当前位置:文档之家› 动能定理练习题(附答案)解析

动能定理练习题(附答案)解析

动能定理练习题(附答案)解析
动能定理练习题(附答案)解析

动能定理练习题(附答案)

1、一质量为1kg 的物体被人用手由静止向上提高1m ,这时物体的速度是2m/s ,求: (1)物体克服重力做功. (2)合外力对物体做功. (3)手对物体做功. 解:

(1) m 由A 到B :

G 10J W mgh =-=-

克服重力做功1G G 10J W W ==克

(2) m 由A 到B ,根据动能定理2:

21

02J 2

W mv ∑=-=

(3) m 由A 到B : G F W W W ∑=+

F 12J W ∴=

2、一个人站在距地面高h = 15m 处,将一个质量为m = 100g 的石块以v 0 = 10m/s 的速度斜向上抛出.

(1)若不计空气阻力,求石块落地时的速度v .

(2)若石块落地时速度的大小为v t = 19m/s ,求石块克服空气阻力做的功W . 解:

(1) m 由A 到B :根据动能定理: 22

1122mgh mv mv =-

20m/s v ∴=

(2) m 由A 到B ,根据动能定理3: 22

t 0

1122

mgh W mv mv -=-

1.95J W ∴=

1 不能写成:G 10J W mgh ==. 在没有特别说明的情况下,G

W 默认解释为重力所做的功,而在这个过程中重

力所做的功为负.

2

也可以简写成:“m :A B →:

k W E ∑=?”,其中k W E ∑=?表示动能定理.

3 此处写W -的原因是题目已明确说明W 是克服空气阻力所做的功.

A

3a 、运动员踢球的平均作用力为200N ,把一个静止的质量为1kg 的球以10m/s 的速度踢出,在水平面上运动60m 后停下. 求运动员对球做的功?

3b 、如果运动员踢球时球以10m/s 迎面飞来,踢出速度仍为10m/s ,则运动员对球做功为多少? 解:

(3a)球由O 到A ,根据动能定理4:

2

01050J 2W mv =-=

(3b)球在运动员踢球的过程中,根据动能定理5:

2211

022

W mv mv =-=

4、在距离地面高为H 处,将质量为m 的小钢球以初速度v 0竖直下抛,落地后,小钢球陷入泥土中的深度为h 求:

(1)求钢球落地时的速度大小v .

(2)泥土对小钢球的阻力是恒力还是变力? (3)求泥土阻力对小钢球所做的功. (4)求泥土对小钢球的平均阻力大小. 解:

(1) m 由A 到B :根据动能定理: 22

1122

mgH mv mv =-

v ∴(2)变力6.

(3) m 由B 到C ,根据动能定理: 2f 1

02mgh W mv +=-

()2

f 012W mv m

g H

h ∴=--+

(3) m 由B 到C :

f cos180W f h =??

4 踢球过程很短,位移也很小,运动员踢球的力又远大于各种阻力,因此忽略阻力功.

5

结果为0,并不是说小球整个过程中动能保持不变,而是动能先转化为了其他形式的能(主要是弹性势能,然后其他形式的能又转化为动能,而前后动能相等.

6 此处无法证明,但可以从以下角度理解:小球刚接触泥土时,泥土对小球的力为0,当小球在泥土中减速时,泥土对小球的力必大于重力mg ,而当小球在泥土中静止时,泥土对小球的力又恰等于重力mg . 因此可以推知,泥土对小球的力为变力.

v m

v 'O A

A B →

v t v v

()

20

22mv mg H h f h

++∴=

5、在水平的冰面上,以大小为F =20N 的水平推力,推着质量m =60kg 的冰车,由静止开始运动. 冰车受到的摩擦力是它对冰面压力的0. 01倍,当冰车前进了s 1=30m 后,撤去推力F ,冰车又前进了一段距离后停止. 取g = 10m/s 2. 求: (1)撤去推力F 时的速度大小. (2)冰车运动的总路程s . 解:

(1) m 由1状态到2状态:根据动能定理7: 2111

cos0cos18002Fs mgs mv μ

+=-

3.74m/s v ∴=

(2) m 由1状态到3状态8:根据动能定理:

1cos0cos18000Fs mgs μ+=-

100m s ∴=

6、如图所示,光滑1/4圆弧半径为0.8m ,有一质量为1.0kg 的物体自A 点从静止开始下滑到B 点,然后沿水平面前进4m ,到达C 点停止. 求: (1)在物体沿水平运动中摩擦力做的功. (2)物体与水平面间的动摩擦因数. 解: (1) m 由A 到C 9:根据动能定理: f 00mgR W +=- f 8J W mgR ∴=-=-

(2) m 由B 到C :

f cos180W m

g x μ=

??

