当前位置:文档之家› 03 车身开发中尺寸的管理

03 车身开发中尺寸的管理

03 车身开发中尺寸的管理
03 车身开发中尺寸的管理

车身尺寸稳定性控制方法

车身尺寸 稳定性控制方法 龚国平(沙济伦博士指导) 2005年11月 奇瑞公司规划设计院

编写本文目的 ?讨论建立车身尺寸稳定性指标的必要性、可行性以及如何实施。 ?介绍车身尺寸稳定性控制方法。 公司目前车身尺寸控制指标 ?目前,公司车身尺寸主要控制指标是IQG值和尺寸符合率(DAR)。 ?这两个指标侧重控制车身尺寸的准确性,也就是精度,但是相对忽视了更重要的一项指标--稳定性。 认识 IQG ?什么是IQG ? 它是法语:Indice Qualide Geometrique 的所写,中文意思是“车身几何质量指数”,它是用来评定钣金零件、分总成及总成重要几何尺寸一致性的一种工具。 ?IQG值是如何计算的? IQG值=所有超差测量特性扣分之和 / 测量特性总数;它的取值范围是0-10之间。 认识尺寸符合率(DAR) ?什么是DAR ? 它是英语:Dimension Accord Rate 的所写,中文意思是“尺寸符合率”,它是用来评定钣金零件、分总成及总成重要几何尺寸符合要求的程度。 ?DAR值是如何计算的? DAR值=未被扣分测量特性之和 / 测量特性总数;它的取值范围是0-1之间。 结论 ?IQG值和尺寸符合率(DAR)都仅仅控制了车身尺寸的准确性或精度,对尺寸的稳定性却没有控制,或仅有很微弱的控制。

?我们迫切地需要一个控制车身尺寸稳定性的指标。 稳定性比准确性更重要 ?为什么这么说? 一个枪手打靶,可能会有如下四种情形: ?很明显,情况1最差,情况4最好。 ?那么情况2和情况3哪一个比较好呢? 2反映了一种准确性或精度,但是它的分散程度很大,3反映了一种稳定性或一致性,但是它偏离目标很大。究竟哪一种情形更好? ?情况3的解决可能仅仅只需要调整一下准心,很容易就解决了问题。 ?情况2呢?必须对打靶所用的枪进行全面检查,详细分析其原因。 ?对于我们的车身尺寸控制(包括调试)也一样。稳定性比准确性更重要。 ?比如说某个测量特性,它的测量结果表明它一直偏离正确位置10mm,怎么办?很容易解决,只需要调整夹具,调过来10mm;就算因特殊原因,不能调整夹具,那改冲压件也可以,会有立竿见影的效果。 ?如果一个测量特性,测量结果表明它在目标值的正负5mm之间波动,这个问题怎么办?通过调夹具能解决吗?通过更改冲压件能解决吗?

汽车车身新材料及其发展新趋势

泡沫合金板 泡沫合金板由粉末合金制成,其特点是密度小,仅为0.4~0.7g/cm3,弹性好,当受力压 缩变形后,可凭自身的弹性恢复原料形状。泡沫合金板种类繁多,除了泡沫铝合金板外,还 有泡沫锌合金、泡沫锡合金、泡沫钢等,可根据不同的需要进行选择。由于泡沫合金板的特 殊性能,特别是出众的低密度、良好的隔热吸振性能,深受汽车制造商的青睐。目前,用泡 沫铝合金制成的零部件有发动机罩、行李箱盖等。 蜂窝夹芯复合板 蜂窝夹芯复合板是两层薄面板中间夹一层厚而极轻的蜂窝组成。根据夹芯材料的不同,可分为纸蜂窝、玻璃布蜂窝、玻璃纤维增强树脂蜂窝、铝蜂窝等;面板可以采用玻璃钢、塑料、铝板和钢板等材料。由于蜂窝夹芯复合板具有轻质、比强度和比刚度高、抗振、隔热、隔音和阻燃等特点,故在汽车车身上获得较多应用,如车身外板、车门、车架、保险杠、座椅框架等。英国发明了一种以聚丙烯作芯,钢板为面板的薄夹层板用以替换钢制车身外板,使零件质量减轻了50%~60%,且易于冲压成型。 工程塑料 与通用塑料相比,工程塑料具有优良的机械性能、电性能、耐化学性、耐热性、耐磨性、尺寸稳定性等特点,且比要取代的金属材料轻、成型时能耗少。二十世纪七十年代起,以软质聚氯乙烯、聚氨酯为主的泡沫类、衬垫类、缓冲材料等塑料在汽车产业中被广泛采用。福特公司开发的LTD试验车,塑料化后的车身取得了轻量化方面的明显成果(见表2)。 中国工程塑料产业普遍存在工艺落后、设备陈旧、规模小、品种少、质量不稳定的状况,而且价格高,缺乏市场竞争力。工程塑料在汽车上的应用仅相当于国外上世纪八十年代的水平。如上海桑塔纳轿车塑料用量仅为2.86kg/辆,红旗CA7228型轿车为2.4kg/辆,而日本轿车均匀为14kg/辆,宝马则更高,为35.64kg/辆。但这种局面将很快被打破,由上海普利特复合材料有限公司投资新建、国内最大的汽车用高性能ABS工程塑料生产基地日前在上海建成投产。此项目引进了世界先进的工程塑料天生线和试验检测仪器等设备,形成了年产15,000吨高性能ABS工程塑料的能力。 高强度纤维复合材料 高强度纤维复合材料,特别是碳纤维复合材料(CFRP),因其质量小,而且具有高强度、高刚性,有良好的耐蠕变与耐腐蚀性,因而是很有前途的汽车用轻量化材料。碳纤维复合材料在汽车上的应用,美国开展的最好。 二十世纪八十年代后期,复合材料车身外覆件得到大量的应用和推广,如发动机罩、翼子板、车门、车顶板、导流罩、车厢后挡板等,甚至出现了全复合材料的卡车驾驶室和轿车车身。据统计,在欧美等国汽车复合材料的用量约占本国复合材料总产量的33%左右,并继续呈增长态势,复合材料作为汽车车身的外覆件来说,无论从设计还是生产制造、应用都已成熟,并已从车身外覆件的使用向汽车的内饰件和结构件方向发展。图2为法国SORA公司为雷诺汽车公司开发的全复合材料轿车车身和重型卡车驾驶室。上海通用柳州汽车公司和东风公司计划推出全复合材料车身的家庭用小轿车。

