当前位置:文档之家› 空气采样早期烟雾探测系统简明设计安装手册

空气采样早期烟雾探测系统简明设计安装手册

空气采样早期烟雾探测系统简明设计安装手册
空气采样早期烟雾探测系统简明设计安装手册

空气采样早期烟雾探测系统简明设计安装手册

北京福莫斯特科技发展有限公司(内部资料)

2003年12月

第一章极早期火灾预警系统简介

(1)简介

(2)系统主要特点

(3)主要性能参数

(4)主要场所应用

第二章极早期火灾预警系统设计总则及取样方式

(1)设计总则

(2)早期火灾预警系统在多种应用场所的取样方式

第三章传统消防联接图

第四章多台总体联网图

第五章取样管及其它材料选择

(1)取样管选材

(2)辅助材料

(3)工具料

第六章取样管安装前加工及丈量

(1)切

(2)弯

(3)粘

(4)伸缩缝

(5)毛细管

第七章取样管的固定方法

(1)平面固定

(2)弯头固定

(3)捆扣固定

(4)金属卡固定

(5)拉钢索固定

(6)保护区上方有纵横主梁固定

(7)空调回风口取样固定

(8)空调回风主管道内取样固定

(9)取样管和主机连接方法

第八章设备安装完结后放烟调试

第九章安装工作量

第一章极早期火灾预警系统简介

◆简介

☆概述:极早期烟雾探测系统采用了主动采样的探测方式,先进的激光探测技术以及功能强大的系统应用软件,相对于传统火灾探测报警技术产生了质的飞跃。探测器由抽气泵、过滤器、激光腔(如下图示)、控制电路等组成。抽气泵通过PVC管或钢管所组成的采样管网从被保护区域抽取空气作为样品送入激光腔,在激光腔内利用激光照射空气样品,其中烟雾粒子所造成的散射光被阵列式接收器接收,接收器将光信号转换成电信号后送到探测器的控制电路,信号经处理后转换为烟雾浓度以及设定的报警阈值,产生一个适宜的输出信号。从而发出各级警报,依次为警觉级、行动级、火警1级、火警2级。

◆系统主要特点

☆高灵敏度先进的激光探测技术,比传统探测器高1000倍以上,可提早2-4小时报警。

☆独特的探测方式主动通过PVC管从保护区取样探测,还可直接从设备里取样、安装和调试更简单。

☆超强的网络功能多台机器既可近距离组网也可远距离组网,实现了集中式网络化管理。

☆无源的传输方式保护区域无电源线和信号线,因此防爆,抗强电磁干扰。

☆灵活的兼容能力能与传统的火灾探测报警控制设备兼容。

☆特设黑匣子功能能记录通电、断电、火灾时间、烟雾曲线和系统故障等历史数据;并能通过微机查看或打印,为分清火灾事故责任提供依据。

◆主要性能参数

D.C电源电压 DC18-30V(最佳24V)

机器尺寸400×250×130mm

重量 5公斤

操作温度范围 0-40度

操作湿度范围 0-90%,无凝结

灵敏度范围(obs/m)0.004/%-20%

耗电量 24V/1A

防护面积 1000-2000平方米/台,极限2500平方米

取样管总长 200米,极限300米

取样管外径 25毫米

系统设置在线编辑或PC

通讯接口 RS232/RS485

事件记录采用先进先出原则,记录256次事件

接点输出 5组NO/NC继电器无源输出(警觉级、行动级、

火警1级、火警2级及故障)

◆主要应用场所

☆火灾造成的业务中断会带来不可估量损失的场所;

电信机房、计算机机房、无菌室、电视台、广播电台、电缆隧道、银行、大型自动化调度室☆不宜启动自动灭火装置的场所;

计算机设备、交换机设备、变电柜、模拟飞行器、医疗设备、电子生产车间、图书馆、实验室、要案室、票据室等

☆防爆场所、强电磁和强辐射场所;

军火库、油库、化工设施、加速器、微波室、电视发射塔、雷达站等

☆变通烟雾无法侦测的大面积高眺空间;

大型库房、中厅、室内广场、大型车库、间体化车库等。

☆必须保证建筑物整体美观或所保护的对象价值无法估量的场所;

博物馆、教堂、古建筑物等。

☆需要保证有足够时间撤离人员的场所;

医院、剧场、教堂、车站、学校、监狱等。

第二章极早期火灾预警系统设计总则及取样方式

◆设计总则

√标准采样管是在被保护区内安装外径为25mm的阻燃PVC管。

√为确保通过空气采样系统气流状况通畅,吸气泵排出的气体的气压应与被探测区域的气压相等或略低。

√一台探测器的最大保护范围为2000平方米(H=3-5米),极限2500平方米。在防护等级较高的场所,保护范围应相应减少到500-1000平方米(或1500立方米)。

√取样管上取样孔采用Φ2.5-Φ4.0mm,取样孔之间距1-4m。一般将每根取样管分成三段。如单管长70米,前20m中取样孔为Φ2.5mm。中间30m取样孔为Φ3.00mm,后20米取样孔为Φ3.5mm。依次将取样孔变大,最末端塞为4个Φ4孔,每个取样孔上贴上指示标签。

√取样管上直角弯应尽量避免小弧度,可采用半径大于或等于20cm手工弯制,故选用取样管为阻燃冷弯管。

√取样管路总长度最好小于200米,极限250米(4根×50米、3根×70米、2根×100米),而每路取样管上取样孔的数量最好不超过25个,当只用一根管路时,长度不要超过100米。

√每根管直角弯小于10个。

√实际应用中,每根管路的长度应尽量接近,这样可使空气取样系统内部气流容易平衡。

√若环境要求取样管承受很大的承载力或长时间暴露于强光、极热、极冷的环境中,或是遇到可溶解PVC管气体时,也可以使用ABS管或其他金属管材。

√每个取样孔的间距(即保护半径)最大不应超过8米,管和管之间不大于8米,最小不应少于1米。(见格栅状布管图)

√管网的排列方法可以有多种变化,从而覆盖整个被保护区,然后将采样管与探测器接口连接,采样管壁有一定数量的小孔,这是采样点。系统通过这些采样点将空气样本传递到探测器上,采样管的另一端是末端帽,以平衡不同采样点烟雾灵敏度。

◆早期火灾预警系统在各种应用场所的取样方式

(下列图例为已做工程在AutoCAD上标明方法)

▲电缆隧道、电缆沟

电缆隧道中一般将PVC取样管布置在隧道上方。每台设备出2根PVC管,长度每根最长为100米,合计200米。设备置于电缆沟中,能够保护动力及各种通信电缆。由于现场的多样性,管长适应延长到250米,但必须保证末端放烟设备在120秒之内报警。

▲超净间

超净间中一般要保护三个部分即房间的地板下部和上部回风栅,同时将PVC取样管放置在中央空调的主回风管道的过滤网前。

▲礼堂、剧场

在礼堂或剧场中,观众席上方的天花板顶里有各种中央空调管道及照明电缆等,平时很少有人留守此处,另外舞台上方有各种大功率灯具及吊装灯具电机,应设置早期火灾预警系统。

▲图书馆、档案馆、博物馆

此类型场合发球不宜启动灭火设备场合,必须依靠早期预警系统加以防范。由于其美观要求,可采用PVC管暗装方式布置,即下垂毛细管取样,取样头直径仅为20毫米大小。

▲电缆竖井、桥架、电缆夹层

此类型一般为大型动力电缆。特别是电缆夹层,一般平面面积较大或高度较低内置电缆错落无序,秀难用感温电缆捆扎来测温;另外其配套气体灭火设备一般造价昂贵,所以此类场合属于不能轻易启动灭火设备场合。

▲古建筑类

此类型一般有各种仿古壁画,木质材料也很多,特别是建筑物顶部如果设置感烟探头,体积大影响古建筑内部的美观效果,此场合较适合用早期预警系统。

▲交换机房、控制中心

此类型场合属通讯或控制枢纽,各种设备价格昂贵,当传统感烟探头报警时,设备内部已损坏严重,早期预警系统可有效加以防范。

▲隧道、地铁站

此类型场合一旦有烟雾出现,空气随气流迅速充满空间,易造成人员伤亡,保护对象以电缆为主。

▲各种制药车间

此类型车间一般都设有大型中央空调,保证每小时几十次换气量,一般烟雾很快被稀释,无法达到感烟探头的报警阈值,形同虚设。采用早期预警除天花板采样外,可同时兼顾天花板上方的夹层,另外PVC管道取样还需兼顾各房间内的回风栅。

