。 问题5:什么是二次函数? 形如。 问题6:函数y=ax2+bx+c,当a、b、c满足什么条件时,(1)它是二次函数? (2)它是一次函数?(3)它是正比例函数?

(三)尝试应用: 例1. 关于x 的函数 是二次函数, 求m 的值. 注意:二次函数的二次项系数必须是 的数。 例2. 已知关于x 的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。求这个二次函数的解析式.(待定系数法) (四)巩固提高: 1.下列函数中,哪些是二次函数? (1)y=3x -1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x - 2+x . 2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。 3、n 支球队参加比赛,每两支队之间进行一场比赛。写出比赛的场数m 与球队数n 之间的关系式。 4、已知二次函数y=x2+px+q ,当x=1时,函数值为4,当x=2时,函数值为- 5, 求这个二次函数的解析式. (五)小结: 1.二次函数的一般形式是 。2.会用 法求二次函数解析式。 (六)作业设计 22.1二次函数 y=ax 2的图像和性质(二) 一.学习目标: m m 2 21)x (m y --=

九年级二次函数讲义

二次函数 一.知识梳理 1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。一元二次方程的标准式:ax2+bx+c=0 (a≠0) 其中:ax2叫做二次项,bx叫做一次项,c叫做常数项 a是二次项系数,b是一次项系数 2、一元二次方程根的判别式(二次项系数不为0): “△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac △=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2 △=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2 △=b2-4ac<0 <====> 方程没有实数根。 注:“<====>”是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<0 3、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。 ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有: 因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。 注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。 5、一元二次方程的求根公式: 注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。

一、求二次函数的三种形式: 1. 一般式:y=ax 2 +bx+c ,(已知三个点) 顶点坐标(-2b a ,244ac b a -) 2.顶点式:y=a (x -h )2 +k ,(已知顶点坐标对称轴) 顶点坐标(h ,k ) 3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2 2 1x x h += 二、a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=- 2b <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2b a >0, 即对称轴在y 轴右侧,c?的符号决定了抛物线与y 轴交点的位置, c=0c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.

人教版九年级数学上册二次函数教案

教材分析 本节课是数学新人教版九级(上)第二十二章《二次函数》第一节课内容 二次函数教学设计 一、教学目标知识方面: 1.理解并掌握二次函数的概念; 2.能根据实际问题中的条件列出二次函数的解析式。 3.经历探索、分析和建立两个变量之间的二次函数关系的过程,体会二次函数是刻画现实世界的一个有效的数学模型。 4.通过分析实际问题列出二次函数关系式,培养学生分析问题、解决问题的能力。情感方面:通过学生的主动参与,师生、学生之间的合作交流,提高学生的学习兴趣,激发他们的求知欲、培养合作意识。 二、教材分析 本节课是数学新人教版九年级(上)第二十二章《二次函数》第一节课内容.知识方面,它是在正比例函数,一次函数,对函数认识的完善与提高;也是对方程的理解的补充,同时也是以后学习初等函数的基础。根据本节的教学内容及学生学情,给彩虹、桥梁等图片这些丰富的生活实例,进一步让学生充分感受到二次函数的应用价值与实际意义。 重点是理解二次函数的概念,能根据已知条件写出函数解析式; 难点是从实例中抽象出二次函数的定义,会分析实例中的二次函数关系。 三、教学过程教学过程: 一、提出问题,导入新课。 1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?图象形状各是什么? 2、教师提出问题:投篮球时篮球运行的路线是什么曲线?这种曲线的形状是怎样的?是否象以前学过的函数图象?能否用新的函数关系式来表示?怎样计算篮球达到最高点时的高度?这将在本章——二次函数中学习。 3、你能举出一些生活中类似的曲线吗? 二、合作交流,形成概念。1.列式表示下面函数关系。 问题1:正方体的六个面是全等的正方形,如果正方形 的棱长为x,表面积为y,写出y与x的关系。 问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示? 活动中教师关注: (1)学生参与小组合作讨论后,能否明白题意,写出相应关系式。 (2)问题3中可先分析一年后的产量,再得出两年后的产量。 2.教师引导学生观察,分析上面三个函数关系式的共同点。 学生小组交流、讨论得出结论,它们的共同点: (1)等号左边是变量y,右边是关于自变量x的整式。 a,b,c为常数,且a≠0 (2)等式的右边最高次数为,可以没有一次项和常数项,但不能没有二次项。(3)x的取值范围是任意实数。 教师口述二次函数的定义并板书在黑板上:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫二次函数。

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

数学九年级上册 二次函数专题练习(解析版)