汽车尺寸参数

1、外形尺寸 外形尺寸包括车长、车宽和车高三方面尺寸。车长即沿汽车长度方向前后两极端之间的距离(mm);车宽即沿汽车宽度方向两侧极端之间的距离(mm);车高是指汽车最高点至地面间的距离(mm),如图中的b、g、h所示。 汽车尺寸参数示意图 a-轴距;b-车长;c-前悬;d-后悬;e-前轮距; f-后轮距;g-车宽;h-车高;j-离地间隙。 2、轴距 轴距是指汽车两轴中心线之间的距离(mm),如上图中的a。对多轴汽车,轴距应从前至后分别注明相邻两轴间距离,总轴距为各轴距之和。 3、轮距 轮距是指汽车同一轴上左右两轮中心面之间的距离(mm),如上图中的e、f。若为双轮胎时,则为同一轴左右双轮中心面之间的距离。 4、前后悬

前悬是指汽车最前端至通过前轴轴线的垂面间的距离(mm),如上图中c;后悬是指汽车最后端至通过后轴轴线的垂面间的距离(mm),如上图中d。 5、最小离地间隙 最小离地间隙是指汽车满载时,汽车最低点至地面的距离(mm),如上图中j 。 汽车主要技术参数反映汽车的技术性能以及适用范围,主要有以下几项: 1、整车参数 1) 外形尺寸:长×高×宽 2) 重量参数:整车自重(千克)、总质量(千克)、载质量(千克)、空载轴荷分配等。 3) 通过性及机动性参数:最小离地间隙(一般为驱动桥壳最底点与地面之间的距离)、前悬、后悬、接近角、离去角、轴距、轮距、最小转弯半径。 4) 容量参数:载质量、座位数、货厢容积、行李厢容积、燃油箱容积等。 5) 性能参数:有最高转速、最大爬坡度、起步加速时间、各挡加速时间、百公里油耗量、制动距离等。 2、发动机参数 1) 发动机型号与生产厂家。 2) 发动机形式:包括冲程数、缸数、汽缸排列方式(直列用"l"表示,v型排列用"v"表示)、汽油机还是柴油机等。 3) 冷却方式:是风冷还是水冷。 4) 性能参数:包括最大功率、最大扭矩以及最低燃料消耗率等。还给出最大功率和最大扭矩时对应发动机转速。 5) 尺寸参数:包括发动机排量、压缩比、缸径×行程、外形尺寸与重量等。 6) 燃油供给方式:是化油器式还是燃油喷射方式。 7) 废气排放控制装置。 3、底盘参数 1) 传动系

汽车车身新材料种类以及当前应用状况

车身新材料种类以及当前应用状况 随着汽车技术的发展,汽车的功能日益完善,汽车的结构越来越复杂,传统的汽车通常由几千个零件组成,现代高级轿车由几万个零部件组成。为满足汽车节能、环保、安全、舒适的要求,实现轻量化、高强度、高性能的目标,构成汽车的材料也发生了巨大的变化。 通常按照材料的成分,将汽车材料分为金属材料和非金属材料两大类。随着汽车技术的发展,未来汽车材料除金属材料、非金属材料外,复合材料和纳米材料也将获得广泛应用。 一.车身新材料的种类 ■ 新型结构材料 1.高强度钢板 从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。现在的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车公司与宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。 美国轿车材料构成 要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。 含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能; 烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之一; 冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,经烤漆后强度可进一步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等; 超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量钛或铌,以保证钢板的深冲性

汽车车身名词解释

汽车名词解释——车身参数 长×宽×高所谓的长宽高就是一部汽车的外型尺寸,通常使用的单位是毫米(mm),具体的测量方法是这样的: 车身长度定义为:汽车长度方向两个极端点间的距离,即从车前保险杆最凸出的位置量起,到车后保险杆最凸出的位置,这两点间的距离。 车身宽度定义为:汽车宽度方向两个极端点间的距离,也就是车身左、右最凸出位置之间的距离。根据业界通用的规则,车身宽度是不包含左、右后视镜伸出的宽度,即后视镜折 叠后的宽度的。 车身高度定义为:从地面算起,到汽车最高点的距离。而所谓最高点,也就是车身顶部 最高的位置,但不包括车顶天线的长度。 轴距汽车的轴距是同侧相邻前后两个车轮的中心点间的距离,即:从前轮中心点到后 轮中心点之间的距离,就是前轮轴与后轮轴之间的距离,简称轴距,单位为毫米(mm)。 根据轴距对汽车进行分类 轴距是反应一部汽车内部空间最重要的参数,根据轴距的大小,国际通用的把轿车分为 如下几类: 微型车:通常指轴距在2400mm以下的车型称为微型车,例如:奇瑞QQ3、长安奔奔、 ,轴距只有1867mm。吉利熊猫等,这些车的轴距都是2340mm左右,更小的有SMART FORTWO 小型车:通常指轴距在2400-2550mm之间的车型称为小型车,例如:本田飞度、丰田威驰、福特嘉年华等。 紧凑型车:通常指轴距在2550-2700mm之间的车型称为紧凑型车,这个级别车型是家用 轿车的主流车型,例如:大众速腾、丰田卡罗拉、福特福克斯、本田思域等。 中型车:通常指轴距在2700-2850mm之间的车型称为中型车,这个级别车型通常是家用 和商务兼用的车型,例如:本田雅阁、丰田凯美瑞、大众迈腾、马自达6睿翼等。 中大型车:通常指轴距在2850-3000mm之间的车型称为中大型车,这个级别车型通常是 商务用车的主流车型,例如:奥迪A6、宝马5系、奔驰E级、沃尔沃S80等。需要说明的是:通常的中大型车轴距都在2900mm左右,不过由于中国人比较喜欢大车,所以很多车型 到中国来都进行了加长,轴距都达到了2950mm以上,个别车型轴距达到了3000mm以上,例如宝马5系的轴距为3028mm,所以在国内,我们到很难见到不加长的中大型车了。