7

8 也可以用第二段来算2

s ,然后将两段位移加起来. 计算过程如下:

m 由2状态到3状态:根据动能定理: 221cos18002

mgs mv μ=-

270m s ∴=

则总位移12100m s s s =+=. 9

也可以分段计算,计算过程略.

f

A

0.2μ∴=

7、粗糙的1/4圆弧的半径为0.45m ,有一质量为0.2kg 的物体自最高点A 从静止开始下滑到圆弧最低点B 时,然后沿水平面前进0.4m 到达C 点停止. 设物体与轨道间的动摩擦因数为0.5 (g = 10m/s 2

),求: (1)物体到达B 点时的速度大小.

(2)物体在圆弧轨道上克服摩擦力所做的功. 解:

(1) m 由B 到C :根据动能定理: 2B

1cos18002

mg l mv μ??=-

B 2m/s v ∴=

(2) m 由A 到B :根据动能定理: 2

f B 102mgR W mv +=-

f 0.5J W ∴=-

克服摩擦力做功f 0.5J W W ==克f

8、质量为m 的物体从高为h 的斜面上由静止开始下滑,经过一段水平距离后停止,测得始点与终点的水平距离为s ,物体跟斜面和水平面间的动摩擦因数相同,求证:h

s

μ=. 证:

设斜面长为l ,斜面倾角为θ,物体在斜面上运动的水平位移为1s ,在水平面上运动的位移为2s ,如图所示10.

m 由A 到B :根据动能定理:

2cos cos180cos18000mgh mg l mgs μθμ+??+?=-

又1cos l s θ=、12s s s =+ 则11:

10

11 具体计算过程如下: 由1cos l s θ=,得:

12cos180cos18000mgh mg s mgs μμ+??+?=-

()120mgh mg s s μ-?+=

由12s s s =+,得:

0mgh mgs

μ-=

A

0h s μ-=

即:

h s

μ=

证毕.

9、质量为m 的物体从高为h 的斜面顶端自静止开始滑下,最后停在平面上的B 点. 若该物体从斜面的顶端以初速度v 0沿斜面滑下,则停在平面上的C 点. 已知AB = BC ,求物体在斜面上克服摩擦力做的功. 解:

设斜面长为l ,AB 和BC 之间的距离均为s ,物体在斜面上摩擦力做功为f W .

m 由O 到B :根据动能定理:

f 2cos18000mgh W f s ++??=-

m 由O 到C :根据动能定理:

2

f 20

12cos18002

mgh W f s mv ++??=- 2

f 012

W mv mgh ∴=-

克服摩擦力做功2

f 012

W W mgh mv ==-克f

10、汽车质量为m = 2×103kg ,沿平直的路面以恒定功率20kW 由静止出发,经过60s ,汽车达到最大速度20m/s. 设汽车受到的阻力恒定. 求: (1)阻力的大小.

(2)这一过程牵引力所做的功. (3)这一过程汽车行驶的距离. 解12:

(1)汽车速度v 达最大m v 时,有F f =,故: m m P F v f v =?=?

1000N f ∴= (2)汽车由静止到达最大速度的过程中:

6F 1.210J W P t =?

=?

即:

0h s μ-=

12

由于种种原因,此题给出的数据并不合适,但并不妨碍使用动能定理对其进行求解. f

(2)汽车由静止到达最大速度的过程中,由动能定理:

2

F m 1cos18002

W f l mv +??=-

800m l ∴=

11.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。一小球自A 点起由静止开始沿轨道下滑。已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。求 (1)小球运动到B 点时的动能;

(2)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大? (3)小球下滑到距水平轨道的高度为R 2

1

时速度的大小和方向; 解:

(1)m :A →B 过程:∵动能定理

2

B 102

mgR mv =-

2

KB B 12

E mv mgR ∴=

= ① (2) m :在圆弧B 点:∵牛二律

2B

B v N mg m R -= ②

将①代入,解得 N B =3mg 在C 点:N C =mg

(3) m :A →D :∵动能定理 21

1022

D mgR mv =- D v ∴=30.