数学九年级上册 二次函数专题练习(解析版) 一、初三数学 二次函数易错题压轴题(难) 1.在平面直角坐标系中,将函数2 263,(y x mx m x m m =--≥为常数)的图象记为G . (1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值; (3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ????+ ? ????? ,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围. 【答案】(1)0a =或3a =-;(2) 118;(3)21136x -<<-;(4)1 8 m <-或1 16 m >- 【解析】 【分析】 (1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】 解:(1)当1m =-时,()2 2613y x x x =++≥ 把(),1P a 代入,得 22611a a ++= 解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-< 当0m ≤时,2 22 3926=2()22 y x mx m x m m m =----- ∴239,22F m m m ?? -- ??? 此时,229911=()22918 m m m - --++ ∴0y 的最大值1 18 =

浙教版九年级上册二次函数知识点总结及典型例题

浙教版九年级上册二次函数知识点总结及典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2 ≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2 与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 【例1】、已知函数y=x 2 -2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y<0;③ y>0 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2 与x 轴有交点时,即对应的一元二次方程02=++c bx ax 有实根1 x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口·越小。 (3)三顶点 顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时, 我们最好设顶点式,这样最简洁。

人教版九年级数学二次函数应用题(含答案)

人教版九年级数学二次函数实际问题(含答案) 一、单选题 2+2t,则当t=4t(米)与时间(秒)的关系式为s=5t时,该物体所经1.在一定条件下,若物体运动的路程s过的路程为][ A.28米 B.48米 C. 68米 米.88 D2 +bx+c的图象过点(1,0)……2.由于被墨水污染,一道数学题仅能见到如下文字:y=ax 求证这个二次函数的,题中的二次函数确定具有的性质是图象关于直线x=2对称.][ A.过点(3,0) B.顶点是(2,-1) C.在x轴上截得的线段的长是3 3)(0,D.与y轴的交点是3.某幢建筑物,从10 m高的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面 是离墙的距离OB1m,离地面m,则水流落地点BM垂直),如图,如果抛物线的最高点离墙 A.2m B.3m C .4 m m5 D. 之间的函数关系式是,则该运与水平距离4.如图,铅球运动员掷铅球的高度y(m)x(m)页9共,页1第 动员此次掷铅球的成绩是

][ A.6 m B.8m C. 10 m m.12 D 2,若滑到间的关系为S=l0t+2t的斜坡笔直滑下,滑下的距离S(m)与时间5.某人乘雪橇沿坡度为1t(s):4s,则此人下降的高度为坡底的时间为][ A.72 m 36 .m BC.36 m m.18D2 +50x-500,则要想满足关系y=-x与销售单价x(元))6.童装专卖店销售一种童装,若这种童装每天获利y(元获得最大利润,销售单价为][ A.25元 B.20元 C.30元 元40D.7.中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门距横梁底侧高)入2 +bx+c所示,则下列结论正确的是网.若足球运行的路线是抛物线y=ax -12a00;④③;;①a<②

人教版九年级上册数学九年级二次函数综合测试题及答案

二次函数单元测评 一、选择题(每题3分,共30分) 1.下列关系式中,属于二次函数的是(x为自变量)() A. B. C. D. 2. 函数y=x2-2x+3的图象的顶点坐标是() A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y=2(x-3)2的顶点在() A. 第一象限 B. 第二象限 C. x轴上 D. y轴上 二、4. 抛物线的对称轴是() A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0 6.二次函数y=ax2+bx+c的图象如图所示,则点在第 ___象限() A. 一 B. 二 C. 三 D. 四 7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P 的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么 AB的长是() A. 4+m B. m C. 2m-8 D. 8-2m 8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx 的图象只可能是() 9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3, y3)是直线上的点,且-1

人教版九年级上册数学 二次函数专题练习(word版

人教版九年级上册数学 二次函数专题练习(word版 一、初三数学二次函数易错题压轴题(难) 1.已知,抛物线y=- 1 2 x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A. (1)直接填写抛物线的解析式________; (2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN. 求证:MN∥y轴; (3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG ?CH 为定值. 【答案】(1)2 1 2 2 y x x =-++;(2)见详解;(3)见详解. 【解析】 【分析】 (1)把点C、D代入y=- 1 2 x2 +bx+c求解即可; (2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解; (3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】 详解:(1)∵y=- 1 2 x2 +bx+c过点C(0,2),点Q(2,2), ∴ 2 1 222 2 2 b c c ? -?++ ? ? ?= ? = ,

解得:1 2b c =??=? . ∴y=- 12 x 2 +x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由2 2122y kx y x x =+?? ?=-++?? 得 12 x 2 +(k-1)x=0, 解得:120,22x x k ==-, x p =22p x k =- 由2 1=22y mx y x x =???-++?? 得 12 x 2 +(m-1)x-2=0, ∴124b x x a ?=- =- 即x p?x m =-4, ∴x m =4p x -=21 k -. 由24y kx y x =+??=+? 得x N = 2 1 k -=x M , ∴MN ∥y 轴. (3)设G (0,m ),H (0,n ). 设直线QG 的解析式为y kx m =+, 将点()2,2Q 代入y kx m =+ 得22k m =+

人教版九年级上册数学二次函数知识点总结

二次函数知识点 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).