城市轨道车辆车体分析和结构说明

城市轨道车辆车体分析与结构说明 姓名: 学校: 学号: 班级: 内容摘要 文章简要地从车体得结构、材料与车体与限界得关系三个方面分析讨论了车体截面形状得合理性,车体结构形式与车体材料得合理选择以及车体对限界得部分影响。 关键词:车体结构车体材料限界 引言 车体就是车辆中装载乘客得部分,它也就是司机驾驶列车得场所,属车辆得上部结构。其底架下部及车顶上部要安装大量机电设备,构成车辆主体。 车体与乘客得安全与舒适息息相关,故车体就是车辆得重要部件之一。它要承载各种静动载荷、各种振动,适应最大运行速度;还要隔音、减振、隔热、防火,并在事故状态下尽可能保证乘客安全。 一、车体结构 (一)车体得形状分析 在我们分析研究车体时,首先我们要对车体有一个比较宏观得把握。那么车体首先给人得第一印象就就是它得形状。我们通常见到得车体,其横截面都就是方形得,顶部就是个圆弧。那为什么就是这种形状而不就是别得形状呢? 我们先来假设一下,瞧别得形状就是否可行。我们知道,在周长相等得情况下,圆得面积就是最大得。那我们把车体做成一个圆柱就是否可行呢? 对于货运车,货物就是可以有效利用所有得有效空间得。但就是城市轨道交通主要就是用于客运得。人不同于货物,人不可能堆叠起来,不可能使车辆得空间利用率达到最大,因而用圆形车体就是毫无意义得。 同时,圆形车体对于加工墙体与车顶都带来了极大得难度,对侧墙与车顶得设备安装增加了很大难度。与此同时,这样形状得使得车辆限界增大,对道路得要求更高。因此不仅对施工增加了难度,还使得施工得成本增大。 综上所述,这种百害而无一利得形状被抛弃,而使用了现在得车体形状。圆弧得顶更好地契合设备限界,竖直得墙更符合其应用,也更容易加工。 (二)车体得主要组成 1、车顶 车体外顶板两侧有两个小圆弧,这个部分采用中空截面挤压铝型材,中部得大圆弧部分为带有纵向加强杆件挤压成型得车顶板。客室内顶板由中间得平板与平板两侧得多孔通风口板这三个部分组成。 2、侧墙、端墙

白车身尺寸控制过程中关键功能测点的选择和管理

白车身尺寸控制过程中关键功能测点的选择和管理 Choose and manage of key function spot in BIW dimension control process 作者:刘杰,20600029,宝骏基地车身车间; Writer:Liujie,20600029,BaoJun base body shop; 摘要: 本文对白车身整车尺寸测量过程中关键功能测点的选择和优化的原则进行了一些总结,对于关键功能测点的管理和尺寸质量提升提出了一些建议和方法。 Abstract: This article summarized the principle for choose and optimize of key function spot in BIW dimension control process, and stated some suggest and method for management of key function spot and promotion of dimension and quality. 关键词:白车身,关键功能测点,选择,管理; Key word:BIW,key function spot,choose,manage; 1前言 现代汽车工业中车身制造的特点就是制造系统庞大,往往包括上百个冲压件,几十套工装夹具,和上百个工序;制造工艺复杂,包括材料,冲压,焊接,涂装,总装等工艺流程。这些特点就导致引起车身尺寸变异的偏差源很多,车身尺寸质量的控制就十分困难。为了监控车身尺寸质量,就必须对车身进行尺寸测量。在现有汽车工业中,一般都使用大型的三坐标测量仪对白车身进行全尺寸的测量。这个测量的过程,因为测量周期和测量设备的限制,基本上都是抽检,而且抽检的频次很低(1%以下)。在这种小样本抽样的情况下,三坐标测点的合理布置和选择在很大程度上就决定了数据的质量,在上千的白车身三坐标测点中选择合理的关键功能测点并进行适当的管理和改进就显的尤其重要。 2 关键功能测点的选择 2.1 三坐标测点的一般分类: 按照测点功能的不同,一般可以将常见的三坐标测点分为三类: 1)主要定位基准测点:主要定位基准测点能够比较明显的反应某一级零件的定位状态,有助于对由于定位或者是基准发生变异而产生的尺寸变差进行进行识别和诊断,例如:白车身上左右侧围主定位孔的测点数据,就能比较好的反应总拼台工装上左右侧围主定位销的尺寸偏差; 2)产品特征测点:产品特征测点能够反应零件,分总成,白车身,甚至整车的产品特征,产品特征测点更加关注车身特征,轮廓线,车身内外饰的配合尺寸等,产品特征测点的好坏,直接关系到一台车能不能给顾客以良好的第一印象,例如:车身前档风窗开口的测点,就能很好的反馈前档玻璃和前档风窗开口配合的间隙,段差等感知质量指标;3)过程控制测点:过程控制测点是产品特征测点的必要保证,它属于过程控制,是为了控制某一工序对车身尺寸质量的影响而设置的测点,是为了识别和诊断本工序过程中出现的制造偏差,一般的下工序(主要是总装车间)有装配需求的测点也归类为过程控制测点。 2.2 关键功能测点的选择一般原则: 从所有的白车身三坐标测点中选择出合理的关键功能测点一般遵循两个原则: 1)车身的开口原则:白车身一般是由左右侧围,发动机舱(前车体),前部下车体,后部下车体,顶盖6个主要的分总成组成,这6部分拼合以后,就会形成前挡风窗,发动机舱,后挡风窗,行李厢,左右前侧门,左右后侧门8个开口部分。这8个开口区域的尺寸质量对整车尺寸质量十分重要,因为8个开口区域的尺寸质量不仅关系到整车外观质量(前后挡风窗,门盖),而且关系到整车的操控质量(发动机舱)。但是这8个开口区

