当前位置:文档之家› 线性代数试题及答案

线性代数试题及答案

线性代数试题及答案
线性代数试题及答案

2011-2012-2线性代数46学时期末试卷(A)

考试方式:闭卷 考试时间:

一、单项选择题(每小题

3分,共15分)

1.设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。 (A )

α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出,

(C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型

()222

123123

(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.

(A ) 1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.

4.初等矩阵(A );

(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,

,n ααα线性无关,则(C )

A. 12231,,

,n n αααααα-+++必线性无关;

B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;

C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;

D. 以上都不对。

二、填空题(每小题3分,共15分)

6.实二次型()2

3

2221213214,,x x x x tx x x x f +++=秩为2,则=t 7.设矩阵020003400A ??

?

= ? ???

,则1A -=

8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213

21

222331

32

33

a b a b a b a b a b a b a b a b a b =______ ____;

10. 设A 是4×3矩阵,()2R A =,若102020003B ?? ?

= ? ???

,则()R AB =_____________;

三、计算题(每小题10分,共50分)

11.求行列式11

1213

21

22

2331

32

33

a b a b a b D a b a b a b a b a b a b +++=++++++的值。 12.设矩阵111111111A -?? ?

=- ? ?-??

,矩阵X 满足*12A X A X -=+,求X 。

13. 求线性方程组???????=--+=--+=+-+=+-1

341321230

2432143214

321421x x x x x x x x x x x x x x x 的通解。

14.已知()()()()12341,2,2,3,6,6,1,,0,3,0,4,2T T T T

αααα====-,求出它的秩及其一个最大无关组。

15.设A 为三阶矩阵,有三个不同特征值123,,,λλλ123,,ααα依次是属于特征值

123,,,λλλ的特征向量,令123βααα=++, 若3A A ββ=,求A 的特征值并计算行列式

23A E -.

四、解答题(10分)

16. 已知100032023A ?? ?

= ? ???

,求10A

五、证明题(每小题5分,共10分)

17.设ξ是非齐次线性方程组AX b =的一个特解,12,,,r ηηη为对应的齐次线性方程

组0AX =的一个基础解系,证明:向量组12,,,

,r ξηηη线性无关。

18. 已知A 与A E -都是 n 阶正定矩阵,判定1E A --是否为正定矩阵,说明理由.

2010-2011-2线性代数期末试卷(本科A)

考试方式:闭卷统考 考试时间:2011.5.28

一、单项选择题(每小题3分,共15分)

1.设,A B 为n 阶矩阵,下列运算正确的是( )。

A. ();k k k AB A B =

B. ;A A -=-

C. 22()();A B A B A B -=-+

D. 若A 可逆,0k ≠,则111()kA k A ---=;

2.下列不是向量组12,,,s ααα???线性无关的必要条件的是( )。

A .12,,,s ααα???都不是零向量; B. 12,,,s ααα???中至少有一个向量可由其余向量线性表示; C. 12,,,s ααα???中任意两个向量都不成比例; D.

12,,,s ααα???中任一部分组线性无关;

3. 设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( )。

A .列向量组线性无关; B. 列向量组线性相关; C. 行向量组线性无关; D. 行向量组线性相关;

4. 如果( ),则矩阵A 与矩阵B 相似。 A. A B =; B. ()()r A r B =; C. A 与B 有相同的特征多项式;

D. n 阶矩阵A 与B 有相同的特征值且n 个特征值各不相同;

5.二次型()222

123123

(,,)(1)1f x x x x x x λλλ=-+++,当满足( )时,是正定二次型。 A. 1λ>-; B. 0λ>; C. 1λ>; D. 1λ≥。

二、填空题(每小题3分,共15分)

6.设300140003A ??

?

= ? ???

,则()12A E --= ;

7.设(,1,2)ij A i j = 为行列式21

31D =中元素ij a 的代数余子式,则11

12

2122

A A A A = ;

8.100201100010140001201103010?????? ?????

????? ?????-??????

= ;

9.已知向量组123,,ααα线性无关,则向量组122313,,αααααα---的秩为 ;

10. 设A 为n 阶方阵, A E ≠, 且()()3R A E R A E n ++-=, 则A 的一个特征值

λ= ;

三、计算题(每小题10分,共50分)

11.设()1111222

20+a

a A a n n n n a +??

?+

?

=≠ ?

???

,求A 。 12.设三阶方阵A ,B 满足方程2A B A B E --=,试求矩阵B 以及行列式B ,其中

102030201A ?? ?= ? ?-??