▲大型体育馆

此类型场合空间过高,无法设传统感烟探头,只能用红外对射,而红外对射灵敏度比感烟探头还低,且一旦有条幅或气球就会挡住红外线形成误报。可将PVC取样管设置在观众席脚下的回风管道内部,同时可将PVC管沿顶部钢梁布设。

▲演播厅、摄影棚

此类场合一般高度超过12米,大功率灯光频繁开启,无法使用感烟探头,经常在空间上部吊起各种道具,无法使用红外对射,它可采用早期预警系统。

▲屏蔽室

屏蔽室中采用普通感烟探头,其各种屏蔽措施繁杂,屏蔽室价值不菲,特别是各种微波设备价值更高,配低廉感烟探头和其保护区物品价值相比不配。早期预警设备放置在屏蔽室钢板外层,通过蜂窝状屏蔽栅网将PVC管路进入屏蔽室对屏蔽室进行六面或五面保护。

第三章传统消防联接图

图示说明:下图通过每台机器内有五个继电器代表四级火警一个故障,通过输入接口模块将继电器信号送到消防二总线,对每个继电器对应的接口模块附于一个地址码供消防主机巡检。每台设备都有RS232口,可直接连接PC机在PC机上通过软件观察和修改一些参数。

针对防火分区要求,主机配接分区器附件可以将烟雾区分到某一根采样管,同时将对应管位置报给消防主机以达到分区灭火要求。

第四章多台总体联网图

系统具有灵活的网络监控方式,利用RS485串口,串接探测器(最多127台)于一台控制模块机并连成一闭合回路,再用RS232接显示器,达成集中监控的目的。每台探测器之间最长1.2公里。

第五章取样管入其它材料选择

◆取样管选材

在有腐蚀性气体及温热交替较大场合宜选用ABS;在管路(四根)较短,弯头总和小于4个场合可以考虑采用UPVC材质;如果管路较长(>4个),可以采用阻燃弯UPVC管,主要是其可以手工弯制弯头减少空气阻力。

选取材料必须配有国家建材质量检测中心的检测报告,其检测报告中注明阻燃指标,以便证明其是难燃自熄材质。

◆辅料选材

如选定阻燃冷弯PVC弯,其配套辅材一般如下表:

◆工具栏

第六章取样管安装前加工及丈量

丈量现场确定取样管弯头数量,所用根数,配接直通数。每根管长3米,配一个直通,每1.0-1.2米配一个托卡。低层辅管可以先辅设后打取样孔,高空辅设必须先打取样孔,取样孔径Φ2.5mm,末端塞用Φ4mm钻头均匀打4个孔,然后粘好取样孔标签。

取样管长度依据设计手册和图纸中注明的长度。

管路处理一般有下列几种:

◆切

用手锯切断,须将锯沫去净。用切刀时注意防止切手。

◆弯

一般取40cm长管将弯管器插入其中(弯管器一端用结实绳子连出,以便弯曲成形后可用力拉出弯管器),将热吹风机对其应弯部位吹加热,加热时要移动,使加热部分大于25cm,加热5-8分钟后可以手工弯曲成半径为20cm圆弧,注意弯曲一定均匀,防止死弯,同时必须保证弯曲后两头成90度角,并防止扭曲不在同一平面。

弯曲半径变化不是全部为半径20cm,如下图两根管平行时,第

一根为R20cm,那么第二根半径就必须是:200-间隙A-25mm,这样

才能保证弯曲平行放置时,外观顺畅美观,但是最小半径不能小于

R10cm,弯管后不要急于抽出弯管器,应稍等温度变低后,再用力

抽出弯管器(通过绳索),如效果不好,可多次反复,成型后备用。

◆粘

粘接管路时应将管路端部外侧清洁干净,均匀涂胶长度为2cm,

再将直通内壁(或三通内壁)均匀涂胶,然后再将两者插入,放置

在平面上静止5分钟以上,以保证粘接后平行不弯曲。

◆伸缩缝

如果在冬天安装管路则夏季来临时管路涨长,容易上或下弯曲

变形,夏天安装易出现在冬季收缩断裂,所以管路必须留有伸缩缝。

一般每2根管长(含6米)留有一个直通不能粘胶,且插入余量如

上图:

◆毛细管

在天花板下方和机柜内部取样时,需用配接毛细管,安装如下

图,毛细管总长小于0.6米。

1)外径Φ8,内径Φ5高压气泵用塑料管。

2)聚四氟堵头

3)电线槽进线Φ15固定头(通用件)

4)金属波纹管Φ15

5)Φ螺母

6)吸气口机加工件

注:三通和2件胶粘,1件和6件、1件和2件属紧密配合。4号件长度小于0.5米。

第七章取样管的固定方法

◆平面固定

平面固定是最通常的方法就是将采样管水平的敷设在房间顶部,具体固定方法需根据境况体结构来定。

水泥混凝土墙:在墙面上用手电钻打一个直径8mm左右的孔,然后用膨胀塞和自攻螺丝把管卡固定。

具体方法见下图:

砖墙也同样可以采用以上方法,最为特别是石灰墙板,由于其密度小,不宜拧螺丝,从以往的安装经验来看可以在石灰墙板上打上直径相对较小的孔然后把胀塞及型号较大的延长攻丝往里拧,这样才能固定好卡托。

◆弯头固定

弯头的固定不能等同直管的方法,需在弯头的两侧分别用卡子加以固定,见下图:

◆捆扣固定

房间天花板上部一般都有吊杆(Φ8-Φ10mm)垂直向下,将取样管的吊杆靠接,采用尼龙扎带交叉十字方法固定较为方便,如下图,如果考虑到取样管长期和吊杆相靠易变形,可在取样管和吊杆之间放置一个托卡。

◆金属卡固定

这种方法和吊顶固定方法有点相同,就是它使用材料不

一样,一般为直径25毫米镀锌金属卡或PVC卡托,具体固

定方法参考右图。此金属卡市场上可采购到。

◆拉钢索固定

在一些高大空间中,上下方钢梁结构无法直接固定采样

管。而每根钢梁之间距离较大(≥2米),

可以采取拉钢索的方式来固定取样管。图示如:

将PVC取样管用尼龙扎带捆在钢丝绳上(距离如每米一个),然后绷紧钢丝绳,再将每根钢梁和PVC管搭接处固定。每根钢丝绳一般不宜超过80米,钢丝绳直径Φ4-Φ6mm。

◆保护区上方有纵横主梁固定:

在许多厂房及大空间仓库中,上方有纵横相间大量主梁,主梁副梁下沿最大可达70cm,一般下沿小于20cm可不采取特殊固定方式,而大于20cm时可采用下列方法固定。

a).主梁和主梁之间必须有1个小升取样管,上升取样管间距3-4米,上升管采用由主

管三通过渡至Φ20取样管,Φ20末端塞上打2个Φ3mm孔,距顶部小于20cm。

b).在主梁形成井状结构时,必须保证每格井中都有一个或几个上升取样管。

c).主梁距离大于4米时可采取在主梁中间吊杆将PVC管托起。

◆空调回风口取样固定

在有中央空调房间,布设取样管时,除按无空调状态而设置采样管外,还应单加一路管道在中央空调回风口,由于此回风口风的正负压不大,可用下述两种方式之一取样。

房间内有多个上回风栅口,应保证回风栅口内有2-3个取样孔,即单孔保护面积小于60平方米,下回风栅、侧回风栅等同。

◆空调回风主管道内取样固定

a)在主空调回风管道内,尺寸一般较大,所采集空气面积比较大,负压较高,须单独采用一台主机仅出一根管,并将主机回风返回空调管道内,取样管图如下:

风口内取样管长度:A×2/3

上下位置:B×1/2

取样孔数20个取样孔密度:(A×2/3)÷20

取样孔径:Φ4mm孔

末端孔径:5个Φmm孔

回风方式:送煤回主管道

b)机器回风管图如下:

风口内回风管长度:A/3

上下位置:B/3

取样管和回风管间距:(A+B)/4

回风口径:直径Φ25mm

口径形状:末端切成斜状,出气方向顺着风向

c)主机内风机调速:

上述安装尺寸定型后,通过回风管道内进行放烟实验,此时可调整取样风机(风机分10档)逐渐从1档增加使取样到最灵敏状态。

◆取样管和主机连接方法

a)管路敷设最后要在设备的上方将几根采样管收拢,以便和机器连接,这当中要注意以下几个细节:

管路收拢后不能直接固定就安插进机器,而是在设备上方大约50cm左右切断管路并固定好,切

断后的管路末端粘上直爱。在粘接直通时要注意只能在

直通上方内侧擦胶,而下方内侧不能擦胶。

b)固定机器时,按测量尺寸把PVC管切好,必须先

将管插进机器后再插入直通管中,取取样管时同样先轻

轻的将管子往设备内按一下使管路从直通中露出后方可

取管,而这几节PVC管和直通及机器之间不能用胶粘连,

在以后设备保养方面减少不必要的麻烦。参见右图:

c)取样管路的打孔:

打取样孔时应注意考虑孔径的直径在3-4mm之间,而末端塞孔由4个Φ4mm孔组成,取样孔的大小由取样管路长短来决定,原则上距设备越远的地方孔径就相应从Φ2.5mm增加到Φ3.0、Φ3.5mm、Φ4.0mm。

把孔方法是用手枪钻直接在采样管上打孔,孔与孔之间的距离应在3-8米,即每一节管至少打1个孔。

第八章设备安装完毕后放烟调试

机器在通电20分钟后,可以进行放烟实验。

a)在每一根管子的末端放烟,机器应在小于等于120S做出反应,这样就可以证明管路的气流是畅通的。

b)在采样管中间释放浓度相对较小的烟雾,机器可在小于120S做出反应。

c)测试阻燃烟,用-220V调压器将电压输出调到0V,插下30W电烙铁,电烙铁发热体部分,绕上Φ1.5mm塑胶电线(非阻燃),将电烙铁放置距取样孔10cm处,缓慢升压到能闻到糊味及少许烟,维护2-3分钟,此时机器应出现警觉,如烟雾加大则上升到行动级、火警1、火警2级。

第九章安装工作量

根据经验,设备安装材料齐全的前提下,一般每台机器需两个工人共花1-2天时间,高空作业时可延长。

崂应2050型环境空气综合采样器操作规程

** 崂应2050型环境空气综合采样器操作规程 发布日期:** 有效版本:第*版第*次修订 受控状态:受控 受控号:* 编制人:* 审核人:* 批准人:*

修订页 注:修订页用修订表的形式说明质量手册各部分修订状态。受控质量手册的持有者应负责在收到修订页后立即将旧页换下。

1 目的 规范使用崂应2050型环境空气综合采样器,保证检测工作顺利进行和仪器正常状态。 2 适用范围 本程序适用于崂应2050型环境空气综合采样器的操作使用及维护。 3 职责 操作人员按照本操作规程操作仪器,对仪器进行日常维护。 4 仪器性能 4.1产品概述:崂应2050型环境空气综合采样器是用于采集大气中总悬浮微粒(TSP、PM10、PM2.5)和各种气体组分(SO2、NO x等)样品的必备仪器。该采样器研制过程中广泛征求了专家及广大用户的意见,应用了当前计算机、传感器及新材料等领域的高新技术,质量可靠、性能稳定、使用寿命长。其技术性能指标符合国家环保部HJ/T 374-2007 《总悬浮颗粒物采样器技术要求及检测方法》和HJ/T 375-2007《环境空气采样器技术要求及检测方法》的规定,并在小型便携、流量稳定住等方面有较大的改进,大大减少了劳动强度,根据JJG 956-2013 《大气采样器》的要求,该采样器属于B 类仪器。 4.2适用范围: 采样器应用溶液吸收法采集环境大气、室内空气中的各种有害气体;采用滤膜称重法捕集环境大气中的总悬浮微粒(TSP)和可吸入微粒(PM10或PM2.5)。可供环保、卫生、劳动、安监、军事、科研、教育等部门用于气态物质和气溶胶的常规及应忽监测。 4.3采样标准: JJG 943- 2011 总悬浮颗粒物采样器 JJG 956-2013 大气采样器 HJ 93-2013 环埂空气粒物(PM10和PM2.5) 采样器枝术要求及检测方法 HJ/T 374-2007 总悬浮颗粒物采样器技术要求及检测方法 HJ/T 375-2007 环境空气采样器技术要求及检测方法 HJ/T 376-2007 24小时恒温自动连续环境空气采样器技术要求及检测方法

空气采样极早期报警系统施工方法

(二)空气采样极早期报警系统施工方法 1、取样管选材 A、选取材料必须配有国家建材质量检测中心的检测报告,其检测报告中注明阻燃指标,以便证明其是难燃自熄材质。 B、在有腐蚀性气体及温热交替较大场合宜选用ABS;在管路(四根)较短,弯头总和小于4个场合可以考虑采用UPVC材质;如果管路较长(>4个),可以采 2、辅料选材 3、取样管安装 (1)一般要求 A、标准采样管是在被保护区内安装外径为25mm的阻燃PVC管。 B、为确保通过空气采样系统气流状况通畅,吸气泵排出的气体的气压应与被探测区域的气压相等或略低。 C、取样管上取样孔采用Φ2.5-Φ4.0mm,取样孔之间距1-4m。一般将每根取样管分成三段。如单管长70米,前20m中取样孔为Φ2.5mm。中间30m取样孔为Φ3.00mm,后20米取样孔为Φ3.5mm。依次将取样孔变大,最末端塞为4个Φ4孔,每个取样孔上贴上指示标签。 D、取样管上直角弯应尽量避免小弧度,可采用半径大于或等于20cm手工弯制,故选用取样管为阻燃冷弯管。 E、取样管路总长度最好小于200米,极限250米(4根×50米、3根×70米、2根×100米),而每路取样管上取样孔的数量最好不超过25个,当只用一根管路时,长度不要超过100米。 F、每根管直角弯小于10个。

G、实际应用中,每根管路的长度应尽量接近,这样可使空气取样系统内部气流容易平衡。 H、若环境要求取样管承受很大的承载力或长时间暴露于强光、极热、极冷的环境中,或是遇到可溶解PVC管气体时,也可以使用ABS管或其他金属管材。 I、每个取样孔的间距(即保护半径)最大不应超过8米,管和管之间不大于8米,最小不应少于1米。 (2)取样管安装前加工及丈量 丈量现场确定取样管弯头数量,所用根数,配接直通数。每根管长3米,配一个直通,每1.0-1.2米配一个托卡。低层辅管可以先辅设后打取样孔,高空辅设必须先打取样孔,取样孔径Φ2.5mm,末端塞用Φ4mm钻头均匀打4个孔,然后粘好取样孔标签。 取样管长度依据设计手册和图纸中注明的长度。 管路处理一般有下列几种: A、切 用手锯切断,须将锯沫去净。用切刀时注意防止切手。 B、弯 一般取40cm长管将弯管器插入其中(弯管器一端用结实绳子连出,以便弯曲成形后可用力拉出弯管器),将热吹风机对其应弯部位吹加热,加热时要移动,使加热部分大于25cm,加热5-8分钟后可以手工弯曲成半径为20cm圆弧,注意弯曲一定均匀,防止死弯,同时必须保证弯曲后两头成90度角,并防止扭曲不在同一平面。 弯曲半径变化不是全部为半径20cm,两根管平行时,第一根为R20cm,那么第二根半径就必须是:200-间隙A-25mm,这样才能保证弯曲平行放置时,外观顺畅美观,但是最小半径不能小于R10cm,弯管后不要急于抽出弯管器,应稍等温度变低后,再用力抽出弯管器(通过绳索),如效果不好,可多次反复,成型后备用。 C、粘 粘接管路时应将管路端部外侧清洁干净,均匀涂胶长度为2cm,再将直通内壁(或三通内壁)均匀涂胶,然后再将两者插入,放置在平面上静止5分钟以上,以保证粘接后平行不弯曲。 D、伸缩缝 如果在冬天安装管路则夏季来临时管路涨长,容易上或下弯曲变形,夏天安装易出现在冬季收缩断裂,所以管路必须留有伸缩缝。一般每2根管长(含6米)留有一个直通不能粘胶。 E、毛细管 在天花板下方和机柜内部取样时,需用配接毛细管,毛细管总长小于0.6米。