有效的车身尺寸控制方法

有效的车身尺寸控制方法 作者:文章来源:发布时间:2010-07-13 新浪微博QQ空间人人网开心网更多 图1 车身尺寸变差鱼骨分析 汽车车身尺寸控制是汽车生产的重要质量控制项目,也是一个系统工程,其控制能力综合反映了一个企业的产品开发和质量控制水平,因此是汽车制造企业的关注焦点。江铃全顺工厂结合自身产品的特点,通过不断地总结和探索找到了一个适合自己的车身尺寸控制方法,即抓住根本,控制车身的变差源。 汽车制造四大工艺中冲压和焊接是基础,是整车质量的保证。在冲压焊装的前期工艺规划中,零件模具和车身焊接夹具以及生产线的设计又是车身尺寸控制的关键环节。设计工装模夹具时,不仅要考虑生产纲领,还必须要熟悉产品结构,了解钣金件变形特点,掌握冲压、涂装以及总装工艺的诸多要求,通晓零部件装配精度及公差分配。只有做到这些,才能对模夹具进行全方位的设计,满足生产制造要求,达到车身尺寸质量要求。下面结合全顺工厂的经验谈谈车身尺寸的控制方法。 变差的来源 由于所有制造过程在人员、机器、材料、方法、环境以及测量方面都存在变动因素(如图1所示),所以车身尺寸的变差不可避免,在制造上也就有了公差的概念,公差的大小、过程能力的高低取决于控制变差能力的大小,这也具体反映了车身制造的质量水平。经历过多次新产品开发流程,我们总结了6方面造成车身尺寸变差的权重:材料占45%,机器占30%,人员和方法占20%,环境和测量占5%。冲压件在投产阶段对车身尺寸影响非常大,具体如表1所示。

表1 车身尺寸合格率与材料状态的对照 控制变差源 在车身开发阶段,有4个阶段会对车身尺寸产生较大影响,分别为产品设计、工艺开发、试生产及批量生产,各阶段产生的影响程度和侧重点不同。要控制变差源,开发阶段控制占70%,过程控制占30%。在开发阶段,产品设计和工艺开发尤为重要。首先,要建立车身统一基准系统,用于统一从冲压件、零件检具、焊接总成、白车身装配,到总装装配的主定位基准原则,建立MCP(Master Control Point)清单,便于冲压、焊接、总装工艺在开发定位工装时协调一致,避免因工序定位选择不同而产生偏差。其次,产品设计要避免冲压成形工艺过于复杂,减少冲压回弹和零件干涉现象,模夹具设计定位必须可靠,如夹具定位孔必须选择传递冲压的主定位孔,定位面必须选取冲压件的可靠面。再次,工装设计时要便于员工取放料,易于操作和维护,以防生产过程中因人机工程问题造成的尺寸变差。 考虑到车身钣金件回弹,形状不规则,材质及冲压工艺的影响,车身夹具都采用过定位设计以校正零件变形,而且定位夹紧单元都设计成三维或二维方向可调以适应零件变化。一般来说,车身夹具设计遵循的原则为: 1. 对单个工件一般用二销二型面的“定位-夹紧”稳定原则。实质上二销确定了X,Y 向,二型面则强化确定了Z向。对特别大的工件,考虑到钣金弹性件可适当增加销与型面的“定位夹紧”,以增加局部区域的稳定性。 2. 定位尺寸一致性传递原则,即不同工序不同夹具的定位尺寸应一致。 3. 焊点可视原则。 4. 以大尺寸、复杂零部件为先导,其余零件随后装上夹具,即逐次“定位-夹紧”。 5. 定位销精度±0.05mm,定位面精度±0.2mm。 在试生产前,工装夹具的安装非常重要,只有合格的工装才能生产出合格的产品。夹具安装到位后,需使用测量设备(如激光跟踪仪)对所有定位孔面进行全尺寸测量,建立完备的定位基准数据,便于生产期间的车身尺寸协调。一般工装到位后的试生产需要维持6个月,以满足投产不同阶段的质量控制目标。试生产阶段主要是解决实际零件和工装夹具的匹配协调性,同时解决操作过程中的实际困难,直到到达设计要求的节拍以及质量目标才可转入到批量生产。

史上最全的汽车前挡玻璃尺寸讲解

史上最全的汽车前挡玻璃尺寸 前挡尺寸 A奥迪 奥迪TT135*60cm 奥迪A1140*70cm 奥迪A4L145*80cm 奥迪A3140*75cm 奥迪A6L150*75cm 奥迪A5145*80cm 奥迪Q3145*80cm 奥迪Q5150*80cm 奥迪Q5150*80cm 奥迪A8150*75cm B奔驰 奔驰B级140*70cm smart140*70cm 奔驰C级140*70cm 奔驰E级145*80cm 奔驰S级145*80cm 奔驰R级150*80cm

B宝马宝马MINI135*60cm 宝马3系140*70cm 宝马7系150*75cm 宝马5系150*75cm 宝马1系140*70cm 宝马X1145*80cm M3140*75cm 1系M145*80cm 宝马X3150*80cm 宝马6系150*75cm 宝马X5150*80cm 宝马M系150*75cm M5150*75cm 宝马X6150*80cm B宝骏宝骏630140*70cm B北汽骑士150*80cm E系列140*70cm 路霸150*80cm B比亚迪比亚迪F3135*60cm 比亚迪F0135*60cm 比亚迪G3135*60cm 比亚迪G4135*60cm 比亚迪F6140*75cm

