当前位置:文档之家› 概率ch1

概率ch1

概率ch1
概率ch1

第一章 随机事件和概率

一. 填空题

1. 设A, B, C 为三个事件, 且=-=??=?)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.

)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-

=)(C B A P ??-)(B A P ?= 0.97-0.9 = 0.07

2. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______. 解. }{合格品二件产品中有一件是不

=A , }{二件都是不合格品=B

5

11)

()()

()()|(210

2

6

2102

4

=

-

=

==

c c c c A P B P A P AB P A B P

注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是

+}{二件都是不合格品

所以B AB B A =?,; }{二件都是合格品=A

3. 随机地向半圆a x ax y (202

-<

<为正常数)内掷一点, 点落在半圆内任何区域的概率

与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4

π

的概率为______.

解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则 12

1)),((2

==∈a k

D Y X P π, k 为比例系数. 所以2

2

a

k π=

假设D 1 = {D 中落点和原点连线与x 轴夹角小于4

π

的区域}

π

ππ1

2

1)2

14

1(2)),((2

2

2

11+

=

+

=

?=∈a a a

D k D Y X P 的面积.

4. 设随机事件A, B 及其和事件A ?B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.

解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.1 3.01.04.0)()()(=-=-=AB P A P B A P .

5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.

所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.

6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,

)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.

7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________.

解. 假设事件A, B, C 表示元件A, B, C 完好.

P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.

P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.

8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.

P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)

=+???21336.04.07.0c +???6.04.07.02

233c 334.07.0?

++?????2132134.06.07.03.0c c +???32134.07.03.0c 32134.03.07.0???c

= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.

9. 三人独立破译一密码, 他们能单独译出的概率分别为4

1

,31,51, 则此密码被译出的概率_____.

解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则4

1)(,3

1)(,5

1)(=

=

=

C P B P A P .

P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)

= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =

5

3413151413141513151413151=??+?-?-?-

++.

二.单项选择题.

1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为

(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销” (C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.

2. 设A, B, C 是三个事件, 与事件A 互斥的事件是

(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则

(A) P(A ?B)P(AB)≥P(A)P(B) (B) P(A ?B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)4

1)()(≥

--A B P B A P .

解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .

4. 事件A 与B 相互独立的充要条件为

(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.

5. 设A, B 为二个事件, 且P(AB) = 0, 则

(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ?B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()

()()

()()|(A P B P A P B P AB P B A P ≥==

(当B = Ω时等式成立). (B)是答案.

7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A

)B |P(A

]B |)A P[(A

2

1

21

+=+

(B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)

(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)

(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)

解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到 )

()()

()()

(]

)[(2121B P B A P B P B A P B P B A A P +

=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是

答案.

三. 计算题

1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.

解. P(该批产品合格) = P(全部正品) + P(恰有1个次品) =

2794.050100

1

5499550100

50

95=+

c

c c c

c

2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.

解. 假设A={至少有一本数学书}. A ={没有数学书} P(A ) =

91

243153

10=

c

c , P(A) = 1-P(A ) =

91

67

3. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;

ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;

iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.

解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20 i. P(不是北京|男生) =20178068=

ii. P(男生|北京学生) =5

320

12=

iii. P(北京男生) =

100

12

iv. P(女生|非北京学生) =80

12 v. P(免修英语男生) =

100

32

4. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求:

i. 第二次取出的球都是新球的概率;

ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.

解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是

312

339)(c c c B P i

i

i -=

, 3

12

3

9)|(c c B A P i i -=

)()

(1)

()|()()(3

603393713293823193933092

3

123

2

3

12393393

c c c c c c c c c c c c c c c c c B A P B

P A P i i i i

i i i

+++=

==

∑=--=

146.048400

7056)201843533656398411()

220(12

==

??+??+??+??=

ii. 21

548400

7056)220(20

184)

()

()|()|(2

333=

??=

=

A P

B P B A P A B P

5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m

乙袋 N M

假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)n

m m

M N N

m

n n

M N N +?