完整版崂应2050型环境空气综合采样器操作规程

** 崂应2050 型环境空气综合采样器 操作规程 发布日期: 有效版本:第*版第*次修订 受控状态:受控 编制人:审核人: 批准人:*

注:修订页用修订表的形式说明质量手册各部分修订状态。受控质量手册的持有者应负责在收到修订页后立即将旧页换下。

HJ/T 376-2007 24小时恒温自动连续环境空气采样器技术要求及检测方法 规范使用崂应2050型环境空气综合采样器,保证检测工作顺利进行和仪器正常状 态。 适用范围 本程序适用于崂应2050型环境空气综合采样器的操作使用及维护。 职责 操作人员按照本操作规程操作仪器,对仪器进行日常维护。 仪器性能 4.1产品概述:崂应2050型环境空气综合采样器是用于采集大气中总悬浮微粒( PM 10、PM 2.5)和各种气体组分(SO 2、NO x 等)样品的必备仪器。该采样器研制过程中广泛 征求了专家及广大用户的意见,应用了当前计算机、传感器及新材料等领域的高新技术,质 量可靠、性能稳定、使用寿命长。其技术性能指标符合国家环保部 HJ/T 374-2007《总悬浮 颗粒物采样器技术要求及检测方法》和HJ/T 375-2007《环境空气采样器技术要求及检测方法》 的规定,并在小型便携、流量稳定住等方面有较大的改进,大大减少了劳动强度,根据 956-2013《大气采样器》 的要求,该采样器属于B 类仪器。 4.2适用范围: 采样器应用溶液吸收法采集环境大气、室内空气中的各种有害气体;采用滤膜称重法捕 集环境大气中的总悬浮微粒(TSP )和可吸入微粒(PM 10或PM 2.5)。可供环保、卫生、劳动、 安监、军事、科研、教育等部门用于气态物质和气溶胶的常规及应忽监测。 4.3米样标准: 目的 1 TSP 、 JJG JJG 943- 2011 总悬浮颗粒物采样器 JJG 956-2013 大气采样器 HJ 93-2013 环埂空气粒物(PM 10和PM 2.5)采样器枝术要求及检测方法 HJ/T 374-2007 总悬浮颗粒物采样器技术要求及检测方法 HJ/T 375-2007 环境空气采样器技术要求及检测方法

吸气式空气采样品牌型号大全

吸气式空气采样品牌型号大全 类别品牌型号 一、吸气式空气 采样烟雾探测器 盛赛尔XSS-1000 海湾(1)GST-MICRA空气采样式感烟火灾探测报警器 (2)GST-HSSD空气采样式感烟火灾探测报警器 凯德Kidde (1)53836-K183HART XL探测单元(标准灵敏度) (2)53836-K186HART XL探测单元(高灵敏度) (3) 53836-K182 HART XL显示模块 (4) 53836-K191 HART XL智能界面模块含调制解 调器 (5)53836-K-190 HART XL智能界面模块不含调 制解调器 (6) 53836-K205K-00 HART Mini底部接入型探测 器 (7) 53836-K205KN-00 HART Mini 底部接入型探 测器(网络版) (8) 53836-K205KN-01 HART Mini 顶部接入型探 测器(网络版) 科达士GO-DEX (1) ForeSEE 2000空气采样式双波光烟雾探测器 (2) ForeSEE 500空气采样式双波光烟雾探测器 (3) ForeSEE 501风管采样式双波光烟雾探测器 (4) Fore SEE 500空气采样探测主机 (5) Fore SEE 501空气采样探测主机 (6)Fore SEE 2000空气采样探测主机 福莫斯特FMST (1) FMST-IF4吸气式空气采样烟雾探测器 (2)FMST-SM111 吸气式感烟火灾探测报警器(分区型) (3)FMST-BM101 吸气式感烟火灾探测报警器(标准型) (4)FMST-BM111 吸气式感烟火灾探测报警器(标准型) (5) FMST-SM101 吸气式感烟火灾探测报警器(分区型) (6) FMST-MIN 吸气式感烟火灾探测报警器 (7) FMST-MIN 吸气式感烟火灾探测报警器 (8) FMST-Q280 吸气式感烟火灾探测报警器 (9) FMST-MIC 吸气式感烟火灾探测报警器(简约

空气采样探测器培训

秦山二期工程 VLP-012空气采样探测器培训资料

VLP-012空气采样探测器要符合但不局限于以下标准:1、VLP-012空气采样探测器培训内容: 1)产品简介

2)使用环境 3)主要参数 4)工作原理 5)系统布线 6)系统检查 2、VLP-012空气采样探测器 1) 产品简介 VESDA是一种基于光学空气监测技术的微处理器控制的采样烟雾检测装置。VESDA系统由探测器和简单的PVC管网构成。探测器则由吸气泵、过滤器、激光腔、控制电路卡、显示模块等构成。吸气泵通过PVC管网从受监测的环境中连续采集空气样品送入探测器,空气样品进入激光腔,激光照射空气样品,烟雾粒子造成激光散射,由两个光接收器接收,接收器将光信号转换成电信号后送到探测器的控制电路卡上,信号经处理后转化为烟雾浓度值,该数值以数字和可视图条的方式显示在显示模块上,指示监测区域中烟雾的浓度。 VLP型探测器是感烟探测产品系列中的核心产品,它利用独有的探测原理,其灵敏度范围可达0.005-20%遮光率/米。VLP型探测器能在火灾的极早期阶段,精确地探测出烟雾浓度的变化。VLP-000是基本机型,主机面板为三个白面板,根据配置的显示器(代号为2)、编程器(代号为1),其型号也在VLP-000基本机型上相应的改变。此机型可安装四条采样管,保护区最大面积为2000m2;每条采样管最长不超过50米。该主机在工作时,四条管中任一管出现了达到报警阈值的烟雾,即发出声光报警并以数字和模拟光柱显示出当前烟雾值,但不区分是哪条采样管产生的报警。

VLP-012空气采样探测器具有如下功能特点: ●极早期预警:4级报警覆盖了火灾发生的各个阶段,即发热、冒烟、燃烧、高温。 可以在非常早的阶段就发现火灾前兆。 ●灵敏度高:具有高精度的激光探测器。其探测分辨力高达0.00075%obs/m,比 传统点式探测器高1000倍。 ●安装方便。布管灵活、主动采样,可突破气流、气层屏障,不为环境中的空调 设施的高度及广度所限制。 ●抗干扰性强。不存在电磁干扰问题。 ●可编程设定4级报警阈值,同时具备自学功能。 ●防止误报措施严密。 ●模块化、网络化。VESDA的模块化设计使用户可以根据实际需要合理配置设备, 做到经济合理。每台VESDA均可互相联接或与计算机联接构成网络。探测器、模块都可以作为网络节点在网络上独立工作。VESDA网络可以分为环路或开路形式,当按环路连接时,为容错网络。一个VESDA网络上最多可以有250个节点。网络上各节点间以二芯屏蔽电缆连接,节点的最大距离可达1300米。 ●消防联动控制。VESDA探测器所带的继电器可以和火灾报警设备、故障报警设 备、灭火设施等联动控制,也可以通过开放协议的接口设备与传统报警系统联接。 ●维护量小。其核心部件激光探测器,寿命在10年以上;另一个关键部件吸气泵, 采用了VISION公司的专门技术,连续工作寿命也在10年以上。 ●VESDA配有感温采样头,用于感温探测。感温采样头连接在保护区内采样点上, 平衡司采样头用感温材料封堵,采集不到烟气。当保护区内温度升高到规定温