比亚迪G6140*75cm 比亚迪L3140*75cm 比亚迪M6145*80cm 比亚迪S8140*75cm 比亚迪E6150*75cm 比亚迪M6145*80cm 速锐140*75cm 思锐145*80cm 比亚迪S6145*80cm D大众捷达135*60cm 老宝来140*70cm 速腾140*70cm 新领驭140*70cm 桑塔纳140*70cm POLO140*70cm 高尔夫6140*75cm 09宝来140*75cm 朗逸140*75cm 迈腾140*75cm Eos140*75cm 帕萨特145*80cm 途观145*80cm 途锐150*80cm

浅谈在线检测与白车身尺寸精度控制

浅谈在线检测与白车身尺寸精度控制 一汽解放汽车有限公司 王治富 李丽芹 赵立彬 1.白车身装配的偏差来源 汽车白车身的制造工艺是一个非常复杂的过程,白车身驾驶室通常由300多个具有复杂空间曲面的薄板冲压零件,在有近100多个装配工位的生产线上大批量、快节奏地焊装而成;同时白车身装配又为一种多层次体系结构,若干零件经焊装夹具焊接成为分总成,分总成又变成下一层装配中的零件。因此中间环节众多,制造偏差很难以控制。 经综合分析其尺寸偏差主要源于以下几个方面:零件本身的偏差、工装夹具定位的不稳定性、焊装变形、操作及工艺的影响(如图) 2.白车身偏差的累积 目前,就我厂来说,检测方式有两种 1、三坐标的常规检测,主要是以一定的频度对白车身驾驶室进行抽样全尺寸检测; 2、在换代驾驶室的焊装线设计上,为了提高白车身的制造精度,在主焊线12工位上安装了在线检测装置对白车身进行100%在线检测。 在线检测装置通常都装在白车身的最后或者后几个工位上,以便对白车身的关键部位进

行检测,监控白车身关键部位的变差情况,以便对问题的及时反映。 但得到的数据通常是最后一个工位的数据,在此之前有11个工序的装配焊接,所以,这最后得道的结果是由12个工序的累积的结果,也就是说,白车身的偏差是由多个工序产生偏差的累积,这样,在分析数据的时候,我们能得到问题的所在,但是究竟是在哪个工序产生的,却很难确定,只能凭经验去分析。扩展开来说,白车身总成是由多个分总成合成,每个分总成也有它本身的累积偏差,同样也会带到白车身总成当中。 所以,我们很自然的想到,对数据的分析要进行工序分离,要做到工序的偏差的分离。在这个问题上,张公绪提出的两种质量的概念,适用于对多工序、多因素加工过程中的质量数据进行针对性的分析和处理,为故障诊断提供依据。工序综合质量也称为总质量,它不但包括本道工序本身固有的加工质量,也包括了所有上道工序加工质量。总质量与所有前道工序和本道工序的加工质量都有关系,反映的是所有工序质量的综合。分质量指的是该道工序固有的质量,只与本道工序的加工和设备情况相关,而与上道工序无关。从生产过程来看,上道工序完成的半成品送到下道工序,经过下道工序加工后,形成综合质量,它包括上道工序的影响和本道工序的作用两部分,从这个角度上说,每道工序都存在两种质量。 如何区别开每个工序质量,以便能更好的发挥在线检测设备及在线检测数据的作用,从而能够更准确的发现问题的所在,减小分析问题的难度,缩短问题处理得时间。是我们需要研究和探索的课题。 3.区别工序质量的几个思路 从我厂的情况来看,第一从设备入手,对各关键装配工序都安装在现检测设备,在我厂新焊装设计的时候,在每个分总成焊装线上都设计了在线检测设备,在关键环节对总成尺寸精度进行严格检测监控,但这样就会带来过高的成本。 第二,利用现有的测量设备(三坐标测量机)进行定期对关键工序进行测量,得到的数据与总成合成后的在线检测数据对比,得出两个工序间的工序质量,从而得出每个关键工序的工序质量,具体的实施方法: 每月对关键工序,即总成形成工序的夹具和总成进行检测,形成统计性的数据表格,分析该工序的工序质量波动的范围是否在可接受的或设计规定的一定范围内,该工序的那些部位能够对后序产生影响,得出该工序的工序质量。 将该数据与在线检测的数据进行对比,分析两者的偏差,将结果纳入过程控制当中,当

新能源汽车特拉斯车身结构材料分析报告

新能源汽车特斯产车身结构材料分析报告

目录 1.车身结构的组成构件 (5) 1.1汽车结构件 (5) 1.2汽车加强件 (5) 1.3汽车覆盖件 (6) 1.3.1发动机盖 (6) 1.3.2翼子板 (7) 1.3.3保险杠 (7) 1.3.4车顶盖 (7) 1.3.5车门 (8) 1.3.6行李箱盖 (8) 2.97%全铝车身,实现极致轻量化 (8) 2.1全铝车身简介 (8) 2.2特斯拉Model S的铝合金结构件 (9) 2.2.1悬挂系统采用镂空锻造铝合金 (10) 2.2.2罕见的铸铝横梁 (11) 2.2.3汽车覆盖件 (11) 2.2.4铝合金制轮毂 (11) 2.3全铝车身“鼻祖”——奥迪ASF车身主要参数 (11) 3.关键区域的高强度钢应用提高乘员安全 (12) 3.1高强度硼钢加固 (12) 3.2汽车防撞梁 (13) 4.特斯拉其他材料使用情况 (13) 5.投资建议 (13) 6.风险提示 (13)

图目录 图1汽车结构件示意图 (5) 图2汽车加强件示意图 (6) 图3汽车覆盖件示意图 (6) 图4发动机盖结构示意图 (7) 图5发动机盖与前翼子板结构示意图 (7) 图6汽车前后保险杠示意图 (7) 图7汽车车门结构示意图 (8) 图8奥迪A8全铝车身 (9) 图9汽车“白车身”——结构件示意图 (9) 图10特斯拉全铝车身 (10) 图11特斯拉Model S悬挂系统 (11) 图12奥迪A8(D5)车身结构材料示意图 (12)

表目录 表1奥迪A8系列白车身重量 (12) 表2特斯拉MODEL S前后防撞梁强度表(MPa) (13) 表3特斯拉MODEL S其他关键构件所用材料 (13)