13.已知111011001A -??

?

= ? ?-??,且满足2A AB E -=,其中E 为单位矩阵,求矩阵B 。

14.λ取何值时,线性方程组1231231

2321

24551

x x x x x x x x x λλ+-=??

-+=??+-=-?无解,有唯一解或有无穷多解?当

有无穷多解时,求通解。

15. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个极大无关组。

四、解答题(10分)

16.已知三阶方阵A 的特征值1,2,3对应的特征向量分别为1α,2α,3α。其中:

()11,1,1T α=,()21,2,4T α=,()31,3,9T α=,()1,1,3T

β=。

(1)将向量β用1α,2α,3α线性表示;(2)求n A β,n 为自然数。

五、证明题(每小题5分,共10分)

17.设A 是n 阶方阵,且()()R A R A E n +-=,A E ≠;证明:0Ax =有非零解。 18. 已知向量组(I) 1

23,,ααα的秩为3,向量组(II) 1234,,,αααα的秩为3,向量组(III)

1235,,,αααα的秩为4,证明向量组12354,,,ααααα-的秩为4。

2010-2011-1线性代数期末试卷(本科A)

考试方式:闭卷统考 考试时间:2010.12.19

一、单项选择题(每小题3分,共15分)

1.满足下列条件的行列式不一定为零的是( )。

(A )行列式的某行(列)可以写成两项和的形式;

(B )行列式中有两行(列)元素完全相同; (C )行列式中有两行(列)元素成比例; (D )行列式中等于零的个数大于2

n n -个.

2.下列矩阵中( )不满足2

A E =-。

(A )1211-?? ?-??; (B )1211--?? ???; (C )1211-?? ???; (D )1121?? ?--??

.

3. 设,A B 为同阶可逆方阵,则( )。

(A)AB BA =; (B) 存在可逆矩阵1

,P P AP B -=使; (C) 存在可逆矩阵,T

C C AC B =使; (D) 存在可逆矩阵,,P Q PAQ B =使. 4.向量组错误!未找到引用源。线性无关的充分必要条件是( ) (A )错误!未找到引用源。均不为零向量;

(B )错误!未找到引用源。中有一部分向量组线性无关; (C )错误!未找到引用源。中任意两个向量的分量不对应成比例;

(D )错误!未找到引用源。中任意一个向量都不能由其余错误!未找到引用源。个向量线性表示。

5.零为方阵A 的特征值是A 不可逆的( )。

(A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件;

二、填空题(每小题3分,共15分)

6.设???

?

?

??=101020101A ,则22A A -= ;

7.已知(),,,,,,???

??==31211321βα设,A T βα=则A = ;

8.设A 是三阶方阵,且1A =-,则*12A A --= ;

9.已知向量组()()()()12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,αααα====则该向量组的秩为 ;

10. 已知111242335A -?? ?=- ? ?--??,000

20002B λ

??

?

= ? ??

?

,且A 于B 相似,则λ

= 。 三、计算题(每小题10分,共50分)

11.1

23

12

111111111111(0)1

1

1

1n n n

a a D a a a a a ++=

+≠+

12.12.已知3阶非零矩阵B 的每一列都是方程组123123123

220

2030x x x x x x x x x λ+-=??

-+=??+-=? 的解.

①求λ的值;②证明0B =.

13.设3阶矩阵X 满足等式X B AX 2+=,

其中311110012,102,004202A B ???? ? ?== ? ? ? ?????

求矩阵X 。 14.求向量组123411343354,,,,22323342αααα--????????

? ? ? ?

-- ? ? ? ?==== ? ? ? ?

-- ? ? ? ?

--????????

53101α?? ? ?= ? ?-?? 的秩及最大

无关组。

15. 设212312331001(,,)(,,)300430x f x x x x x x x x ??

?? ?

?= ? ? ? ?????

