当前位置:文档之家› (新)集合与常用逻辑用语-函数知识总结大全

(新)集合与常用逻辑用语-函数知识总结大全

(新)集合与常用逻辑用语-函数知识总结大全
(新)集合与常用逻辑用语-函数知识总结大全

第一章 集合与常用逻辑用语知识结构

【知识概要】

一、集合的概念、关系与运算

1. 集合中元素的特性:确定性、互异性、无序性. 在应用集合的概念求解集合问题时,要特别注意这三个性质在解题中的应用,元素的互异性往往就是检验的重要依椐。

2. 集合的表示方法:列举法、描述法. 有的集合还可用Venn 图表示,用专用符号表示,如,,,,,,N N N Z R Q φ*+等。

3. 元素与集合的关系:我们把研究对象统称为元素,把一些元素组成的总体叫做集合,若元素x 是集合A 的元素,则x A ∈,否则x A ?。

4. 集合与集合之间的关系:

①子集:若x A ∈,则x B ∈,此时称集合A 是集合B 的子集,记作A B ?。

②真子集:若A B ?,且存在元素x B ∈,且x A ?,则称A 是B 的真子集,记作:A B . ③相等:若A B ?,且A B ?,则称集合A 与B 相等,记作A =B .。

5. 集合的基本运算: ①交集:{}A B x x A x B =∈∈且 ②并集:{}A B x x A x B =∈∈或

③补集:{|,}U C A x x U x A =∈?且,其中U 为全集,A U ?。

6. 集合运算中常用结论:

①,,A A A A A B B A φφ===,A B A A B =??。

②,,A A A A A A B B A φ===,A B A B A =??。

③()U A C A U =,()U C A A ?=,

()()()U U U C A B C A C B =,()()()U U U C A B C A C B =。

④由n 个元素所组成的集合,其子集个数为2n 个。

⑤空集是任何集合的子集,即A ??。

在解题中要特别留意空集的特殊性,它往往就是导致我们在解题中出现错误的一个对

象,避免因忽视空集而出现错误。

●7.含参数的集合问题是本部分的一个

重要题型,应多根据集合元素的互异性挖掘

题目的隐含条件,并注意分类讨论思想、数

形结合思想在解题中的运用。

二、命题及其关系

●1.命题的概念:用语言、符号或式子

表达的,可以判断真假的陈述句叫做命题。

若p ,则q

若q ,则p ?

●2.四种命题的相互关系:

●3. “若p则q”是真命题,即p q

?;“若p则q”是假命题,则p q

?/。

●4. 在判断命题真假的问题中,一方面可以直接写出命题进行判断,也可以通过命题的等价性进行判断,即原命题与逆否命题等价,否命题与逆命题等价。

●5. 充分必要条件的判断是本部分的一个重要题型,在解题中应注意:

(1)注意问题的设问方式,我们知道,①p是q的充分不必要条件是指p q

?且p q

?/;

②p的必要不充分条件是q是指p q

?且q p

?/。这两种说法是在充分必要条件推理判断中经常出现且容易混淆的说法,在解题中一定要注意问题的设问方式,弄清它们的区别,以免出现判断错误。

(2)要善于举出恰当的反例来说明一个命题是错误的。

(3)恰当地进行转化,由原命题与逆否命题等价可知:若p是q的充分不必要条件,则p

?的充分不必要条

?是q

?的必要不充分条件;若p是q的必要不充分条件,则p

?是q

件。

●6. 证明p是q的充要条件

(1)充分性:把p当作已知条件,结合命题的前提条件,推出q;

(2)必要性:把q当作已知条件,结合命题的前提条件,推出p。

三、逻辑联结词与量词

●2.全称量词与存在量词:命题中的“对所有”、“任意一个”等短语叫做全称量词,用符号“?”表示,“存在”、“至少有一个”等短语叫做存在量词,用符号“?”表示。

含有全称量词的命题叫做全称命题,全称命题:“对M中任意一个x,有()

p x成立”可用符号简记为,()

?∈。

x M p x

含有存在量词的命题叫做特称命题,特称命题:“存在M中任意一个x,使()

p x成立”可用符号简记为,()

?∈。

x M p x

第二章函数知识结构

一..函数的概念及其表示

(1)函数的概念

①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B

中都有唯一确定的数

()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.