整车布置设计规范(修改稿)

整车总布置设计规范 1.范围 本标准规定了整车总布置设计的原则、规定及应满足的有关法规等。 本标准适用于公司新产品开发时的整车总布置设计。 2.引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 QC/T490-2000:主图板 QC/T576-1999:轿车尺寸标注编码 GB/T17867-1999:轿车手操纵件、指示器及信号装置的位置 GB14167-1993:安全带固定点 GB11556-1994 :A、区 GB11565-1989:B区 GB11562-1994:前方视野 GB/T13053-1991:脚踏板 SAEJ 1100:头部空间、上下左方便性 3术语和定义 下列术语和定义适用于本标准。 3.1整车总布置 明示所有总成的硬点、关键的参数的布置图 3.2设计硬点 轮距、轴距、总长、总宽、造型风格、油泥模型表面或造型面、人体模型尺寸、人机工程校核的控制要求、底盘等与车身相关零部件对车身的控制点线面及控制结构,都称为设计硬点。 4.整车总布置图上应确定的参数 4.1整车的外廓尺寸; 4.2轴距和前、后轮距; 4.3前悬和后悬长度;

4.4发动机、前轮的布置关系; 4.5轮胎型号、静力半径和滚动半径、负载能力; 4.6车箱内长及外廓尺寸; 4.7前轮接地点至前簧座的距离; 4.8前簧中心距; 4.9后簧中心距; 4.10车架前部和后部外宽; 4.11车架纵梁外形尺寸及横梁位置; 4.12前簧作用长度; 4.13后簧作用长度; 5.参数确定原则及设计的一般程序 5.1参数确定原则 以设计任务书和标杆样车为基准,按设计任务书上规定的或标杆样车上测定的参数进行总布置,如确实不能满足的,需提出经上级领导批准后方能更改。 5.2设计的一般程序 1)总布置设计人员在接到新车型的开发任务后,首先要进行整车构思,并参与市场调研和样车分析,在此基础上制定出总的设计原则和明确设计目标; 2)各专业所建立标杆样车的3D数模,并提供给整车布置人员; 3)总布置设计人员将各专业所提供的数模装配好; 4)对各总成的匹配和布置关系等进行分析,明确它们的优点和不足; 5)各专业所建立拟采用的总成的数模,不提供总布置人员; 6)总布置人员对新的数模进行分析,并提出可行性的建议; 7)对方案进行评审; 8)评审后对各总成进行修改或开发; 6.主要尺寸参数的确定

汽车的主要尺寸参数

汽车的主要尺寸参数: 轴距(L ):是描述汽车轴与轴之间距离的参数,通常可通过汽车前后车轮中心来测量。轴距的长短直接影响到汽车的长度、重量和许多使用性能。轴椐短一些,汽车长度就短一些,自重就轻,最小转弯直径和纵向通过角就小,但若轴距过短,则会带来一系列缺点:如车厢长度不足或后悬过长,汽车行驶时纵摆和横摆较大;在制动时或上坡时重量转移较大,使汽车的操纵性和稳定性变坏。 轮距( B ):指同一轴上车轮接地点中心之间的距离,对双胎汽车,则是指两双胎接地点连线之中点之间的距离。轮距对汽车的总宽、总重、横向稳定性和机动性影响较大。轮距愈大,则横向稳定性愈好,对增加轿车车厢内宽也有利。但轮距宽了,汽车的总宽和总重一般也加大,而且容易产生向车身侧面甩泥的缺点。此外,轮距过宽也会影响汽车的安全性,因此,轮距应与车身宽度相适应。 前悬(L F )和后悬(L R ):前悬是指汽车最前端(除灯罩、后视镜等非刚性固定部分外)至前轴中心之间的水平距离。前悬的长度应足以固定和安装驾驶室前支点。发动机、水箱、转向机、弹簧前托架和保险杠等零件和部件。前悬不宜过长,否则,汽车的接近角过小。 后悬:是指汽车最后端(除灯罩等非刚性固定部分外)至后桥中心之间的水平距离,后悬的长度主要决定于货厢长度、轴距和轴荷分配情况,同时要保证适当的离去角。 汽车的外廓尺寸(总长、总宽、总高):汽车的外廓尺寸是根据汽车的用途、道路条件、吨位(或载客数)、外形设计、公路限制和结构布置等因素来确定的。在总体设计时要力求减少汽车的外廓尺寸,以减轻汽车的自重,提高汽车的动力性、经济性和机动性。 每个国家对公路运输车辆的外廓尺寸均有法规限制。这是为了使汽车的外廓尺寸适合本国的公路桥梁、涵洞和铁路运输的标准及保证行驶的安全性。我国对公路车辆的极限尺寸规定如下:汽车总高≤ 4m ;总宽(不含后视镜)≤ 2.5m ;总长:货车(含越野车)≤ 12m ;一般客车≤ 12m ;铰接大客车≤ 18 ;半挂牵引车(含挂车)≤ 16m ;汽车拖挂后总长≤ 20m 。 汽车轮胎尺寸解读