12.固定的轨道ABC 如图所示,其中水平轨道AB 与半径为R /4的光滑圆弧轨道BC 相连接,AB 与圆弧相切于B 点。质量为m 的小物块静止在水一平轨道上的P 点,它与水平轨道间的动摩擦因数为μ=0.25,PB =2R 。用大小等于2mg 的水平恒力推动小物块,当小物块运动到B 点时,立即撤去推力(小物块可视为质点)

(1)求小物块沿圆弧轨道上升后,可能达到的最大高度H ; (2)如果水平轨道AB 足够长,试确定小物块最终停在何处? 解:

(1)13 m :P →B ,根据动能定理:

13

也可以整体求解,解法如下:

m :B →C

2200F R f R mgH ?-?-=- 其中:F =2mg ,f =μmg

∴ 3.5H R =

B

C

B

R/ C

D

()2

11202

F f R mv -=

- 其中:F =2mg ,f =μmg

∴ v 2

1=7Rg

m :B →C ,根据动能定理:

22

211122

mgR mv mv -=-

∴ v 22=5Rg

m :C 点竖直上抛,根据动能定理:

2

2

102

mgh mv -=- ∴ h =2.5R

∴ H=h +R =3.5R

(2)物块从H 返回A 点,根据动能定理:

mgH -μmgs =0-0 ∴ s =14R

小物块最终停在B 右侧14R 处

13.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。一质量为m 的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。(g 为重力加速度)

(1)要使物块能恰好通过圆轨道最高点,求物块初始位置相对于圆形轨道底部的高度h 多大; (2)要求物块能通过圆轨道最高点,且在最高点与轨道间的压力不能超过5mg 。求物块初始位置相对于圆形轨道底部的高度h 的取值范围。 解:

(1) m :A →B →C 过程:根据动能定理: 21

(2)02

mg h R mv -=- ① 物块能通过最高点,轨道压力N =0

∵牛顿第二定律 2

v mg m R

= ②

∴ h =2.5R

(2)若在C 点对轨道压力达最大值,则 m :A’→B →C 过程:根据动能定理:

2max 2mgh mgR mv '-= ③

物块在最高点C ,轨道压力N =5mg ,∵牛顿第二定律

2

v mg N m R

'+= ④

∴ h =5R

∴ h 的取值范围是:2.55R h R ≤≤

14.倾角为θ=45°的斜面固定于地面,斜面顶端离地面的高度h 0=1m ,斜面底端有一垂直于斜而的固定挡板。在斜面顶端自由释放一质量m =0.09kg 的小物块(视为质点)。小物块与斜面之

间的动摩擦因数μ=0.2。当小物块与挡板碰撞后,将以原速返回。重力加速度g =10m/s 2。试求: (1)小物块与挡板发生第一次碰撞后弹起的高度;

(2)小物块从开始下落到最终停在挡板处的过程中,小物块的总路程。 解: (1) 设弹起至B 点,则m :A →C →B 过程:根据动能定理:

01

01()cos45()00sin 45sin 45

h h mg h h mg μ--+=-

∴ 100122

m 133

h h h μμ-=

==+ (2) m :从A 到最终停在C 的全过程:根据动能定理:

0cos 4500o mgh mg s μ-?=-

∴ s =

μ

2h

15.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B 、C 分别是两个圆形轨道的最低点,半径R 1=2.0m 、R 2=1.4m 。一个质量为m =1.0kg 的质点小球,从轨道的左侧A 点以v 0=12.0m/s 的初速度沿轨道向右运动,A 、B 间距L 1=6.0m 。小球与水平轨道间的动摩擦因数μ=0.2。两个圆形轨道是光滑的,重力加速度g =10m/s 2。(计算结果小数点后保留一位数字)试求:

(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小; (2)如果小球恰能通过第二个圆形轨道,B 、C 间距L 2是多少; 解:

(1)设m 经圆R 1最高点D 速度v 1,m :A →D 过程:根据动能定理:

22

1110

122

mgL mgR mv mv μ--=- ① m 在R 1最高点D 时,∵牛二律: F +mg =m 1

21

R v ②

由①②得: F =10.0N ③

(2)设m 在R 2最高点E 速度v 2,∵牛二律:

mg =m 2

22

R v ④

m :A →D 过程:根据动能定理:

-μmg (L 1+ L 2)-2mgR 2=21mv 22-2

1mv 2

0 ⑤ 由④⑤得: L 2=12.5m

16.如图所示,半径R =0.4m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的低点A ,一质量m =0.10kg 的小球,以初速度v 0=7.0m/s 在水平地面上自O 点向左做加速度a =3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点。求A 、C 间的距离(取重力加速度g =10m/s 2

)。 解:

m :O →A 过程:根据动能定理:

∵ v 2A =v 2

B -2as AB ∴ v A =5m/s

m :A →B 过程:根据动能定理:

∵ -mg 2R =

21mv 2B -2

1mv 2A ∴ v B =3m/s

m :B →C 过程:根据动能定理:

∵02

122

x v t R gt =???=?? ∴ x =v 0

g

R

4=1.2m

17.如图所示,某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m ,着地时由于存在能量损失,着地后速度变为v =4m/s ,并以此为初速沿水平地面滑行s 2=8m 后停止,已知人与滑板的总质量m =60kg 。求:(空气阻力忽略不计,

g =10m/s 2

(1)人与滑板在水平地面滑行时受到的平均阻力大小; (2)人与滑板离开平台时的水平初速度; (3)着地过程损失的机械能。 解:

(1) 人:B →C 过程:根据动能定理:

∵ 221

cos18002

fs mv =-

∴ f =2

2

2s mv =60N

(2) 人:B →C 过程做平抛运动:

∵02

12

x v t h gt =???=?? ∴ v 0=h

g

s 21

=5m/s (3) 人:B →C 过程:设PGB 0E =:

∵ 22

011(0)()1350J 22E mv mv mgh ?=+-+=-

∴ 1350J E E =?=损

世界数学难题——费马大定理

世界数学难题——费马大定理 费马大定理简介: 当整数n > 2时,关于x, y, z的不定方程 x^n + y^n = z^n. ((x , y) = (x , z) = (y , z) = 1[n是一个奇素数]x>0,y>0,z>0)无整数解。 这个定理,本来又称费马最后定理,由17世纪法国数学家费马提出,而当时人们称之为“定理”,并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁?怀尔斯和他的学生理查?泰勒于1995年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁?怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。 [编辑本段] 理论发展 1637年,费马在阅读丢番图《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.")毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 对很多不同的n,费马定理早被证明了。但数学家对一般情况在首二百年内仍一筹莫展。 1908年,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。 1983年,en:Gerd Faltings证明了Mordell猜测,从而得出当n > 2时(n为整数),只存在有限组互质的a,b,c使得a^n + b^n = c*n。 1986年,Gerhard Frey 提出了“ε-猜想”:若存在a,b,c使得a^n + b^n = c^n,即如果费马大定理是错的,则椭圆曲线y^2 = x(x - a^n)(x + b^n) 会是谷山-志村猜想的一个反例。Frey的猜想随即被Kenneth Ribet证实。此猜想显示了费马大定理与椭圆曲线及模形式的密切关系。 1995年,怀尔斯和泰勒在一特例范围内证明了谷山-志村猜想,Frey的椭圆曲线刚好在这一特例范围内,从而证明了费马大定理。 怀尔斯证明费马大定理的过程亦甚具戏剧性。他用了七年时间,在不为人知的情况下,得出了证明的大部分;然后于1993年6月在一个学术会议上宣布了他的证明,并瞬即成为世界头条。但在审批证明的过程中,专家发现了一个极严重的错误。怀尔斯和泰勒然后用了近一年时间尝试补救,终在1994年9月以一个之前怀尔斯抛弃过的方法得到成功,这部份的证明与岩泽理论有关。他们的证明刊在1995年的数学年刊(en:Annals of Mathematics)之上。 1:欧拉证明了n=3的情形,用的是唯一因子分解定理。 2:费马自己证明了n=4的情形。 3:1825年,狄利克雷和勒让德证明了n=5的情形,用的是欧拉所用方法的延伸,但避开了唯一因子分解定理。 4:1839年,法国数学家拉梅证明了n=7的情形,他的证明使用了跟7本身结合的很紧

费马定理介绍

()?? ????-+++=222221x a H x H n OB n AO n L += 费马定理 费马原理是光学中最为基础的原理,它在物理学发展的历程中有着至关重要的作用。它用一种新的看法将几何光学的三个基本实验定律(光的反射定律和折射定律、光的独立传播定律光的直线传播定律直线传播)进行统一,并表述了三者的联系。通过研究几何光学问题,能彰显出费马定理的重要性,能更加系统化光学理论。可见通过费马原理推导上述三个基本实验定律,能使我们更加系统的理解光学理论,这对广大学者都有着不可或缺的意义。 费马原理的直观表达:光从空间的一点到另一点的实际路径是沿着光程为极值的路径传播的。或者说, 光沿着光程为极大、极小或者常量的路径传播。 光线从Q 点传播到P 点所需的总时间:?∑∑ =?=?===ndl c t l n c v l t P Q i i i i i i 1111 费马原理:在所有可能的光传播路径中,实际路径所需的时间 取极值。?==01ndl c t P Q δδ 在光传播的所有可能存在的路径中,其实际路径所对应的光程取极致。?==0ndl L P Q δδ ① 直线传播定律:两点间的所有可能连线中,线段最短——光程取极小值。 ② 内椭球面的反射: 椭球面上任一点到两个焦点连线的角平分线即过该点 的面法线,且两线段长度之和相等。 用费马原理导出反射定律 如下图,PQ 为两个介质间的平面反射镜,从A 点发射出的光线照射到PQ 平面上的O 点,经过反射到达B 点。假设光线所处的介质为均匀介质。光线的透射点O 到A 点与反射平面垂足P 的长度为x 。那么点A 到点B 的光程为:

高三物理《动能和动能定理》教材分析

高三物理《动能和动能定理》教材分析高三物理《动能和动能定理》教材分析 考点18 动能和动能定理 考点名片 考点细研究:本考点的命题要点有:(1)动能及动能定理;(2)应用动能定理求解多过程问题;(3)应用动能 定理求解多物体的运动问题。其中考查到的如:2016年 全国卷第20题、2016年浙江高考第18题、2016年天津高考第10题、2016年四川高考第1题、2015年全国卷第17题、2015年海南高考第4题、2015年天津高考第10题、2015年山东高考第23题、2015年浙江高考第23题、2014年福建高考第21题、2014年大纲全国卷第19题、2014年北京高考第22题等。 备考正能量:本考点内容命题题型非常全面,既有 选择题、又有实验题、也有计算题,以中等试题难度为主。常以生产、科技发展为命题背景,可与动力学结合,也可以与电磁学结合考查。预计今后依然会延续这些特点。 一、基础与经典 1.NBA篮球赛非常精彩,吸引了众多观众。比赛中 经常有这样的场面:在临终场0.1s的时候,运动员把球投出且准确命中,获得比赛的胜利。若运动员投篮过程

中对篮球做功为W,出手高度为h1,篮筐的高度为h2,球的质量为m,空气阻力不计,则篮球进筐时的动能为( ) A.mgh1+mgh2-WB.mgh2-mgh1-W C.W+mgh1-mgh2D.W+mgh2-mgh1 答案 C 解析根据动能定理,球获得初动能Ek0的过程有W =Ek0-0,球离开手到进筐时的过程有-mg(h2-h1)=Ek-Ek0,得篮球进筐时的动能Ek=W+mgh1-mgh2,只有选项C正确。 2.如图所示,质量为m的物块,在恒力F的作用下,沿光滑水平面运动,物块通过A点和B点的速度分别是vA和vB,物块由A运动到B点的过程中,力F对物块做的功W为( ) A.Wmv-mv B.W=mv-mv C.W=mv-mv D.由于F的方向未知,W无法求出 答案 B 解析对物块由动能定理得:W=mv-mv,故选项B 正确。 3.质量为10kg的物体,在变力F作用下沿x轴做直

高考物理易错题专题三物理动能与动能定理(含解析)及解析

高考物理易错题专题三物理动能与动能定理(含解析)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)选手放开抓手时的速度大小; (2)选手在传送带上从A运动到B的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】 试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02, v1=5m/s (2)设选手放开抓手时的水平速度为v2,v2=v1cosθ① 选手在传送带上减速过程中 a=-μg② v=v2+at1③④ 匀速运动的时间t2,s-x1=vt2⑤ 选手在传送带上的运动时间t=t1+t2⑥ 联立①②③④⑤⑥得:t=3s (3)由动能定理得W f=mv2-mv22,解得:W f=-360J 故克服摩擦力做功为360J. 考点:动能定理的应用 2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。(1)若设置μ=0,将滑块从A点由静止释放,求滑块从点A运动到点B所用的时间。(2)若滑块在A点以v0=lm/s的初速度沿斜面下滑,最终停止于B点,求μ的取值范围。