+++

+?

+++=

111

)

)(1()1(n m M N Nm N n +++++=

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

随机事件的概率第一课时频率与概率

§3.1.1频率与概率 (韦文月陕西师范大学 710062) 【教材版本】北师大版 【教材分析】 本节课的教学内容是《数学必修3》第三章§1.1节互斥事件,教学课时为1课时.《标准》要求学生在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别.本节课主要是通过具体实例,理解概率与频率的联系与区别,进一步辨别随机试验结果的随机性与规律性的关系. 概率研究随机事件发生的可能性大小问题,这里既有随机性,又有随机中表现出的规律性,这是学生理解的难点.突破难点的最好办法是给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件的随机性以及随机性中表现出的规律性的直接感知.通过试验,观察随机事件发生的频率,可以发现随着试验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、归纳和总结的思想方法.对随机事件的概率教学可以分为下面几个层次: 第一,由学生实际动手操作投掷硬币试验 第二,计算机模拟,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动. 第三,展示历史上一些掷硬币的试验,使学生感受到随着试验次数的增加,正面朝上的频率在0.5附近摆动. 第四,解释这个常数代表的意义:这个常数越接近1,表明事件发生的频率越大,也就是它发生的可能性越大;这个常数越接近0,表明事件发生的频率越小,也就是发生的可能性越小.所以可以用这个常数度量事件发生的可能性的大小. 第五,引导学生对概率与频率的关系进行比较.频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.频率是随机的,在试验前不能确定,但概率是一个确定的数,与每次试验无关. 【学情分析】

北师大版高中数学必修三第二课时随机事件的频率与概率教案(精品教学设计)

第二课时随机事件的频率与概率 一、教学目标:1.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;2.掌握概率的统计定义及概率的性质. 二、教学重点:随机事件的概念及其概率.教学难点:随机事件的概念及其概率. 三、探究讨论法 四、教学过程 (一)、新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (3)“某电话机在1分钟内收到2次呼叫”;

(4)“没有水份,种子能发芽”; 分析结果:(略) 3.男女出生率 一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21. 4.π中数字出现的稳定性(法格逊猜想) 在π的数值式中,各个数码出现的概率应当均为1/10.随着计算机的发展,人们对π的前一百万位小数中各数码出现的频率进行了统计,得到的结果与法格逊猜想非常吻合.

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算) 一.填空题 1. 设A ,B ,C 是三个随机事件,用字母表示下列事件: 事件A 发生,事件B ,C 不都发生为 ; 事件A ,B ,C 都不发生为 ; 事件A ,B ,C 至少一个发生为 ; 事件A ,B ,C 至多一个发生为 . 2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是: 1A 表示 ; 321A A A 表示 ; 321321321A A A A A A A A A ++表示 ; 321A A A 表示 . 3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。则式子ABC=C 成立的条件是 . 二.选择题 1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ). ① A BC A = ; ② A BC A = ; ③ Φ=BC A ; ④ Ω=BC A . 2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ). ① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”. 3. 若概率0)(=AB P ,则必有( ). ① Φ=AB ; ② 事件A 与B 互斥; ③ 事件A 与B 对立; ④ )()()(B P A P B A P += .

三.解答题 1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}. 2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}. 3. 某城市发行日报和晚报两种报纸。有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}. 4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

随机事件的频率与概率

随机事件的频率与概率 1.随机事件的频率 随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率 一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A). 3.频率与概率的区别和联系 (1) 频率本身是随机的,在试验前不能确定.做同样次数的重复试验得到事件的频率会不同. (2) 概率是一个确定的数,与每次试验无关.是用来度量事件发生可能性大小的量. (3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率. 例1.某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这名运动员射击一次,击中10环的概率是多少? 分析:(1)分清m ,n 的值,用公式n m 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动. 解:(1)

(2)从上表可以看出,这名运动员击中10环的频率在0.9附近波动,且射击次数越多,频率越接近0.9,故可以估计,这名运动员射击一次,击中10环的概率约为0.9. 点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率 n m 作为事件A 发生的概率的近似值,即P(A)≈n m . 例2.为了估计水库中的鱼的尾数,可以使用以下方法: 先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数. 分析:用样本估计总体. 解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值 记作n ?. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n 2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈ A P . 所以500 402000≈n .