环境空气采样操作规程

一、采样工作流程 1、接受任务现场监测和采样承担部门的负责人在接到任务后提前通知有关科室配合,质量管理室填写任务传递单,将任务传递至现场监测人员。 2、对监测项目基本情况进行调查现场监测人员认真了解监测对象的生产设备、工艺流程,清楚主要污染源、主要污染物及其排放规律,查看环保措施落实和环保设施运行情况,监控生产负荷,调查现场环境(如:气象、水文、污染源)有关参数和周边环境敏感点,检查监测点位符合性及安全性,搜集与编制技术(监测)报告有关的各种技术资料并做好相关的记录。 3、领取并检查采样所需仪器设备和辅助材料,进行采样前准备现场监测人员根据任务传递单领取采样容器、滤膜,准备现场监测和采样所需的仪器设备、器具、样品标签、现场固定剂等,并完成仪器设备的运行检查。 (1)采样前准备的仪器设备和辅助材料 包括:采样器、风速风向仪、气温气压计、GPS吸收瓶(内装配置好的吸收液,装箱,含空白、平行)、滤膜(含空白和备用膜)、镊子、凡士林、剪刀、手套、封口膜、电池、原始记录单、交接单、样品标签和笔等相关仪器物品。 (2)仪器设备的运行检查在领用时,要检查并填写仪器的使用记录,尤其检查采样器流量是否需要校准,并对采样器进行气密性检查。 (3)现场采样前的准备 1)复核现场工况,是否适宜进行采样; 2)观测现场风速风向、局地流场、大气稳定度等气候条件,确定监测点位置; 3)按要求连接采样系统,并检查连接是否正确; 4)气密性检查,检查采样系统是否有漏气现象。 4、现场采样 (1)气态污染物采样 1)将气样捕集装置串联到采样系统中,核对样品编号,并将采样流量调至所需的采样流量,开始采样。记录采样流量、开始采样时间、气样温度、压力等参数。气样温度和压力可分别用温度计和气压表进行同步现场测量。 2)采样结束后,取下样品,将气体捕集装置进、出气口密封,记录采样流量、采样结束时间、气样温度、压力等参数。按相应项目的标准监测分析方法要求运送和保存待测样品。 (2)颗粒物采样 1)打开采样头顶盖,取出滤膜夹,用清洁干布擦掉采样头内滤膜夹及滤膜支持网表面上的灰尘,将采样滤膜毛面向上,平放在滤膜支持网上。同时核查滤膜编号,放上滤膜夹,安好采样头顶盖。启动采样器进行采样。记录采样流量、开始采样时间、温度和压力等参数。 2)采样结束后,取下滤膜夹,用镊子轻轻夹住滤膜边缘,取下样品滤膜,并检查在采样过程中滤膜是否有破裂现象,或滤膜上尘的边缘轮廓不清晰的现象。若有,则该样品膜作废,需重新采样。确认无破裂后,将滤膜的采样面向里对折两次放入与样品膜编号相同的滤膜袋(盒)中。记录采样结束时间、采样流量、温度和压力等参数。 5、采样记录相关事项 环境空气质量采样记录包括:监测项目、样品批号、采样点位、采样日期、采样时间(开始、结束)、样品编号、气温、大气压、采样流量、采样体积、天气状况、风速、风向、采样人、审核人。 填写采样记录注意事项:

空气采样探测器设计方案

空气采样探测器设计方案 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目~单层高度20米以上~考虑到防火要求~因空间高~不宜采用普通点型火灾探测设备~为达到暗室高大空间的火灾防护能力~最大限度的减少~避免火灾隐患~确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术~卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络~可以通过监控微机对全部前端探测器进行编程~监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 , 《火灾自动报警系统设计规范,GB50116,98,》 , 《火灾自动报警系统施工及验收规范,GB 50166,92,》 , 《火灾报警器通用技术条件,GB4717,1993,》 , 《消防联动控制设备通用技术条件 GB16806,1997》 , 《VESDA System Design Manual Version 2.2》,Vision公司 设计手册, , 《VESDA设计规范2002》,北京华脉金威公司企业标准, , 《VESDA施工及验收规范2002》,北京华脉金威公司企业标准, 三、 VESDA产品功能及介绍 3.1. 综述

VESDA——VERY EARLY SMOKE DETECTION APPARATUS~中文翻译为:极早期的烟雾探测设备~这是根据产品的功能而起的名字。而根据其原理特点~也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球~并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉~成为保障高价值财产和重要设备设施安全的第一选择。 3.2. 燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟,阴燃,阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾~发出警报~此时火情所造成巨大的经济和财产损失已不可避免。请注意:在此之前~不可见烟阶段给我们提供了充裕的时间~VESDA可以及早探测险情~并控制火情的发生和曼延。

环境空气采样

第一章环境空气和废气 第一节环境空气采样 一、填空题 1.总悬浮颗粒物(TSP)是指能悬浮在空气中,空气动力学当量直径≤ 100 μm的颗粒物。可吸 入颗粒物(PM10)是指悬浮在空气中,空气动力学当量直径≤ 10 μm的颗粒物。 2.氮氧化物是指空气中主要以一氧化氮和二氧化氮形式存在的氮的氧化物的总称。3.从环境空气监测仪器采样口或监测光束到附近最高障碍物之间的距离,至少是该障碍物高出采样口或监测光束距离的两倍以上。 4.气态污染物的直接采样法包括注射器采样、采气袋采样和固定容器法采样。 5.气态污染物的有动力采样法包括:溶液吸收法、填充柱采样法和低温冷凝浓缩法。 6.影响空气中污染物浓度分布和存在形态的气象参数主要有风速、风向、温度、湿度、压力、降水以及太阳辐射等。 7.环境空气中颗粒物的采样方法主要有:滤料法和自然沉降法。 8.在环境空气采样期间,应记录采样流量、时间、气样温度和压力等参数。 9.在环境空气颗粒物采样时,采样前应确认采样滤膜无针孔和破损,滤膜的毛面向上;采样后应检查确定滤膜无破裂,滤膜上尘的边缘轮廓清晰,否则该样品膜作废,需要重新采样。10.使用吸附采样管采集环境空气样品时,采样前应做气样中污染物穿透试验,以保证吸收效率或避免样品损失。 11.环境空气24h连续采样时,采样总管气样入口处到采样支管气样入口处之间的长度不得超过 3 m,采样支管的长度应尽可能短,一般不超过 m。 12.在地球表面上约 80 km的空间为均匀混合的空气层,称为大气层。与人类活动关系最密切 的地球表面上空 12 km范围,叫对流层,特别是地球表面上空2km的大气层受人类活动及地形影响很大。 13.一般用于环境空气中二氧化硫采样的多孔玻板吸收瓶(管)的阻力应为± kPa。要求玻板2/3面积上发泡微细而且均匀,边缘无气泡逸出。 14.短时间采集环境空气中二氧化硫样品时,U形玻板吸收管内装10ml吸收液,以 L/min的流量采样;24h连续采样时,多孔玻板吸收管内装50m1吸收液,以~ L/min的流量采样,连续采样24h。

环境空气颗粒物综合采样器操作规程

环境空气颗粒物综合采样器操作规程 1 编制目的 为了规范ZR-3922型环境空气颗粒物综合采样器的操作规程,正确使用仪器,保证检测工作顺利进行,确保操作人员人身安全和设备安全,特编制本操作规程。 2 适用范围 本操作规程适用于本公司ZR-3922型环境空气颗粒物综合采样器。 3 引用文件 《ZR-3922型环境空气颗粒物综合采样器》使用说明书。 4 操作步骤 4.1 工作条件 (a)工作电源:AC(220±10%)V,50Hz。 (b)环境温度:(-20~45)℃。 (c)环境湿度:(0~85)%RH。 (d)电源接地线应良好接地。 (e)野外工作时,应有防雨、雪、尘以及日光暴晒等侵袭的措施。 4.2工作原理 4.2.1 TSP采样 总悬浮颗粒物采样器指能够采集空气动力学当量直径<100μm颗粒物的采样器。其基本原理是:使一定体积的空气恒速通过已知质量的滤膜时,悬浮于空气中的颗粒物被阻留在滤膜上,根据滤膜增加的质量和通过滤膜的空气体积,确定空气中总悬浮颗粒物的质量浓度,并可用于测定颗粒物中的金属、无机盐及有机污染物等组分。 4.2.2 大气采样 采样器是以采样泵抽取样品,气体流过电子流量计,将流量信号送微处理器进行处理。得出瞬时流量并累加采样体积,同时根据采集到的计前温度及计前压力,换算成参比体积(25℃、101.325kPa参比状态的体积,出厂默认)。

后期,可根据采集到的有害气体含量和体积计算其浓度。 4.3 技术指标 表1 采样器的主要技术指标 4.4 操作方法 4.4.1 大气采样 大气采样根据采样时间的不同,可分为短时间采样和24h恒温恒流连续采样。 4.4.2 采样前准备 (a)采样前选择干燥、避阳处,将采样器放置在平稳的三脚支架上。确认电源为交流220V后,接通电源线,打开电源开关,或者利用采样器自身的锂电池供电。查看采样器自检时屏幕是否出现错误提示。若有,应及时修理后方可使用。 (b)干燥器内装入具有充分干燥能力的变色硅胶,数量约占干燥器容积的四分之三,拧紧使之不漏气,放入干燥器槽内。 (c)按HJ/T 375-2007和HJ/T 376-2007标准要求,短时间采样时,使用内装10ml吸收液的多孔玻板吸收瓶。24h恒温恒流连续采样时,采样流量 0.2L/min,使用内装50ml吸收液的大型多孔玻板吸收瓶。