费马最后定理的故事

●今年6月间,德国哥庭根大学的大会堂里,500名数学家齐聚,观看普林斯顿大学数学家魏尔斯(Andrew Wiles)领取沃夫斯柯奖。沃夫斯柯是一位德国工业家的名字,他在20世纪初遗赠10万马克设立此一奖项,给予世界上头一个能解决费马最后定理之人。当时10万马克是不小的一笔数目,约等于200万美金,而几个月前由魏尔斯领到时,不过相当5万美金左右,但是这确是近世数学界的盛事,魏尔斯不只是证明了费马最后定理,也替未来的数学带来革命性新发展。费马最后定理的发明者自然是一个叫费马的人。费马(Pierre deFermat)1601年出生在法国西南方小镇。费马并不是一个数学家,他的职业是一名法官。当时为了保持法官立场的公正,通常不鼓励他们出外社交,因此每天晚上费马便钻研在他嗜好的数学之中,悠然自得。在1637年的某一天,费马正在阅读古希腊大数学家戴奥芬多斯的数学译本,忽然灵光乍现,就在书页空白处,写下有名的费马定理。费马定理的内容其实很简单,它只是基于一个方程式(X+Y=Z)。这个方程式当n等于2时,就是人们熟知的毕氏定理,中国数学上所称的勾股弦定理,其内容即直角三角形两边平方和等于其斜边的平方。如32.+42.=52.(9+16=25)。费马当时提出的难题是,当这个方程式(X+Y=Z)的n大于2时,就找不到任何整数来符合这个方程式。例如33.+43.(27+64)=91,但是91却不是任何整体的3次方。费马不仅写下了这个问题,他同时也写道,自己已经发现了证明这个问题的妙法,只是书页的空白处不够大,无法写下证明。结果他至死都没有提出他的证明,却弄得300多年来数学界群贤束手,也使他的难题得到一个费马最后定理的称号。19世纪时,法国的法兰西科学院,曾经分别两度提供金质奖章和300法郎之赏,给予任何可以解决此一难题之人,不过并没有多大进展。20世纪初捐出10万马克奖金的沃夫斯柯,事实上也是一个对费马最后定理着迷的“数痴”,据一些历史学家研究,沃夫斯柯原本一度已打算自杀,但由于对解决费马定理着迷,而放弃求死之心,因此他后来便在遗嘱中捐出巨款,原因是他认为正是费马定理救了他一命。重赏之下必有勇夫,但是解决数学难题却非人人可为。20世纪公认的德国天才数学家希伯特(D. Hilbert)就不愿去碰费马定理,他的理由是自己没那么多时间,而且到头来还可能落得失败的下场。虽然费马定理还是让许多数学家萦怀于心,但是他们看这个难题就有如化学家看炼金术一样,只是一个古老的浪漫梦。秘密钻研7年突破难题最后解决这个世纪难题的魏尔斯,早在1936年他10岁之时,便有着挑战费马定理的浪漫梦想,他在英国桥剑地方的图书馆中读到这个问题,便决心一定要找出证明方法。他学校的老师并不鼓励他浪费时间于这个不可能之事,大学老师也试图劝阻他,最后他进了英国剑桥大学数学研究所,他的指导教授指引他转入数学中比较主流的领域做椭圆曲线。魏尔斯自己也没有料到,这个由古希腊起始的数学研究训练,最后会导致他再回到费马定理之上。1927年,日本数学家谷山丰提出一个讨论椭圆曲线的数学结构,后来在美国普林斯顿大学的日本数学家志村五郎,再将这个结构发展得更为完备。这个被称为“志村—谷山猜想”的数学结构,居然成为化繁为简,通向解决费马定理的绝妙佳径。1984年德国萨兰大学的数学家佛列发展出一种很奇特也很简单的关联,将“志村—谷山猜想”和费马定理扯在一块,佛列提出的关联经过好几位数学家的努力,最后终于证明了如果要证明费马最后定理,可以经由证明“志村—谷山猜想”来完成。魏尔斯是1993年在英国剑桥大学,正式宣布他已解决费马最后定理,在此之前他已秘密的工作达7年之久,原因不只是怕受到公众压力,也害怕其他数学家抄袭他的想法,在这段期间,魏尔斯连和太太去度蜜月中都未能从“附魔”脱身。最后的结果是魏尔斯并不需要证明整个的“志村—谷山猜想”,他只要证明一些特定的椭圆形曲线是具备某种特性。但是这些特定的椭圆曲线还是有无穷多个,因此证明技巧上依然十分困难。魏尔斯基本上利用了数学上常用的归纳法,他的办法有点像推倒骨牌的游戏,如果要推倒无限多张的骨牌,你必须确知的乃是一张骨牌倒下时,一定会碰到的下张骨牌。魏尔斯在1993年6月23日觉得他的证明已十分完整,于是便在剑桥大学牛顿数学研究所的研讨会上正式宣布。300年悬案终有解300多年数学悬案终于解决,不只数学界哗然震惊,数学门墙之外的社会大众亦感