②函数的三要素:定义域、值域和对应法则.

③只有定义域相同,且对应法则也相同的两个函数才是同一函数.

(2)区间的概念及表示法

①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x

a x

b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.

注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须

a b <.

(3)求函数的定义域时,一般遵循以下原则:

()f x 是整式时,定义域是全体实数. ②

()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.

④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

⑤tan y x =中,()2x k k Z π

π≠+∈.

⑥零(负)指数幂的底数不能为零.

⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.

⑧对于求复合函数定义域问题,一般步骤是:若已知

()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.

⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.

⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.

(4)求函数的值域或最值

求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在

一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:

①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.

②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的

值域或最值.

③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程

2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有

2()4()()0b y a y c y ?=-?≥,从而确定函数的值域或最值.

④不等式法:利用基本不等式确定函数的值域或最值.

⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为

三角函数的最值问题.

⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.

⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.

⑧函数的单调性法

(5)函数的表示方法

表示函数的方法,常用的有解析法、列表法、图象法三种.

解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间

的对应关系.图象法:就是用图象表示两个变量之间的对应关系.

(6)映射的概念

①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都

有唯一的元素和它对应,那么这样的对应(包括集合

A ,

B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作

:f A B →. ②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.

二.函数的基本性质

1.单调性

函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义

一般地,设函数()y f x =的定义域为A ,区间I A ?.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________.

点评 单调性的等价定义:

①)(x f 在区间M 上是增函数,,21M x x ∈??当21x x <时,有0)()(21<-x f x f 0)]()([)(2121>-?-?x f x f x x 00)()(2121>???>--?x

y x x x f x f ;

②)(x f 在区间M 上是减函数,,21M x x ∈??当21x x <时,有0)()(21>-x f x f 0)]()([)(2121<-?-?x f x f x x 00)()(2121

y x x x f x f ; ⑵函数单调性的判定方法

①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等. 注意:

①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那

么0)]()([)(2121>-?-x f x f x x 0)()(2

121>--?

x x x f x f )(x f ?在区间],[b a 上是增函数;0)]()([)(2121<-?-x f x f x x 0)()(2121<--?x x x f x f )(x f ?在区间],[b a 上是减函数。

②导数法(选修):在()f x 区间()a b ,内处处可导,若总有'()0f x >('

()0f x <),则()f x 在区间()a b ,内为增(减)函数;反之,()f x 在区间()a b ,内为增(减)函数,且

处处可导,则'()0f x ≥('()0f x ≤)。请注意两者之间的区别,可以“数形结合法”研究。

点评 判定函数的单调性一般要将式子)()(21x f x f -进行因式分解、配方、通分、分子(分母)有理化处理,以利于判断符号;证明函数的单调性主要用定义法和导数法。

提醒 求单调区间时,不忘定义域;多个单调性相同的区间不一定能用符号“”连接;单调区间应该用区间表示,不能用集合或不等式表示。判定函数不具有单调性时,可举反例。

⑶与函数单调性有关的一些结论

①若()f x 与()g x 同增(减),则()f x +()g x 为增(减)函数,(())f g x 为增函数; ②若()f x 增,()g x 为减,则()f x -()g x 为增函数,()g x -()f x 为减函数,(())f g x 为减函数;

③若函数()y f x =在某一范围内恒为正值或恒为负值,则()y f x =与1()

y f x =在相同的单调区间上的单调性相反;

④函数()y f x =与函数()(0)y f x k k =+≠具有相同的单调性和单调区间;

⑤函数()y f x =与函数()(0)y kf x k =>具有相同的单调性和单调区间,函数()y f x =与函数()(0)y kf x k =<具有相同单调区间上的单调性相反。

2.奇偶性

函数的奇偶性是研究函数在定义域内的图象是否关于原点中心对称,还是关于y 轴成轴对称,是研究函数图象的结构特点;

⑴函数奇偶性的定义

一般地,设函数()y f x =的定义域为A .如果对于_____的x A ∈,都有()f x -=_____,那么函数()y f x =是偶函数. 一般地,设函数()y f x =的定义域为A .如果对于_____的x A ∈,都有()f x -=_____,那么函数()y f x =是奇函数. 如果函数()y f x =是奇函数或偶函数,那么函数()y f x =具有________.