空气采样早期烟雾探测系统简明设计安装手册

空气采样早期烟雾探测系统简明设计安装手册 第一章极早期火灾预警系统简介 (1)简介 (2)系统主要特点 (3)主要性能参数 (4)主要场所应用 第二章极早期火灾预警系统设计总则及取样方式 (1)设计总则 (2)早期火灾预警系统在多种应用场所的取样方式 第三章传统消防联接图 第四章多台总体联网图 第五章取样管及其它材料选择 (1)取样管选材 (2)辅助材料 (3)工具料 第六章取样管安装前加工及丈量 (1)切 (2)弯 (3)粘 (4)伸缩缝 (5)毛细管 第七章取样管的固定方法 (1)平面固定 (2)弯头固定 (3)捆扣固定 (4)金属卡固定 (5)拉钢索固定 (6)保护区上方有纵横主梁固定 (7)空调回风口取样固定 (8)空调回风主管道内取样固定 (9)取样管和主机连接方法 第八章设备安装完结后放烟调试 第九章安装工作量

第一章极早期火灾预警系统简介 ◆简介 ☆概述:FMST极早期烟雾探测系统采用了主动采样的探测方式,先进的激光探测技术以及功能强大的系统应用软件,相对于传统火灾探测报警技术产生了质的飞跃。探测器由抽气泵、过滤器、激光腔(如下图示)、控制电路等组成。抽气泵通过PVC管或钢管所组成的采样管网从被保护区域抽取空气作为样品送入激光腔,在激光腔内利用激光照射空气样品,其中烟雾粒子所造成的散射光被阵列式接收器接收,接收器将光信号转换成电信号后送到探测器的控制电路,信号经处理后转换为烟雾浓度以及设定的报警阈值,产生一个适宜的输出信号。从而发出各级警报,依次为警觉级、行动级、火警1级、火警2级。 ◆系统主要特点 ☆高灵敏度先进的激光探测技术,比传统探测器高1000倍以上,可提早2-4小时报警。 ☆独特的探测方式主动通过PVC管从保护区取样探测,还可直接从设备里取样、安装和调试更简单。 ☆超强的网络功能多台机器既可近距离组网也可远距离组网,实现了集中式网络化管理。 ☆无源的传输方式保护区域无电源线和信号线,因此防爆,抗强电磁干扰。 ☆灵活的兼容能力能与传统的火灾探测报警控制设备兼容。 ☆特设黑匣子功能能记录通电、断电、火灾时间、烟雾曲线和系统故障等历史数据;并能通过微机查看或打印,为分清火灾事故责任提供依据。

环境空气采样操作规程

一、采样工作流程 1、接受任务 现场监测和采样承担部门的负责人在接到任务后提前通知有关科室配合,质量管理室填写任务传递单,将任务传递至现场监测人员。 2、对监测项目基本情况进行调查 现场监测人员认真了解监测对象的生产设备、工艺流程,清楚主要污染源、主要污染物及其排放规律,查看环保措施落实和环保设施运行情况,监控生产负荷,调查现场环境(如:气象、水文、污染源)有关参数和周边环境敏感点,检查监测点位符合性及安全性,搜集与编制技术(监测)报告有关的各种技术资料并做好相关的记录。 3、领取并检查采样所需仪器设备和辅助材料,进行采样前准备 现场监测人员根据任务传递单领取采样容器、滤膜,准备现场监测和采样所需的仪器设备、器具、样品标签、现场固定剂等,并完成仪器设备的运行检查。 (1)采样前准备的仪器设备和辅助材料 包括:采样器、风速风向仪、气温气压计、GPS;吸收瓶(内装配置好的吸收液,装箱,含空白、平行)、滤膜(含空白和备用膜)、镊子、凡士林、剪刀、手套、封口膜、电池、原始记录单、交接单、样品标签和笔等相关仪器物品。 (2)仪器设备的运行检查 在领用时,要检查并填写仪器的使用记录,尤其检查采样器流量是否需要校准,并对采样器进行气密性检查。 (3)现场采样前的准备 1)复核现场工况,是否适宜进行采样; 2)观测现场风速风向、局地流场、大气稳定度等气候条件,确定监测点位置; 3)按要求连接采样系统,并检查连接是否正确; 4)气密性检查,检查采样系统是否有漏气现象。 4、现场采样 (1)气态污染物采样

1)将气样捕集装置串联到采样系统中,核对样品编号,并将采样流量调至所需的采样流量,开始采样。记录采样流量、开始采样时间、气样温度、压力等参数。气样温度和压力可分别用温度计和气压表进行同步现场测量。 2)采样结束后,取下样品,将气体捕集装置进、出气口密封,记录采样流量、采样结束时间、气样温度、压力等参数。按相应项目的标准监测分析方法要求运送和保存待测样品。 (2)颗粒物采样 1)打开采样头顶盖,取出滤膜夹,用清洁干布擦掉采样头内滤膜夹及滤膜支持网表面上的灰尘,将采样滤膜毛面向上,平放在滤膜支持网上。同时核查滤膜编号,放上滤膜夹,安好采样头顶盖。启动采样器进行采样。记录采样流量、开始采样时间、温度和压力等参数。 2)采样结束后,取下滤膜夹,用镊子轻轻夹住滤膜边缘,取下样品滤膜,并检查在采样过程中滤膜是否有破裂现象,或滤膜上尘的边缘轮廓不清晰的现象。若有,则该样品膜作废,需重新采样。确认无破裂后,将滤膜的采样面向里对折两次放入与样品膜编号相同的滤膜袋(盒)中。记录采样结束时间、采样流量、温度和压力等参数。 5、采样记录相关事项 环境空气质量采样记录包括:监测项目、样品批号、采样点位、采样日期、采样时间(开始、结束)、样品编号、气温、大气压、采样流量、采样体积、天气状况、风速、风向、采样人、审核人。 填写采样记录注意事项: 1)样品批号和样品种类一定要填写; 2)标况体积一定要计算正确; 3)发生异常情况,备注栏和附加说明处一定要填写清楚; 4)记录单上不能有涂改的痕迹,有错划掉,盖监测人印章。 6、样品转移、交接 工作结束后,现场监测人员应妥善保管原始记录,安全、规范运输样品,及时与样品管理员进行交接并填写交接记录。

空气采样探测器培训

山二期工程 VLP-012空气采样探测器培训资料

VLP-012空气采样探测器要符合但不局限于以下标准: 1、VLP-012空气采样探测器培训容: 1)产品简介 2)使用环境 3)主要参数 4)工作原理 5)系统布线 6)系统检查 2、VLP-012空气采样探测器 1) 产品简介 VESDA是一种基于光学空气监测技术的微处理器控制的采样烟雾检测装置。VESDA系统由探测器和简单的PVC管网构成。探测器则由吸气泵、过滤器、激光腔、控制电路卡、显示模块等构成。吸气泵通过PVC管网从受监测的环境中连续采集空气样品送入探测器,空气样品进入激光腔,激光照射空气样品,烟雾粒子造成激光散射,由两个光接收器接收,接收器将光信号转换成电信号后送到探测器的控制电路卡上,信号经处理后转化为烟雾浓度值,该数值以数字和可视图条的式显示在显示模块上,指示监测区域中烟雾的浓度。 VLP型探测器是感烟探测产品系列中的核心产品,它利用独有的探测原理,其灵敏度围可达0.005-20%遮光率/米。VLP型探测器能在火灾的极早期阶段,精确地探测出烟雾浓度的变化。VLP-000是基本机型,主机面板为三个白面板,根据配置的显示器(代号为2)、编程器(代号为1),其型号也在VLP-000基本机型上相应的