费马大定理公式

储备公式 1.费马大定理(Fermat Last Theore m ): 当2n >时,n n n x y z +=无0xyz ≠的整数解; 当3n =时,3 3 3 x y z +=无0xyz ≠的整数解; 当4n =时,4 4 4 x y z +=无0xyz ≠的整数解; 当5n =时,5 5 5 x y z +=无0xyz ≠的整数解; 当7n =时,7 7 7 x y z +=无0xyz ≠的整数解; (2)n n n x y z n +=> 2.商高方程2 2 2 x y z +=满足(,)(,)(,)1x y y z z x ===,,x y 奇偶性不同的全体本原解为: 22222;;x pq y p q z p q ==-=+其中,p q 满足下面的条件: 0;(,)1;,p q p q p q >>=奇偶性不同 3.Fermat 无穷递降法 4.4n =时,Fermat 大定理证明过程 当4n =时,444 x y z +=无0xyz ≠的整数解; 原理:无穷递降法和毕达哥拉斯三元数组 证明:用反证法。若有正整数解,那么在所有正整数解中,必有一组解 假如存在,,x y z 满足444 x y z +=,且满足(,)(,)(,)1x y y z z x === 初等数论(P99) 定理4:不定方程:442 x y z +=无0xyz ≠的解。 证:用反证法。假若方程有正整数解,那么在全体正整数解中,必有一组解000,,x y z ,使得0z 取得最小值。我们要找出一组正整数解111,,x y z ,满足10z z <,得出矛盾。 (1)必有00(,)1x y =。若不然,就有素数00|,|p x p y 。由此及式442 x y z +=推出 42200|,|p z p z 。因此,2 000000,,x p y p z p 也是方程的正整数解,这和0z 的最小性矛盾。因此,22 000,,x y z 是方程的本原解,00,x y 必为一奇一偶,不妨设02|y ,以及00(,)1z y =

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

第七节 动能和动能定理解析版

第七节动能和动能定理 【基础题】 1.人在距地面h高处抛出一个质量为m的小球,落地时小球的速度为v,不计空气阻力,人对小球做功是() A.mv2 B.mgh+mv2 C.mgh﹣mv2 D.mv2﹣mgh 【答案】D 【解析】对全过程运用动能定理得:mgh+W= ﹣0 解得:W= 故D正确,A、B、C错误.故选D. 【考点精析】本题主要考查了动能定理的综合应用的相关知识点,需要掌握应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷才能正确解答此题. 2. 如图甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F作用下,沿x 轴方向运动,拉力F随物块所在位置坐标的变化关系如图乙所示,图线为半圆。则小物块运动到处时的动能为() A. B. C. D. 【答案】C 【解析】本题考查了动能定理的含义及其理解,通过F-x图像得到总功的表达式。根 动能改变据F-x图像的面积的含义代表其做功,且因为动能定理,合外力做功等于其 量,即末状态的动能大小等于合外力做功即面积大小故选:C

3.质量为60kg的体操运动员,做“单臂大回环”,用一只手抓住单杠,伸展身体,以单杠为轴做圆周运动.如图所示,此过程中,运动员到达最低点时手臂受的拉力至少应为多少?(忽略空气阻力,g=10m/s2)() A.600 N B.2400 N C.3 000 N D.3 600 N 【答案】C 【解析】设人的长度为l,人的重心在人体的中间.最高点的最小速度为零,根据动能定理得:.解得最低点人的速度 v= . 根据牛顿第二定律得,,解得F=5mg=3000N.故C正确,A、B、D错误.故选C. 【考点精析】根据题目的已知条件,利用向心力和动能定理的综合应用的相关知识可以得到问题的答案,需要掌握向心力总是指向圆心,产生向心加速度,向心力只改变线速度的方向,不改变速度的大小;向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力;应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷. 4.如图所示,质量相同的物体分别自斜面AC和BC的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W1和W2,则()

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

高中物理动能与动能定理解析版汇编

高中物理动能与动能定理解析版汇编 一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2. (1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥ 【解析】 【分析】 【详解】 (1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律 由B 到最高点2211 222 B mv mgR mv =+ 由A 到B : 解得A 点的速度为 (2)若小滑块刚好停在C 处,则: 解得A 点的速度为 若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有2 12 h gt = c s v t = 解得

所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥ 2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求: (1)剪断细绳前弹簧的弹性势能E p (2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E (3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。 【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】 (1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有: 0=m 1v 1-m 2v 2 解得 v 1=10m/s 剪断细绳前弹簧的弹性势能为: 22112211 22 p E m v m v = + 解得 E p =19.5J (2)设m 2向右减速运动的最大距离为x ,由动能定理得: -μm 2gx =0-1 2 m 2v 22 解得 x =3m <L =4m 则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。 设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。取向左为正方向。 根据动量定理得: μm 2gt =m 2v 0-(-m 2v 2)