初中数学九年级《二次函数》公开课教学设计

22.1.1 二次函数 一、教学目标 1.知识与技能目标: (1).使学生理解并掌握二次函数的概念 (2).能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式 (3).能根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想 2.过程与方法目标; 通过“探究----感悟----练习”,采用探究、讨论等方法进行。 3.情感态度与价值观: 通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育 二、教学重、难点 1.重点:理解二次函数的概念,能根据已知条件写出函数解析式 2.难点:理解二次函数的概念. 三、教学过程 1、知识回顾 (1).什么是变量,常量? (2).函数的定义是什么,有什么表现形式? (3) 函数的图象怎么构成,如何作函数的图象? 2、合作学习,探索新知 : 问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,那么y 与x 的关系可表示为? y=6x 2 问题2: n 个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m 与球队数n 有什么关系? m=21122 n n 问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果

每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示? y=20x 2+40x+20 观察以上三个问题所写出来的三个函数关系式有什么特点?引导学生从自变量最高次数思考。 经化简后都具有y=ax2+bx+c 的形式,(a,b,c 是常数, a≠0 ). 我们把形如y=ax2+bx+c(其中a,b,c 是常数,a≠0)的函数叫做二次函数 称:a 为二次项系数,ax 2叫做二次项;b 为一次项系数,bx 叫做一次项;c 为常数项. 又例:y=x2 + 2x – 3 满足什么条件时 当,是常数其中函数c b,a,)c b,a,c(bx ax y 2++= (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数? 3、巩固练习: 1.下列函数中,哪些是二次函数? (1)y=3x-1 ; (2)y=3x 2+2; (3)y=3x 3+2x 2; (4)y=2x 2-2x+1; (5)y=x 2-x(1+x); (6)y=x -2+x. 2.做一做: (1)正方形边长为x (cm ),它的面积y (cm2)是多少? (2)矩形的长是4厘米,宽是3厘米,如果将其长增加x 厘米,宽增加2x 厘米,则面积增加到y 平方厘米,试写出y 与x 的关系式. 4、例题讲解: 例1: 关于x 的函数是二次函数, 求m 的值. 解: 由题意可得 注意:二次函数的二次项系数不能为零 m m x m y -+=2)1(012 2≠+=-m m m 时,函数为二次函数。当解得,22 =∴=m m

(完整)初三中考二次函数专题复习

第二十六章 二次函数 【知识梳理】 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数c bx ax y ++=2 用配方法可化成:()k h x a y +-=2 的形式,其中 a b a c k a b h 4422 -=-=,. 3.抛物线的三要素:开口方向、对称轴、顶点. ①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

新动力教育 数学杨老师 对称轴是直线a b x 2- =. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 6.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

全初三数学二次函数知识点归纳总结

二次函数知识点归纳及相关典型题 第一部分 基础知识 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0a 时,开口向上;当0

新人教版九年级上二次函数知识点总结与练习

新人教版九年级上二次函数知识点总结与练习知识点一:二次函数的定义 1.二次函数的定义: 一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数. 其中a是二次项系数,b是一次项系数,c是常数项. 知识点二:二次函数的图象与性质 ? 2. 二次函数()2 =-+的图象与性质 y a x h k (1)二次函数基本形式2 =的图象与性质:a的绝对值越大,抛物线的开口越小 y ax (2)2 =+的图象与性质:上加下减 y ax c

(3)()2 y a x h =-的图象与性质:左加右减

(4)二次函数()2 y a x h k =-+的图象与性质 3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值 2 44ac b a -. (2)当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值 2 44ac b a -.

4. 二次函数常见方法指导 (1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线) 利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与y 轴的交点,顶点. (2)二次函数图象的平移 平移步骤: ① 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ② 可以由抛物线2 ax 经过适当的平移得到具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对、 的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式: .已知图象与轴的交点坐标 、 ,通常选择交点式. (4)求抛物线的顶点、对称轴的方法 ①公式法:a b ac a b x a c bx ax y 44222 2 -+ ?? ? ??+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2- =. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是直线h x =.

相关主题
文本预览
相关文档 最新文档