改变。此机型可安装四条采样管,保护区最大面积为2000m2;每条采样管最长不超过50米。该主机在工作时,四条管中任一管出现了达到报警阈值的烟雾,即发出声光报警并以数字和模拟光柱显示出当前烟雾值,但不区分是哪条采样管产生的报警。 VLP-012空气采样探测器具有如下功能特点: ●极早期预警:4级报警覆盖了火灾发生的各个阶段,即发热、冒烟、燃烧、高温。 可以在非常早的阶段就发现火灾前兆。 ●灵敏度高:具有高精度的激光探测器。其探测分辨力高达0.00075%obs/m,比 传统点式探测器高1000倍。 ●安装便。布管灵活、主动采样,可突破气流、气层屏障,不为环境中的空调设 施的高度及广度所限制。 ●抗干扰性强。不存在电磁干扰问题。 ●可编程设定4级报警阈值,同时具备自学功能。 ●防止误报措施密。 ●模块化、网络化。VESDA的模块化设计使用户可以根据实际需要合理配置设备, 做到经济合理。每台VESDA均可互相联接或与计算机联接构成网络。探测器、模块都可以作为网络节点在网络上独立工作。VESDA网络可以分为环路或开路形式,当按环路连接时,为容错网络。一个VESDA网络上最多可以有250个节点。网络上各节点间以二芯屏蔽电缆连接,节点的最大距离可达1300米。 ●消防联动控制。VESDA探测器所带的继电器可以和火灾报警设备、故障报警设 备、灭火设施等联动控制,也可以通过开放协议的接口设备与传统报警系统联接。

空气采样火灾探测系统

空气采样火灾探测系统计算机数据中心解决方案

广东金关安保系统工程有限公司

目录 一.计算机数据中心极早期火灾防范的重要性二.计算机数据中心极早期火灾防范特点 三.传统点式烟雾探测设备的局限性 四.IFD云雾室空气采样火灾探测器`的工作原理五.IFD在计算机数据中心的应用优势 六.IFD网络结构 七.云雾室型与激光型探测器性能比较 八.IFD探测器主要技术指标和参数

一.计算机数据中心极早期火灾防范的重要性 随着社会的发展和进步,以及现代科技及信息产业的飞速发展,人们对书籍、资料和数据(印刷版本、电 子版本、电脑数据库等)的兴趣和需求越来越强烈,已经成为我们日常工作和生活当中的重要组成部分,为我们提供了知识和乐趣、资料和数据以及信息等服务。我们对其的依赖也变得日趋强烈。与过去的情况相比,计算机数据中心的设施越来越先进,功能越来越完备,造价也变得越来越昂贵,所以这些场所内部设施的一次很小的火灾都将造成非常严重的灾害。其中不但包括建筑物及设施本身的损失,而由此引发的包括珍贵的文史图书、资料和数据的损毁以及信息服务中断所带来的损失将是不可估量的。 因此,计算机数据中心的安全,特别是火灾防范,已经变成保障此类场所中有形及无形资产安全,确保服务正常进行的首要问题。但是,传统形式的火灾报警设备已经远远不能达到计算机数据中心这一类物品价值高、设施精密,有些部门还不能间断服务的场合的防护需求,为了计算机数据中心火灾防范问题,必须要有一种比现有设备更加先进,更加灵敏,更加稳定无误报,能够较好的适应这些场所特殊环境的新一代极早期火灾报警探测系统。 二.计算机数据中心极早期火灾防范特点 相对一般意义的火灾防范,计算机数据中心有着自身的特点,主要表现在以下几个方面: 1.易燃物品种类繁多--与过去相比,现代化的计算机数据中心内安置有大量计算机、电源及功能完备、价格昂贵的仪器设备、电线电缆及各种存储介

环境空气检测作业指导书(DOCX 72页)

环境空气检测作业指导书 中铁西北科学研究院有限公司 工程检测试验中心 二〇一五年

目录 一、环境空气氮氧化物的测定 (1) 二、空气质量恶臭的测定 (9) 三、环境空气二氧化硫的测定 (14) 四、环境空气二硫化碳的测定 (22) 五、环境空气一氧化碳的测定 (25) 六、环境空气总悬浮物颗粒的测定 (27) 七、环境空气PM10和PM2.5的测定 (32) 八、硫化氢的测定 (37) 九、环境空气氟化物的测定 (43) 十、环境空气和废气氨的测定纳氏试剂分光光度法 (48) 十一、环境空气氨的测定次氯酸钠-水杨酸分光光度法 (54) 十二、固定污染源废气苯可溶物的测定 (59) 十三、废气铬酸雾的测定 (64) 十四、硫酸雾的测定 (67)

一、环境空气氮氧化物的测定 一、执行标准 环境空气氮氧化物(一氧化氮和二氧化氮)的测定盐酸萘乙二胺分光光度法HJ 479-2009。 二、适用范围 1、本标准适用于环境空气中氮氧化物、二氧化氮、一氧化氮的测定。 2、本标准的方法检出限为0.36μg/10ml 吸收液。当吸收液总体积为10ml,采样体积为24L时,空气中氮氧化物的检出限为0.015mg/m3。当吸收液总体积为 50ml,采样体积288L 时,空气中氮氧化物的检出限为0.006mg/m3,本标准测定环境空气中氮氧化物的测定范围为 0.024 mg/m3~2.0mg/m3。 三、干扰及消除 1、空气中二氧化硫浓度为氮氧化物浓度 30 倍时,对二氧化氮的测定产生负干扰。 2、空气中过氧乙酰硝酸酯(PAN)对二氧化氮的测定产生正干扰。 3、空气中臭氧浓度超过 0.25mg/m3时,对二氧化氮的测定产生负干扰。采样时在采样瓶入口端串接一段(15~20)cm 长的硅橡胶管,可排除干扰。 四、测定原理 空气中的二氧化氮被串联的第一支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。空气中的一氧化氮不与吸收液反应,通过氧化管时被酸性高锰酸钾溶液氧化为二氧化氮,被串联的第二支吸收瓶中的吸收液吸收并反应生成粉红色偶氮染料。生成的偶氮染料在波长 540nm 处的吸光度与二氧化氮的含量成正比。分别测定第一支和第二支吸收瓶中样品的吸光度,计算两支吸收瓶内二氧化氮和一氧化氮的质量浓度,二者之和即为氮氧化物的质量浓度(以二氧化氮计)。 五、仪器设备 1、常用的实验室仪器。 2、分光光度计。 3、空气采样器:流量范围 0.1L/min~1.0L/min。采样流量为 0.4L/min 时,

FMST空气管采样探测器

FMST-IF4和FMST-MIC 吸气式感烟火灾探测报警器的顶级产品 中外技术合作的结晶 可靠的极早期探测并预报火警,对于防止和减少生命财产损失是极为关键的。通常使用的火灾探测报警系统因其灵敏度低、误报率高,仅使用于工业与民用建筑场所。而对于一些重点防火场所、由于业务中断会造成重大损失的场所、不宜启动灭火设备的场所、传统探头无法使用的大面积高眺空间和强电磁场辐射的场所、需要有足够时间撤离人员的场所等,例如电信机房、发电厂、广播电视发射机房、变电所、配电室、计算机房、各种控制指挥中心、图书馆、博物馆、广电中心、会展中心、厂房、仓库、物流库等,传统探测器已不能满足要求。针对这些工程需求,我公司多年前成功地开发出了高灵敏度低误报率的FMST 极早期空气采样烟雾探测系统。 F MST 系统能在如电信机房、计算机房和洁净室这样的干净环境中达到最高的灵敏度。在这种应用中、它能对微小的烟雾迹象发出报警。而在另一个极端,通过自动调节报警阈值,它亦是一种能够适用于肮脏环境中的高灵敏度系统。FMST 系统能在火灾的萌芽阶段发布报警,使人们有充足的时间采取适当的动作,将火患消灭于初始,使您宝贵的财产获得更有效的保护,从而达到“备而不用,防而不消”的最高防火境界。 FMST-IF4吸气式感烟火灾探测报警器 FMST-MIC 吸气式感烟火灾探测报警器 FMST-IF4吸气式感烟火灾探测报警器主机上设四根采样管,FMST-MIC 吸气式感烟火灾探测报警器主机上设一根采样管道。采样管道均为Φ25mmPVC 管,取样管上均Φ2mm -Φ3mm 开采样孔,主机内置抽气泵通过采样孔将现场空气抽到主机内,空气经过过滤后部分进入激光探过激光前向散射原理,收集烟雾粒子造成的散射光线,经过光敏元器件转成脉冲信号,通过计数得到代表烟雾浓度的电参数,从而诊断火灾烟雾。

大气采样作业指导书

大气采样作业指导书(依据标准: 《空气和废气监测分析方法》) 目录 (一)氟化物采集与计算 (二)硫酸盐化速率采集与计算 (三)大气降水采集 (四)二氧化硫溶液富集采样与计算 (五)氮氧化物溶液富集采样与计算 (六)灰尘自然沉降量采集与计算