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

动能及动能定理典型例题剖析

动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ. [思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系. [解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时, 物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则 对物体在全过程中应用动能定理:ΣW=ΔEk. mgl·sinα-μmgl·cosα-μmgS2=0 得h-μS1-μS2=0. 式中S1为斜面底端与物体初位置间的水平距离.故 [小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题. 例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=? [思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

费马大定理的启示

“费马大定理”的启示 “设想你进入大厦的第一间房子,里面很黑,一片漆黑,你在家具之间跌跌撞撞,但是你搞清楚了每一件家具所在的位置,最后你经过6个月或者再长些的时间,你找到了开关,拉开了灯,突然整个房间充满光明,你能确切地明白你身在何处。然后,你又进入下一个房间,又在黑暗中摸索了6个月。因此每一次这样的突破,尽管有的时候只是一瞬间的事,有时候是一两天的时间,但它们实际上是之前许多个月在黑暗中跌跌撞撞的最终结果,没有前面的这一切它们是不可能出现的”——1996年3月,维尔斯因证明费马大定理获得沃尔夫奖作为一个数学老师,数学是大多数学生讨厌的学科,而我们教师更多的只是告诉、教会学生就这么用,就这么做。怎么才能让学生不那么讨厌数学呢?我想应该从尊重数学开始。 当我第二次翻看《明朝那些事》时,我不禁又一次感慨:历史原来可以这样写?历史就应该这样写。本着这样的思维,在严谨的数学叙事中加上事件节点人物的历史,可能更有意思一些,最起码,让学生喜欢读,读的有趣味。从而使学生明白伟大的数学家是怎么影响整个世界的。尊重应该从这里开始。 这个念头一直萦绕脑海,直到我无意中打开选修3-1,才鼓舞起余勇,翻找资料,以费马大定理为主线说说几千年来数学家们前仆后继的历史。 首先,我们来看一个公式: 2 2 2z y x= +。 有人说:“这不就是勾股定理吗?直角三角形的两条直角边的平方等于斜边的平方。谁不知道?” 没错我们中国人知道勾股定理十分久远,公元前1100年,西周开国时期,周公与商高讨论测量时,商高就提到过“勾广三,股修四。径隅五”。这段话被记载于《周脾算经》中。而西方记载勾股定理的是哥伦比亚大学图书馆的泥版“普林顿322”大约公元前1900~公元前1600年的事。 但是中国人说的数学严格的说,应该叫算学。我国古代就有丰富的数学典籍[]1注,但是你看这些书籍的章节结构,就不难看出它鲜明的特点——实用。比如:《九章》中的方田、粟米、差分、少广、商功、均输等,就字面意思也能看出它就是为了解决实际问题。 我们中国就是一个实用的民族,就比如勾股定理,你拿去用就可以,不用计较为什么这样,这也就是为什么我们的典籍中很少有公理和定律的原因了。所以在世界主流数学史中,我国数学家是没有太多地位的,说起这个就不得不说有一个让国人气愤的事情,1972年,美国数学史家莫里斯·克莱因的《古今数学思想》[]2注序言里有这么一段话:“为了不让本书内容漫无目的的铺张,所以有些民族的数学我们就自动忽略了,如:日本、玛雅、中国。”他还说:“他们的数学对世界人类的主流思想是没有什么贡献的。”很让人不服气的说法,但是你回到数学历史的主流,不难发现我国的算学,跟世界主流数学的目的就不一样。 言归正传,我们回到古希腊。说道古希腊,就不得不提一个人——毕达哥拉斯。我们引以为豪的勾股定理,在初中的课本中也是用的毕达哥拉斯定理来引入的。毕达哥拉斯定理和勾股定理的区别就在于他们要证明这个结论。从这里你就可以发现东西方数学的区别,西方数学史这种死心眼般的研究精神,完全就是一种剔除了理性的宗教迷狂,是一种不出于实用的目的完全的智力上的比拼竞赛。就是佛教里的“贪嗔痴”!比如那些著名的数学问题:“四色问题”,不就是四种颜色就可以区分出复杂地图的行政区域么,放在我国,知道了就可以,但是在西方就一定要搞清楚为什么?还有“哥德堡七桥问题”,就是不重复的走过七座桥,对中国人来说

相关主题
文本预览
相关文档 最新文档