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

随机事件及其概率(知识点总结)Word版

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.

高中数学随机事件的频率与概率

《随机事件的频率与概率》教案 一、[教学目标] 1、知识与技能:理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;掌握概率的统计定义及概率的性质。 2、过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。 3、情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。 二、[教学重点] 随机事件的概念及其概率. 三、[教学难点] 随机事件的概念及其概率. 四、[教学方法] 探究讨论法。 五、[教学过程] (一)新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(3)“某电话机在1分钟内收到2次呼叫”; (4)“没有水份,种子能发芽”;

分析结果:(略) (二)探究新课 1.事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件. 说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化. 2.随机事件的概率: (1)实验:随机事件在一次试验中是否发生是不确定,但在大量重复的试验情况下,它的发生呈现出一定的规律性. 实验一:抛掷硬币试验结果表: m n) 抛掷次数(n)正面朝上次数(m)频率(/ 2048 1061 0.5181 4040 2048 0.5069 12000 6019 0.5016 24000 12012 0.5005 30000 14984 0.4996 72088 36124 0.5011 当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动. 实验二:某批乒乓球产品质量检查结果表: 抽取球数n50 100 200 500 1000 2000 优等品数m45 92 194 470 954 1902 m n0.9 0.92 0.97 0.94 0.954 0.951 频率/ 当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

《事件的概率》资料:随机事件的概率知识点总结

随机事件的概率知识点总结 事件的分类 1、确定事件 必然发生的事件:当A 是必然发生的事件时,P (A )=1 不可能发生的事件:当A 是不可能发生的事件时,P (A )=0 2、随机事件:当A 是可能发生的事件时,0<P (A )<1 概率的意义 一般地,在大量重复试验中,如果事件A 发生的频率m n 会稳定在某个常数p 附近 那么这个常数p 就叫做事件A 的概率。 概率的表示方法 一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P 概率的求解方法 1.利用频率估算法:大量重复试验中,事件A 发生的频率 m n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率(有些时候用计算出A发生的所有频率的平均值作为其概率). 2.狭义定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P (A )= n m 3.列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标. 特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少? 放回去P (1和2)=9 2不放回去P (1和2)=62

4.树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率. 注意:求概率的一个重要技巧:求某一事件的概率较难时,可先求其余事件的概率或考虑其反面的概率再用1减——即正难则反易. 概率的实际意义 对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动. (3,3) (3,2) (3,1) 3 (2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次 结果3 2 1 第二次(3,2) (3,1) 3 (2,3) (2,1)2(1,3)(1,2) 1第一次 结果3 2 1第二次

数学随机事件与概率知识点归纳

数学随机事件与概率知识点归纳 一、随机事件 主要掌握好(三四五) (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、分配律、德莫根律。 (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率; (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则 P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

吉林大学2015概率论与数理统计大作业完整版

吉林大学网络教育 大作业 1.仪器中有三个元件,它们损坏的概率都是0.2,并且损坏与否相互独立.当一个元件损坏时, 仪器发生故障的概率为0.25,当两个元件损坏时,仪器发生故障的概率为0.6,当三个元件损坏时,仪器发生故障的概率为0.95, 当三个元件都不损坏时,仪器不发生故障.求:(1)仪器发生故障的概率;(2)仪器发生故障时恰有二个元件损坏的概率. (1)解:设A 表示事件“仪器发生故障”,i=1,2,3 P(A)= )/()(3 1 B B i i i A P P ∑=, P(B1)=3*0.2*0.80.2=0.384,P(B2)=3*0.22*0.8=0.096,P(B3)=0.23=0.008 所以P(A)=0.384*0.25+0.096*0.6+0.008*0.95+0.1612 (2) P(B 2/A)= ) ()(2A P A p B =0.96*0.6/0.1612=0.3573 2.设连续型随机变量X 的分布函数为 0, ,()arcsin ,,(0)1, ,x a x F x A B a x a a a x a ≤-??? =+-<<>?? ≥?? 求:(1)常数A 、B .(2)随机变量X 落在,22a a ?? - ??? 内的概率.(3)X 的概率密度函数. 解:(1)F (a+0)=A-2πB=0,F (a-0) =A+2πB=1 所以A=0.5 B=π 1 (2)P{-2a