(汽车行业)汽车车身结构设计与结构分析学习

(汽车行业)汽车车身结构设计与结构分析学习

2004.11.17from:《汽车超级读本》 0.汽车的基本构造 汽车壹般由发动机、底盘、车身和电气设备等四个基本部分组成。 汽车发动机:发动机是汽车的动力装置。由机体,曲柄连杆机构,配气机构,冷却系,润滑系,燃料系和点火系(柴油机没有点火系)等组成。按燃料分发动机有汽油和柴油发动机俩种;按工作方式分有二冲程和四冲程俩种,壹般发动机为四冲程发动机。 四冲程发动机的工作过程:四冲程发动机是活塞往复四个行程完成壹个工作循环,包括进气、压缩、作功、排气四个过程。四行程柴油机和汽油机壹样经历进气、压缩、作功、排气的过程。但和汽油机的不同之处在于:汽油机是点燃,柴油机是压燃。 冷却系:壹般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成。汽车发动机采用俩种冷却方式,即空气冷却和水冷却。壹般汽车发动机多采用水冷却。 润滑系:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成。 燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、空气滤清器、进排气歧管等组成。 化油器:是将汽油和空气以壹定的比例混合为壹种雾化气体的装置,这种雾化气体叫可燃混合气,及时适量供入气缸。 汽车的底盘: 传动系:主要是由离合器、变速器、万向节、传动轴和驱动桥等组成。 离合器:其作用是使发动机的动力和传动装置平稳地接合或暂时地分离,以便于驾驶员进行汽车的起步、停车、换档等操作。 变速器:由变速器壳、变速器盖、第壹轴、第二轴、中间轴、倒档轴、齿轮、轴承、操纵机构等机件构成,用于汽车变速、变输出扭矩。 行驶系:由车架、车桥、悬架和车轮等部分组成。它的基本功用是支持全车质量且保证汽车的行驶。 钢板弹簧和减震器:钢板弹簧的作用是使车架和车身和车轮或车桥之间保持弹性联系。减震器的作用是当汽车受到震动冲击时使震动得到缓和。减震器和钢板弹簧且联使用。 转向系:由方向盘、转向器、转向节、转向节臂、横拉杆、直拉杆等组成,作用是转向。 前轮定位:为了使汽车保持稳定直线行驶,转向轻便,减少汽车在行驶中轮胎和转向机件的磨损,前轮、转向主销、前轴三者之间的安装具有壹定的相对位置,这就叫“前轮定位”。它包括主销后倾、产销内倾、前轮前束。前束值是指俩前轮的前边缘距离小于后边缘距离的差值。制动系:机动车的制动性能是指车辆在最短的时间内强制停车的效能。 手制动器的作用:手制动器是壹种使汽车停放时不致溜滑,在特殊情况下,配合脚制动的装置。 液压制动构造:液压制动装置由制动踏板、制动总泵、分泵、鼓式(车轮)制动器和油管等机件组成。 气压制动装置:由制动踏板、空气压缩机、气压表、制动阀、制动气室、鼓式(车轮)制动器和气管等机件组成。 电气设备: 汽车电气设备主要由蓄电池、发电机、调节器、起动机、点火系、仪表、照明装置、音响装置、雨刷器等组成。 蓄电池:蓄电池的作用是供给起动机用电,在发动机起动或低速运转时向发动机点火系及其他用电设备供电。当发动机高速运转时发电机发电充足,蓄电池能够储存多余的电能。蓄电池上每个单电池都有正、负极柱。其识别方法为:正极柱上刻有“+”号,呈深褐色;负极

汽车总布置设计规范

汽车总布置设计规范 一、整车主要参数的确定: 1、前悬、后悬、轴距的确定: 根据设计任务书提供的车身型号、货厢内部尺寸确定前悬、后悬、轴距的尺寸。 1.1前悬长:主要依据车身前悬及车身布置位置,前翻车身还要考虑车身前翻时与保险杠的间隙。 1.2后悬长:也是确定轴距长度,后悬除要符合法规要求之外,要充分考虑对离去角、质心位置的合理性,车身与货厢的合理间隙,应该保证高位进气在车身翻转时有至少30mm间隙。 2、整车高度的确定: 2.1车身高度的确定: 车身高度的确定主要受发动机高低位置的影响,发动机高低位置确定之后,应该保证车身地板与发动机最小间隙在30mm以上。 2.2整车高度确定:(既货厢帽檐或护栏高度的确定) 2.2.1货厢带前帽檐: 应保证车身前翻时,车身及附件与货厢帽檐最小间隙大于60mm。 2.2.2货厢为护栏结构: 安全架与车身顶盖高度差:(GB7258规定:载质量为1吨及1吨以上的货车、农用车为70-100mm)

3、整车宽度的确定: 一般来言,车辆的最宽决定于货厢的宽度。 4、轮距确定: 4.1前轮距: 前轮距的确定实际上就是前桥的选取,前桥的选取主要决定于设计载质量,前轮距主要受车身轮罩的宽度、车轮的偏距影响,并且受到法规(整车外宽不超过 2.5m)的限制,同时要考虑前轮的最大转角。 4.2后轮距: 后轮距的确定实际上就是后桥的选取,后桥的选取主要决定于设计载质量,同时再根据货厢的宽度来选取合适的轮距。 二、驾驶室内人机工程总布置: 1、R点至顶棚的距离:≥910 2、R点至地板的距离:370±130 3、R点至仪表板的水平距离:≥500 4、R点至离合器和制动踏板中心在座椅纵向中心面上的距离:750~850(气制动或带有助力器的离合器和制动器,此尺寸的增加不大于100) 5、背角:5~28° 6、足角:87~95° 7、转向盘外缘至侧面障碍物的距离:≥100(轻型货车≥80) 8、转向盘中心对座椅中心面的偏移量:≤40