注意 具有奇偶性的函数的定义域一定关于原点对称,因此,确定函数奇偶性时,务必先判定函数定义域是否关于原点对称。

⑵图象特征

函数()y f x =为奇(偶)函数?函数()y f x =的图象关于原点(y 轴)成中心(轴)对称图形。

注意 定义域含0的偶函数图象不一定过原点;定义域含0的奇函数图象一定过原点;利用函数的奇偶性可以把研究整个函数问题转化到一半区间上,简化问题。

点评

①函数的定义域关于原点对称是函数具有奇偶性的必要条件....

. ②)(x f 是奇函数()()()()()01()

f x f x f x f x f x f x -?-=-?-+=?

=-. ③)(x f 是偶函数()()()()()01()

f x f x f x f x f x f x -?-=?--=?=. ④奇函数)(x f 在原点有定义,则0)0(=f . ⑤在关于原点对称的单调区间内:

(ⅰ)奇函数有相同的单调性,偶函数有相反的单调性;

(ⅱ)奇函数有相反的最值(极值),偶函数有相同的最值(极值)。

⑥)(x f 是偶函数?(||)()f x f x =.

⑶奇偶性的判定方法

若所给函数的解析式较为复杂,应先考虑其定义域并等价变形化简后,再判断其奇偶性.

如判断函数()f x =法;②图像法;③结论法等. 点评 定义法判定函数的奇偶性先求定义域,看其是否关于原点对称,若对称,再求()f x -,接着考察()f x -与()f x 的关系,最后得结论.判断函数不具有奇偶性时,可用反例。

⑷与函数的奇偶性有关的一些结论

①若()f x 与()g x 同奇(偶),则()f x ±()g x 为奇(偶)函数,()f x ()g x 和

()()f x g x 为偶函数,(())f g x 为奇(偶)函数;

②若()f x 与()g x 一奇一偶,则()f x ()g x 和()()

f x

g x 为奇函数,(())f g x 为偶函数; ③定义域关于原点对称的函数可以表示为一个奇函数与一个偶函数和的形式。

⑸函数按奇偶性分类

①奇函数非偶函数,②偶函数非奇函数,③既是奇函数又是偶函数,④非奇非偶函数。 点评既奇又偶的函数有无数个。如()0f x =定义域关于原点对称即可。如函数()f x =

3.周期性

函数的周期性是研究一些函数图象在定义域内具有某种一定的周期变化规律;

⑴函数周期性的定义

一般地,对于函数()f x ,如果存在一个________的常数T ,使得定义域内的________ x 值,都满足()________f x T +=,那么函数()f x 称为周期函数,________常数T 叫做这个函数的周期。如果一个周期函数()f x 的所有的周期中存在一个________的____数,那么这个数叫做函数()f x 的最小周期正周期。如没有特别说明,遇到的周期都指最小正周期。

点评 ①非零常数T 是周期函数本身固有的性质,与自变量x 的取值无关;②若非零常数T 是函数()f x 的周期,则非零常数T 的非零整数倍(nT n Z ∈,,且0)n ≠也是函数()f x 的周期;③若函数()f x 的周期为T ,则函数()y Af x ω?=+(其中A ,ω,?为常

数,且0A ≠,0ω≠)的周期为||

T ω;④定义中的等式()f x T +=()f x 是恒等式;⑤函数()f x 的周期是T ?()f x T +=()f x 。

⑵三角函数的周期

①π2:sin ==T x y ;②π2:cos ==T x y ;③π==T x y :tan ;