概率论与数理统计作业

概率论与数理统计作业 第一章随机事件与概率 1?将一枚均匀的硬币抛两次,事件代B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件A,B,C中的样本点。 解:舄」正正、正反、反正、反反] A=.正正、正反/, B =「正正1, C =:正正、正反、反正 / 2.设P(A)二3,P(B)二2,试就以下三种情况分别求P(BA): 3 2 (1)AB=必,(2)A B,( 3)P(AB)=1 8 解: (1)P(BA) =P(B — AB) =P(B) — P(AB) =P(B) =0.5 (2)P(BA)二P(B —AB)二P(B) —P(AB)二P(B) 一P(A) = 0.5 -1/3 = 1/6 (3)P(BA)二P(B — AB)二P(B) —P(AB) =0.5 —0.125 =0.375 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少? 解:记H表拨号不超过三次而能接通。 Ai表第i次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。

寫H = A +瓦人 2 +瓦入2民三种情况互斥 二P(H) =P(A)+P(AjP(A2 |瓦)+ 卩(瓦)卩(入2丨A I)P(A3 1A1A2) 19 19 8 13 =—+—X —+ —X —X —=— 10 10 9 10 9 8 10 如果已知最后一个数字是奇数(记为事件B)问题变为在B已发生的条件下,求H再发 生的概率。 P(H |B) =PA |B A A2 |B A1A2A3| B) = P(A!|B) P(A1| B)P(A2|BA1) P(A1| B)P(A2| BA!)P(A3 |B^A2) 14 14 3 13 = ---- i ----- 4 --- I ------ A. ---- A. --- = ------ 5 5 4 5 4 3 5 4?进行一系列独立试验,每次试验成功的概率均为,试求以下事件的概率: (1)直到第r次才成功; (2)在n次中取得r(「乞r乞n)次成功; 解:(1) P=(1—p)rJL p (2) P =C:p r(1 一p)^ 5.设事件A, B的概率都大于零,说明以下四种叙述分别属于那一种:(a)必然对,(b) 必然错,(c)可能对也可能错,并说明理由。 (1)若A,B互不相容,则它们相互独立。 (2)若A与B相互独立,则它们互不相容。 (3)P(A)二P(B) =0.6,则 A与 B互不相容。 (4)P(A)二P(B) =0.6,则 A与 B相互独立。 解:(1)b, 互斥事件,一定不是独立事件 (2)c, 独立事件不一定是互斥事件, (3)b, P(A + B) = P(A) + P(B) - P(AB)若 A与 B互不相容,则P(AB) = 0 而P(A B) =P(A) P(B) - P(AB) =1.2 1 ⑷a, 若A与B相互独立,则P(AB) = P(A)P(B) J 这时P(A B)二P(A) P(B) -P(AB) =1.2 -0.36 =0.84 6.有甲、乙两个盒子,甲盒中放有 3个白球,2个红球;乙盒中放有4个白球,4个红球,现从甲盒中随机地取一个球放到乙盒中,再从乙盒中取出一球,试求: (1)从乙盒中取出的球是白球的概率; ⑵若已知从乙盒中取出的球是白球,则从甲盒中取出的球是白球的概率。 解:(1)记A, A分别表“从甲袋中取得白球,红球放入乙袋”

相关主题
文本预览
相关文档 最新文档