1、适用范围 本方法适用于环境空气中氟化物的小时浓度和日平均浓度的测定。 2、一般事项 测定方法中共同的一般事项按《空气和废气监测分析方法》中有关规定执行。 3、方法要点 空气中氟化物与浸渍在滤纸上的氢氧化钙反应而被固定,用电极法测定,求得石灰滤纸上氟化物的含量,反映在放置期间空气中氟化物的平均污染水平。 4、器材 4.1石灰滤纸法标准采样装置 4.1.1采样盒:外径13厘米,内径12.6厘米,高2.5厘米(不含盖)的平底 塑料盒,具盖及塑料环状长垫(外径12.5厘米,内径11厘米)。 4.1.2防雨罩:采用盒口直径30厘米、盒高90厘米的搪瓷盒,盒底用铁皮焊 一个直径13厘米、高3厘米的圈,可安装采样盒。 5、操作步骤 5.1取一张石灰滤纸,平铺在平底塑料采样盒底部,用塑料环状长垫压好滤纸 边,再用具有弹性的塑料条沿盒边压紧,将滤纸固定好,盖好盒盖,携至采样点。 5.2采样时将装好石灰滤纸的采样盒的盒盖取下,采样盒装入采样防雨罩的盒

底铁圈内并固定,使石灰滤纸面朝下暴露在空气中。 5.3样品放置时间为七天至一个月。放样品和收样品时应记录核对放样品地 点、采样盒编号及放、收样品时间(月、日、时)。 5.4收样品时,取下采样盒并旋紧盒盖,携回实验室。 6、计算 )/(S3n)3100 氟化物[μgF/(100cm2.d)]=(W-W 式中:W-样品石灰滤纸中氟含量(μg) -空白石灰滤纸中平均氟含量(μg/张) W S-样品滤纸暴露在空气中的面积(cm2) n-样品滤纸在空气中放置的天数,准确至0.1 天。 1、适用范围 本方法适用于环境空气中含硫污染物(主要为二氧化硫)的测定。 2、一般事项 测定方法中共同的一般事项按《空气和废气监测分析方法》中有关规定执行。 3、方法要点 碳酸钾溶液浸渍过的玻璃纤维滤膜嚗露于空气中,与空气中的二氧化硫、硫酸雾、硫化氢等发生反应,生成硫酸盐。测定生成的硫酸盐的含量,计算硫酸盐化速率。其结果以每日在100cm2碱片面积上所含三氧化硫毫克数表示。 4、器材 4.1塑料皿:内径72mm,高10mm。 4.2塑料垫圈:厚1-2mm,内径50mm,外径72mm,能与塑料皿紧密配合。 4.3塑料皿支架:将两块1203120mm聚氯乙烯硬塑料板成900角焊接,下面 再焊接一个高30mm,内径78-80mm的聚氯乙烯外管,外管上钻孔眼,互成1200,各眼距塑料板面15mm,使用时将塑料皿倒装在支架的聚氯乙烯外管内,用三个铜螺栓固定塑料皿。 5、操作步骤 5.1将碱片毛面向下放入塑料皿,用塑料垫圈压好边缘,装在塑料袋中携至 现场,采样时使滤膜面向下固定在塑料皿支架上。

空气采样探测器设计方案

.. w 极早期主动式空气采样感烟探测系统技术方案 一、项目概述 本项目为暗室工程新建项目,单层高度20米以上,考虑到防火要求,因空间高,不宜采用普通点型火灾探测设备,为达到暗室高大空间的火灾防护能力,最大限度的减少,避免火灾隐患,确保整个火车站正常运营状态。我方采用了澳大利亚Vision生产的极早期主动式空气采样感烟探测系统VESDA对大楼火灾系统进行监控。利用VESDA系统先进的探测技术,卓越的探测性能对高大空间提供可靠的保障。系统主要由安装在现场的VESDA标准型探测器和设置在主站房一层消防控制室的集中监控微机组成。整个系统连接成一个网络,可以通过监控微机对全部前端探测器进行编程,监控和维护等工作。 二、方案设计依据 本方案在设计过程中依据了下列相关文件 ?《火灾自动报警系统设计规(GB50116-98)》 ?《火灾自动报警系统施工及验收规(GB 50166-92)》 ?《火灾报警器通用技术条件(GB4717-1993)》 ?《消防联动控制设备通用技术条件 GB16806-1997》 ?《VESDA System Design Manual Version 2.2》(Vision公司设计手册) ?《VESDA设计规2002》(华脉金威公司企业标准) ?《VESDA施工及验收规2002》(华脉金威公司企业标准)

三、VESDA产品功能及介绍 3.1.综述 VESDA——V ERY E ARLY S MOKE D ETECTION A PPARATUS,中文翻译为:极早期的烟雾探测设备,这是根据产品的功能而起的名字。而根据其原理特点,也称其为主动吸气式或采样式烟雾探测器。 澳大利亚Vision公司生产的VESDA的第一代产品早在七十年代就已研制出来了。在1983年就已开始推向全球,并被广泛采用。VESDA以其先进的技术和完善的品质享有最高声誉,成为保障高价值财产和重要设备设施安全的第一选择。 3.2.燃烧过程的认识 火情的发展一般分为四个阶段:不可见烟(阴燃)阶段、可见烟阶段、明火阶段和高温阶段。上图展示了火灾的整个演变过程。传统的火灾报警系 火灾发展趋势与VESDA探测范围示意图 统通常是在可见烟阶段才能探测到烟雾,发出警报,此时火情所造成巨大的经济和财产损失已不可避免。请注意!在此之前,不可见烟阶段给我们提供了充裕的时间,VESDA可以及早探测险情,并控制火情的发生和曼延。

睿士达RESDA--烟雾探测器使用说明书

烟感探测器 使用说明书 上海滇耀精密电子技术有限公司

提到极早期火灾报警,大家第一反应,就是空气采样式的,这样的产品基本采用光电探测,主要用于那些干净的场合,否则容易被水汽、灰尘干扰而误报,灰尘、水汽都属于大颗粒,灰尘粒径一般都在10μM以上,水汽粒径在3-10μM,当然水汽粒径受气压、温度影响很大。目前在空气采样产品中,都是采用滤网来减少灰尘、水汽的干扰,滤网孔径一般为40μM,也有厂家采用20μM。这些滤网对灰尘、低浓度水汽有一定作用,但不能消除水汽、灰尘影响,更不用说消除PM10、PM2.5的影响。 PM2.5主要由烟尘组成,与火灾中产生的烟雾是一样的。一般PM2.5占PM10的比例一般在30%-80%,在采用光电探测烟雾时,空气中PM10综合粒径变大,譬如说综合粒径在1μM以上,而一般的烟雾粒径范围在0.1μM-1μM,因此采用适当的办法,就可以消除或者减少PM10、PM2.5对极早期火灾报警的影响。 滇耀精密推出的高灵敏度烟雾探测器,区别与传统的吸气时烟雾探测器,探测器烟雾探测范围可达到0.001%m/obs-5000%m/obs,采用世界领先的电子滤网技术,有效防止灰尘水汽等非烟雾颗粒的误报,具有极宽的测量范围,特别适用于极早期火灾探测。此外,睿士达(RESDA)烟雾探测器具有485通讯接口(外置转换模块),可以与上位机进行通信,配合专用的软件,可联网实时监控各类信息。该烟雾探测器是一款理想的火灾烟雾报警器。目前,此项技术处于国际领先水准,已经申请了专利。作为市场的亮点,我们以高标准,高要求,为客户提供更好的产品,更优的服务,期待您的惠顾! 一、简介 睿士达RESDA(Reliable Early Smoke Detection Apparatus)烟雾探测器主要用于极早期火灾的探测及报警。其具备如下主要特点:★采用蓝光技术,结合全球领先的电子滤网技术,滤网孔径大小软件可调,自动去除灰尘、水汽等干扰,是目前探测灵敏度最高、防误报能力最强的烟雾探测器。 ★数字语音播放,时间长,语音洪亮、清晰,分为提示音、警告音。(可选声光报警器) ★继电器常开或常闭输出,光电隔离,抗干扰。 ★红外遥控操作。 ★灵敏度高、中、低可设。 ★具备语音自动提示、手动提示功能。

相关主题
文本预览
相关文档 最新文档