④|

|2:)cos(),sin(ωπ?ω?ω=+=+=T x A y x A y ;⑤||:tan ωπω==T x y ; ⑶函数周期的判定

①定义法(试值) ②图像法 ③公式法(利用(2)中结论)④结论法。

⑷与周期有关的一些结论

①)()(a x f a x f -=+或)0)(()2(>=-a x f a x f ?)(x f 的周期为a 2;

②()f x 是偶函数,其图像又关于直线x a =对称?()f x 的周期为2||a ;

③()f x 奇函数,其图像又关于直线x a =对称?()f x 的周期为4||a ;

④()f x 关于点(,0)a ,(,0)b ()a b ≠对称?()f x 的周期为2||a b -;

⑤()f x 的图象关于直线x a =,()x b a b =≠对称?函数()f x 的周期为2||a b -; ⑥()f x 的图象关于点)0,(a 中心对称,直线b x =轴对称?)(x f 周期为4b a -; ⑦()f x 对x R ∈时,()()f x a f x +=-或1()()f x f x a +=-

?()f x 的周期为2||a ; ⑧函数()f x 满足1()()1()

f x f x a f x ++=-,且a 为非零常数?()f x 的周期为4||a ; ⑨函数()f x 满足()()()2f x a f x a f x +=+-(a 为非零常数)?()f x 的周期6||a 。 点评 注意对称性与周期性的关系。

4.对称性

函数的对称性是研究函数图象的结构特点(即函数图象关于某一点成中心对称图形或关于某一条直线成轴对称图形);

⑴函数对称性的定义

如果函数()y f x =的图象关于直线x a =成____对称或点()a b ,成______对称,那么()y f x =具有对称性。

注意 利用函数的对称性可以把研究整个函数问题转化到一半区间上,简化问题。 ⑵函数图象对称性的证明

证明函数()y f x =图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

⑶与对称性性有关的一些结论

①函数()y f x =的图象关于直线x a =成轴对称?()()f a x f a x -=+。特别地,当0a =时,函数()y f x =为偶函数。

②函数()y f x =的图象关于点()a b ,成中心对称?()()2f a x f a x b -++=。特别地,当0a =且0b =时,函数()y f x =为奇函数。

点评 函数奇偶性是函数对称性的特殊情况。

③若()y f x =对x R ∈时,()()f a x f b x +=-恒成立,则()y f x =图像关于直线2a b

x +=对称; ④函数()0k y b k x a

=+≠-的图象关于点()a b ,中心对称。 5.有界性

函数的有界性是研究函数图象在平面直角坐标系中的上下界情况,重点是通过研究函数的最大(小)值(值域)来研究有界性问题。

⑴函数最大(小)值的定义

一般地,设函数()y f x =的定义域为A .如果存在0x A ∈,使得对于____的x A ∈,都有()f x ____0()f x ,那么称0()f x 为()y f x =的最大值,记为__________;如果存在0x A ∈,使得对于____的x A ∈,都有()f x ____0()f x ,那么称0()f x 为()y f x =的最小

《专题一常用逻辑用语》知识点归纳

高中数学必修+选修知识点归纳 新课标人教A 版 复习寄语:

鲁甸县文屏镇中学高三第一轮复习资料 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点:

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

(完整)高一必修一基本初等函数知识点总结归纳,推荐文档

n a n a n ? (1)根式的概念 高一必修一函数知识点(12.1) 〖1.1〗指数函数 ① 叫做根式,这里 n 叫做根指数, a 叫做被开方数. ②当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 . ?a (a ≥ 0) ③根式的性质: ( n a )n = a ;当 n 为奇数时, = a ;当 n 为偶数时, =| a |= ?-a . (a < 0) (2) 分数指数幂的概念 m ①正数的正分数指数幂的意义是: a n = (a > 0, m , n ∈ N + , 且 n > 1) .0 的正分数指数幂等于 0. a - m = ( )1 m ( ) 1(a > 0, m , n ∈ N , n > 1) ②正数的负分数指数幂的意义是: n n = n m + 且 .0 的负分数指数幂没有意 a a 义. 注意口诀:底数取倒数,指数取相反数. (3) 分数指数幂的运算性质 ① a r ? a s = a r +s (a > 0, r , s ∈ R ) ② (a r )s = a rs (a > 0, r , s ∈ R ) ③ (ab )r = a r b r (a > 0, b > 0, r ∈ R ) (4) 指数函数 函数名称 指数函数 定义 函数 y = a (a > 0 且 a ≠ 1)叫做指数函数 a > 1 0 < a < 1 图象 y 1 y O y a x (0,1) x y a x y 1 O y (0,1) x 定义域 R 值域 (0,+∞) 过定点 图象过定点(0,1),即当 x=0 时,y=1. 奇偶性 非奇非偶 单调性 在 R 上是增函数 在 R 上是减函数 函数值的变化情况 y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0) a 变化对 图象的影响 在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴. 例:比较 n a n n a m

初三.二次函数知识点总结

二次函数知识点总结 二次函数知识点: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项 系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 结论:a 的绝对值越大,抛物线的开口越小。 总结:

2. 2 =+的性质: y ax c 结论:上加下减。 总结:

3. ()2 =-的性质: y a x h 结论:左加右减。 总结: 4. ()2 =-+的性质: y a x h k

总结: 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法 如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 请将2245y x x =++利用配方的形式配成顶点式。请将2y ax bx c =++配成 ()2 y a x h k =-+。 总结: 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者 通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式 2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧, 左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c , 关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

(完整word版)高中数学选修1-1《常用逻辑用语》知识点讲义.docx

第一章常用逻辑用语 一、命题 1、定义:可以判断真假的陈述语句,分为真命题和假命题. 2、一般形式:“ 若p则q” . 二、四种命题 原命题:若 p则 q p q 逆命题:若 q则 p q p 否命题:若p则 q p q 逆否命题:若q则 p q p 例:原:若一个数是负数,则它的平方是正数.(真) 逆:若一个数的平方是正数,则这个数是负数.(假 ) 否:若一个数不是负数,则它的平方不是正数.(假 ) 逆否:若一个数的平方不是正数,则这个数不是负数.(真 ) 结论 :①互为逆否的命题同真,同假. ②原命题与逆命题、原命题与否命题的真假无关. 三、充分条件与必要条件 1、若 p q , 称 p是 q的充分条件, q是 p的必要条件 . 2、若 p q, 称 p不是 q的充分条件, q不是 p的必要条件 . 3、若 p q而且 q p, 记作“ p q” , 称 p是q的充分必要条件,简 称 p是 q的充要条 件 .

注:可以借助集合关系来判定: p q p是 q的充分条件 . p q p是 q的充分不必要条件 . 例: “ 福州人” “ 福建人” 集合 “ 福州人”“ 福建人” 命题 “福州人”是“福建人”的充分条件 . “福建人”是“福州人”的必要条件 . 四、复合命题真假的表格. 1、2、3、

五、全称量词、存在量词 1、全称命题 p :x M , P x 2、特称命题 p : x0M , P x0 它的否定 p :x M , P x0它的否定 p : x M , P x 例:“ 四边形都有外接圆” P :四边形ABCD ,都有A、B、C、D共圆.全称命题 P : 四边形 A1 B1C1D1其中A1 + C1 =200,其中 A、 B、 C、D不共圆 . 特称命题 “存在 x0R,使 x02 +2x020 " P : x0R,使 x02 +2x020 P : x R, x2 +2x 20

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

中考数学复习专题二次函数知识点归纳

二次函数知识点归纳 一、二次函数概念 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: o o 结论:a 的绝对值越大,抛物线的开口越小。 总结: 2. 2y ax c =+的性质: 结论:上加下减。 a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()00, y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下 ()00, y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.