浅谈提高白车身功能尺寸合格率的有效管理措施

浅谈提高白车身功能尺寸合格率的有效管理措施 从车身制造来看,制作白车身的总体质量关系到防控缺陷选取的方法。针对于白车身,若要从根本上提升车身的综合性能,就要提升总的尺寸合格率。在日常生产中,注重全方位的流程监管。唯有如此,才能防控隐含的车身尺寸缺陷,确保最佳的精准度。针对于白车身的功能尺寸,探析了日常管理的有效措施,提升生产流程的合格率。 标签:白车身;尺寸合格率;有效管理措施 0 引言 制作车身的流程中若没能及时判断出隐含的缺陷,那么将会干扰后续各步骤的车身生产。一旦产生缺陷,只好追查或召回已经制作成的车身。这样做,就耗费了偏高的初期投资[1]。为杜绝这种弊病,有必要采纳全面的生产管控,从根本入手确保制作出来的白车身能够符合尺寸规格,保证了车身的优质性。有效性的管理措施整合了制造的流程、工装的维护、选取操作方法、实时性的物料查看、保持周边环境等。在常规管理中,还需配备实时性的过程查验,构建一体的控制体系。 1 提升合格率的必要性 白车身在先期制作的进程中,有必要慎重防控潜在的缺陷及弊病,全面提升质量。白车身配备的各类构件都设定了必备的尺寸及功能,要提升制作整车的合格率,不可缺失针对于尺寸的调控监管。日常生产时,一旦查出了某种构件的缺陷,那么很难再去予以补救。在这时,唯有追查制成品或者返修,这样就会耗费额外的更高成本。由此可见,车身需要配备符合规格的功能尺寸,确保吻合了初期要求[2]。 探析全方位的有效管理,应当整合车身操作方法、查验物料的流程、保护周边环境、维护工装、测量方式、人员制造这些方面,都需从严予以管理。从总体上看,这些细微的管理构建了多面体的新模式,同时也区分并且细化了生产白车身的不同职责。依照差别化的准则来监管落实,构建了全面及一体性的流程控制。 2 探析有效的管理 2.1 对于差异性的设备 确保最佳的车身性能,不可缺失配套性的制作设备。设备在运转时,应能维持合适的状态。差别化规则下的分级设备管理整合了多样的要素,也配备了多层次的保障。车身设有成套的工装设备,先期要经过调试才可投入运转。具体来看,在调试夹具后,需要标识精确的夹具线,而后衔接螺栓。若测出夹具变更或者松动,则要及时处理。针对于各层次的工装,拟定了差异性的分级管控。通常来看,

某商用车白车身结构疲劳寿命分析与优化设计

某商用车白车身结构疲劳寿命分析与优化设计 作者:湖南工业李明李源陈斌 摘要:本文基于应力分析结果,采用有效的疲劳寿命预估方法,利用专业耐久性疲劳寿命分析系统MSC.Fatigue 对该型商用车白车身进行S-N 全寿命分析,得其疲劳寿命分布与危险点的寿命值。采用结构优化、合理选材等方法,提高白车身结构的疲劳寿命。 关键词:白车身;有限元;静态分析;疲劳寿命分析;优化 前言 在车身结构疲劳领域的国内研究中,1994 年,江苏理工大学陈龙在建立了车辆驾驶室疲劳强度计算的力学和数学模型基础上,提出了车辆驾驶室疲劳强度研究方法[1]。2001 年,清华大学孙凌玉[2]等首次计算机模拟了汽车随机振动过程。2002 年,上海汇众汽车制造有限公司王成龙[3]等应用FATIGUE 软件的分析,结合疲劳台架试验,探讨了疲劳强度理论在汽车产品零部件疲劳寿命计算中的应用,提出了提高零部件疲劳强度的方法。2004 年,同济大学汽车学院靳晓雄[4]等人提到进行零部件疲劳寿命预估,精确的有限元模型和可靠的材料疲劳数据是必需的,另外获得准确的实际运行工况下的道路输入载荷也非常关键。但由于客观条件的限制,国内这方面的研究非常有限,理论分析的多,对局部零部件研究的多,把车身整体作为研究对象的很少。 本文以某型商用车疲劳寿命仿真分析及优化提高为内容,研究中,首先对白车身结构几何进行网格划分;之后使用MSC.Patran/Nastran 对白车身结构进行静态仿真;然后导入MSC.Fatigue 对白车身结构进行疲劳寿命仿真。在分析的基础上采用结构优化设计的方法优化结构、合理选择材料等,提高白车身结构的静态力学性能与动态疲劳寿命。 1 疲劳寿命计算方法 疲劳寿命计算需要载荷的变化历程、结构的几何参数,以及有关的材料性能参数或曲线[4]。 图1为基于有限元分析结果的疲劳寿命分析流程。

简析重型汽车车身尺寸控制

简析重型汽车车身尺寸控制 摘要:本文介绍了汽车白车身制造过程中的尺寸控制,包括了车身尺寸控制类型、车身尺寸公差的制定和车身尺寸的检测及数据统计分析,及本单位实际生产过程中重型卡车驾驶室尺寸检测控制中的应用实例分析。 关键词:尺寸;控制;检测数据统计分析 前言 高速的汽车工业制造技术发展过程中,汽车车身尺寸控制技术始终扮演着重要的角色。汽车车身尺寸控制技术的提升是汽车制造技术发展提高的需要,它的发展反过来促进了汽车制造能力和制造技术的提高,进而不断的激励促进各汽车制造企业制造出高质量的产品。 1.尺寸检测控制技术 1.1汽车车身尺寸制造过程控制技术 1.1.1汽车车身概念 汽车车身是汽车四大部件之一,它决定了汽车的基本形状、大小和用途。汽车车身是由薄板冲压零件焊成组合件,然后由零件、组合件焊接成几大分总成,由分总成焊接车身总成,装配车门、发动机罩等形成白车身。 1.1.2汽车车身制造基本工艺 车身制造基本工艺包括:a.冲压工艺;b.焊装工艺;c.涂装工艺;d.总装配工艺。 1.1.3汽车车身制造过程尺寸控制 汽车车身制造工艺其中涉及车身尺寸控制的主要为前两部分,而车身冲压工艺是汽车车身生产源头,汽车项目开发过程主要为车身数学模型生成模具,投产得到冲压单件投入焊装车间进行生产,尺寸控制的关键在于数学模型的准确及后期模具开发过程中尺寸的保证能力。焊装夹具是生产产品时的一种辅助手段,它是将工件迅速准确地定位并固定于所定位置,包括引导焊枪或工件的导向装置在内的用于装配和焊接的工艺装备的总称。随着国内外汽车工业的发展,焊接夹具的重要性日益突出,已经成为车身尺寸控制不可或缺的一部分。随着汽车行业的发展,国内外汽车制造厂商对焊装夹具的要求越来越高,这也同时促进了焊装夹具水平的提升,反过来又提升了汽车车身的尺寸精度。 1.1.4国内外车身制造过程尺寸控制

相关主题
文本预览
相关文档 最新文档