总结: 3. ()2 y a x h =-的性质: 结论:左加右减。 总结: 4. ()2 y a x h k =-+的性质: 总结: a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0c , y 轴 0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下 ()0c , y 轴 0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c . a 的符号 开口方向 顶点坐标 对称轴 性质 0a > 向上 ()0h , X=h x h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h , X=h x h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0. a 的符号 开口方向 顶点坐标 对称轴 性质

集合与常用逻辑用语知识点汇总

集合与常用逻辑用语知识点汇总 知识点一集合的概念与运算 (一)、集合的基本概念 1.集合中元素的三个特性:确定性、互异性、无序性. 2.元素与集合的关系是属于或不属于,符号分别为∈和?. 3.集合的三种表示方法:列举法、描述法、图示法. 4.常用数集的符号:实数集记作R;有理数集记作Q;整数集记作Z; 自然数集记作N;正整数集记作*N或 N . + A B (四)、集合关系与运算的重要结论 1.若有限集A中有n个元素,则A的子集有个,真子集有-1个. n 2n2

2.传递性:A ?B ,B ?C ,则A ?C . 3.A ∪B =A ?B ?A ; A ∩B =A ?A ?B . 4.?U (A ∪B )=(?U A )∩(?U B );?U (A ∩B )=(?U A )∪(?U B ) . 知识点二 命题及其关系、充分条件与必要条件 (一)、命题的定义 可以判断真假用文字或符号表述的语句叫做命题。其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。 (二)、四种命题及其相互关系 1.四种命题间的关系 2.四种命题的真假关系 (1)两个命题互为逆否命题,它们具有相同的真假性. (2)两个命题互为逆命题或否命题,它们的真假性无关. (三)、充分条件、必要条件与充要条件的定义 1.若p q ;则p 是q 的充分条件,q 是p 的必要条件。 2.若p q 且q p,则p 是q 的充要条件。 3.若有p q ,无q p ,则称p 是q 的充分不必要条件。 4.若有q p , 无p q ,则称p 是q 的必要不充分条件。 5.若无p q 且无q p,则p 是q 的非充分非必要条件。 (四)、充分、必要、充要条件的判断方法 1.定义法 根据p q ,q p 进行判断,适用于定义、定理判断性问题。 2.转化法 根据一个命题与其逆否命题的等价性,把判断、定义的命题转化为其逆否命题再进行判断, 适用于条件和结论带有否定词语的命 ???????????

集合与函数知识点归纳

集合与函数板块公式 1.集合的运算: (1)交集:A x x B A ∈=|{ 且}B x ∈,即集合B A ,的所有公共元素构成的集合. (2)并集:A x x B A ∈=|{ 或}B x ∈,即集合B A ,的所有元素构成的集合. (3)补集:?U ∈=x x A |{U 且}A x ?,即除A 中元素需补充的所有元素的集合. 2.集合中的关系: (1)元素与集合的关系:属于或不属于关系.(∈或?) (2)集合与集合关系:A 是B 的子集记为B A ?.(开口朝范围大的集合) (3)含有n 个元素的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个. 3.集合表示法:列举法、描述法、区间法、特殊字母(Venn 图象法、数轴表示) 4.常用函数定义域的求法(结果用集合的表示方法表示) (1))(x f y =,0)(≥x f (2))(log x f y a =,0)(>x f (3))()(x g x f y = ,0)(≠x g (4))(tan x f y =,∈+≠k k x f (,2 )(π π)Z 5.函数的单调性 (1)定义法: ①增函数:任意D x x ∈21,且21x x <,都有)()(21x f x f < ②减函数:任意D x x ∈21,且21x x <,都有)()(21x f x f > (2)定义法变形: ①)(x f 增函数? 0)]()()[(0) ()(2121212 1>--?>--x f x f x x x f x f x x ②)(x f 减函数? 0)]()()[(0) ()(2121212 1<--?<--x f x f x x x f x f x x (3)图象法: ①增函数图象上升; ②减函数图象下降 (4)导数法: ①增函数(增区间):令0)('>x f 解得x 的范围为增区间 ②减函数(减区间):令0)('a 为增函数; ②0

基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1. 三、指数函数的图象和性质

二次函数知识点总结及典型题目

二次函数知识点总结及典型题目 一.定义: 一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 二次函数的图象是抛物线,所以也叫抛物线y=ax2+bx+c ;抛物线关于对称轴对称且以对称轴为界,一半图象上坡,另一半图象下坡;其中c 叫二次函数在y 轴上的截距, 即二次函数图象必过(0,c )点. 二.二次函数2ax y =的性质 (1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系. ①当0>a 时?抛物线开口向上?顶点为其最低点; ②当0

常用逻辑用语_知识点+习题+答案

常用逻辑用语知识点 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

人教版高中数学必修一-第二章-基本初等函数知识点总结

人教版高中数学必修一第二章基本初等函 数知识点总结 第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念: 负数没有偶次方根;0的任何次方根都是0,=0。 注意:(1)n a = (2)当 n是奇数时a = ,当 n 是偶数时,0 ||,0 a a a a a ≥?==?-∈>且 正数的正分数指数幂的意义:_1(0,,,1)m n m n a a m n N n a *= >∈>且 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)(0,,)r s r s a a a a r s R +=>∈ (2)()(0,,)r s rs a a a r s R =>∈ (3)(b)(0,0,)r r r a a b a b r R =>>∈ 注意:在化简过程中,偶数不能轻易约分;如122 [(1]11≠- (二)指数函数及其性质 1、指数函数的概念:一般地,函数x y a = 叫做指数函数,其中x是自变量,函数的定义域为R. 注意:指数函数的底数的取值范围,底数不能是负数、零和1.即 a>0且a ≠1 2a>1

注意: 指数增长模型:y =N(1+p)指数型函数: y=ka3 考点:(1)ab =N, 当b>0时,a,N 在1的同侧;当b <0时,a,N 在1的 异侧。 (2)指数函数的单调性由底数决定的,底数不明确的时候要进行讨论。掌握利用单调性比较 幂的大小,同底找对应的指数函数,底数不同指数也不同插进1(=a 0)进行传递或者利用(1)的知识。 (3)求指数型函数的定义域可将底数去掉只看指数的式子,值域求法用单调性。 (4)分辨不同底的指数函数图象利用a 1=a,用x=1去截图象得到对应的底数。 (5)指数型函数:y=N(1+p)x 简写:y=ka x 二、对数函数 (一)对数 1.对数的概念:一般地,如果x a N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a — 底数, N — 真数,log a N — 对数式) 说明:1. 注意底数的限制,a>0且a ≠1;2. 真数N>0 3. 注意对数的书写格式. 2、两个重要对数: (1)常用对数:以10为底的对数, 10log lg N N 记为 ; (2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为. 3、对数式与指数式的互化 log x a x N a N =?= 对数式 指数式 对数底数← a → 幂底数 对数← x → 指数 真数← N → 幂 结论:(1)负数和零没有对数 (2)log a a=1, log a 1=0 特别地, l g10=1, lg1=0 , lne=1, l n1=0

人教版初三数学二次函数知识点及难点总结

初三数学二次函数知识点总结 二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 1、决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),对称轴在y轴左;因为对称轴在左边则对称轴小于0,也就是- b/2a0,所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右. 事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值.可通过对二次函数求导得到. 2、决定二次函数图像与y轴交点的因素 常数项c决定二次函数图像与y轴交点. 二次函数图像与y轴交于(0,c) 一、二次函数概念: 1.二次函数的概念:一般地,形如2 =++(a b c y ax bx c ,,是常数,0 a≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0 a≠,而b c,可以为零.二次函数的定义域是全体实数. 2. 二次函数2 =++的结构特征: y ax bx c ⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2. ⑵a b c ,,是常数,a是二次项系数,b是一次项系数,c是常数项.

二、二次函数的基本形式 1. 二次函数基本形式:2 =的性质: y ax a 的绝对值越大,抛物线的开口越小。Array 2. 2 =+的性质:上加下减。 y ax c

高中数学集合与函数的概念知识点归纳与常考题型专题练习(附解析)

高中数学集合与函数的概念 知识点归纳与常考题型专题练习(附解析) 知识点: 第一章集合与函数概念 1.1 集合 1.1.1集合的含义与表示 【知识要点】 1、集合的含义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。 2、集合的中元素的三个特性 (1)元素的确定性;(2)元素的互异性;(3)元素的无序性 2、“属于”的概念 我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a?A 3、常用数集及其记法 非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R 4、集合的表示法 (1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 (2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(Venn图) 1.1.2 集合间的基本关系 【知识要点】 1、“包含”关系——子集 一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说 这两个集合有包含关系,称集合A为集合B的子集,记作A?B 2、“相等”关系 如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合A等于集合B,即:A=B A B B A 且 ??? 3、真子集 如果A?B,且A≠B那就说集合A是集合B的真子集,记作A?B(或B?A) 4、空集 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集. 1.1.3 集合的基本运算

二次函数知识点汇总(全)

二次函数知识点(第一讲) 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数() 2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方 向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为: 顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数2y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有

10基本初等函数知识点总结

基本初等函数知识点总结 一、指数函数的概念 (1)、指数函数的定义 一般地,函数x y a =(0a >,且1a ≠)叫做指数函数,其中x 是自变量,函数的定义域是R 。 (2)、因为指数的概念已经扩充到有理数和无理数,所以在底数0a >且1a ≠的前提下,x R ∈。 (3)、指数函数x y a =(0a >且1a ≠)解析式的结构特征 1、底数:大于0且不等于1的常数。 2、指数:自变量x 。 3、系数:1。 二、指数函数的图象与性质 一般地,指数函数x y a =(0a >,且1a ≠)的图象与性质如下表: 三、幂的大小比较方法 比较幂的大小常用方法有:(1)、比差(商)法;(2)、函数单调性法;(3)、中间值法: 要比较A 与B 的大小,先找一个中间值C ,再比较A 与C 、B 与C 的大小,由不等式的传递性得到A 与B 之间的大小。 四、底数对指数函数图象的影响 (1)、对函数值变化快慢的影响 1、当底数1a >时,指数函数x y a =是R 上的增函数,且当0x >时,底数a 的值越大,函数图象越“陡”,说明其函数值增长得越快。 2、当底数01a <<时,指数函数x y a =是R 上的减函数,且当0x <时,底数a 的值越小,函数图象越“陡”,说明其函数值减小得越快。 (2)、对函数图象变化的影响

指数函数x y a =与x y b =的图象的特点: 1、1a b >>时,当0x <时,总有01x x a b <<<;当0x =时,总有1x x a b ==;当 0x >时,总有1x x a b >>。 2、01a b <<<时,当0x <时,总有1x x a b >>;当0x =时,总有1x x a b ==;当 0x >时,总有01x x a b <<<。 五、对数的概念 (1)、对数:一般地,如果x a N =(0a >,且1a ≠),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数。 (2)、常用对数:我们通常把以10为底的对数叫做常用对数,为了简便,N 的常用对数10log N 简记为lg N 。 (3)、自然对数:我们通常把以无理数e ( 2.71828e =)为底的对数称为自然对数, 为了简便,N 的自然对数log e N 简记为ln N 。 六、对数的基本性质 根据对数的定义,对数log a N (0a >,1a ≠)具有如下性质: 1、0和负数没有对数,即0N >; 2、1的对数是0,即log 10a =; 3、底数的对数等于1,即log 1a a =; 4、对数恒等式:如果把b a N =中的b 写成log a N ,则log a N a N =。 七、对数运算性质 如果0a >且1a ≠,0M >,0N >,那么 (1)、()log log log a a a MN M N =+; (2)、log log log a a a M M N N =-; (3)、log log n a a M n M =(n R ∈)。 八、换底公式

相关主题
文本预览
相关文档 最新文档