1.求二次型123(,,)f x x x 所对应的矩阵A ;

2. 求A 的特征值和对应的特征向量。

四、解答题(10分)

16. 12(1,3,3),(1,2,0),(1,2,3),T T T a a βαα=-==+-

3(1,2,2)T b a b α=---+, 试讨论b a ,为何值时

(1)β不能用321,,ααα线性表示;

(2)β可由321,,ααα唯一地表示,并求出表示式;

(3)β可由321,,ααα表示,但表示式不唯一,并求出表示式。

五、证明题(每小题5分,共10分)

17.设12,,

,n ααα错误!未找到引用源。是一组n 维向量,证明它们线性无关的

充分必要条件是:任一错误!未找到引用源。维向量都可由它们线性表示。 18.设A 为对称矩阵,B 为反对称矩阵,且,A B 可交换,A B -可逆,证明:

()()

1

A B A B -+-是正交矩阵。

武汉科技大学

2010-2011-2线性代数期末试卷(本科A)

解答与参考评分标准

一、单项选择题(每小题3分,共15分)

1.设,A B 为n 阶矩阵,下列运算正确的是( D )。 A. ();k k k AB A B = B. ;A A -=-

C. 22()();A B A B A B -=-+

D. 若A 可逆,0k ≠,则111()kA k A ---=; 2.下列不是向量组12,,,s ααα???线性无关的必要条件的是( B )。

A .12,,,s ααα???都不是零向量; B. 12,,,s ααα???中至少有一个向量可由其余向量线性表示; C. 12,,,s ααα???中任意两个向量都不成比例; D.

12,,,s ααα???中任一部分组线性无关;

3. 设A 为m n ?矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A )。

A .列向量组线性无关; B. 列向量组线性相关; C. 行向量组线性无关; D. 行向量组线性相关; 4. 如果( D ),则矩阵A 与矩阵

B 相似。 A. A B =; B. ()()r A r B =; C. A 与B 有相同的特征多项式;

D. n 阶矩阵A 与B 有相同的特征值且n 个特征值各不相同;

5.二次型()222123123

(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型. A. 1λ>-; B. 0λ>; C. 1λ>; D. 1λ≥。

二、填空题(每小题3分,共15分)

6.设300140003A ?? ?

= ? ?

??,则()12A E --=1

0011

0220

01??

? ?-

? ??

?

7.设(,1,2)ij A i j = 为行列式21

31D =

中元素ij a 的代数余子式,则11

12

2122

A A A A = -1 ;

8.100201100010140001201103010?????? ????? ????? ?????-??????=210104350?? ? ? ?

?

?;

9.已知向量组123,,ααα线性无关,则向量组122313,,αααααα---的秩为 2 ; 10. 设A 为n 阶方阵, A E ≠, 且()()3R A E R A E n ++-=, 则A 的一个特征值

λ= -3 ;

三、计算题(每小题10分,共50分)

11.设()1111222

20+a

a A a n

n n n a +??

?+

?

=≠ ?

???

,求A 。

解:1

1

1

1

1

11

1

011110

00

2222000

+00

a a A a a n

n

n a

n a

+-==+-- ....................5分 1

11

1111000

(1)10002

00

n

i n

n n n i i a

a i n n a a a a a a

=-=++?

?=

=+=+ ???∑

∑..................10分 12.设三阶方阵A ,B 满足方程2A B A B E --=,试求矩阵B 以及行列式B ,其中

102030201A ??

?= ? ?-??

解:由2A B A B E --=,得()2A E B A E -=+,即

()()A E A E B A E

+-=

+ ......................3分

由于202040202A E ?? ?

+= ? ?-??,320A E +=≠,

0020

2020

0A E ??

?-= ? ?-?

?

,80A E -=≠,...........................6分

()

()(

)()1

1

1

10

020011

0200102

20

010

0B A E A E A E A E -----???? ? ?=-++=

-=

= ? ? ? ?-?

?

?

?

,....8分 所以18B =。......................................................10分

13.已知111011001A -??

?

= ? ?-??

,且满足2A AB E -=,其中E 为单位矩阵,求矩阵B 。

解:因为111

01110001A -==-≠-,所以A 可逆,...........................2分 由2A AB E -=,得2A E AB -=,故()121A A E A AB ---=,即1A A B --=,....4分

不难求出 1112011001A ---??

?

= ? ?-??,.................................8分

因此1111112021011011000001001000B A A ----??????

? ? ?

=-=-= ? ? ? ? ? ?--?????? 。...............10分

14.λ取何值时,线性方程组1231231

2321

24551

x x x x x x x x x λλ+-=??

-+=??+-=-?无解,有唯一解或有无穷多解?当

有无穷多解时,求通解。

解:由于方程个数等于未知量的个数,其系数行列式

()()221

11541544

5

5

A λ

λ

λλλλ-=-=--=-+;.......................3分

1.当4

5

λ=-时,有()421

15

104555,112455104000945

51A b r ??-

- ?

--?? ? ?

?=-

--- ? ?

? ???-- ? ??

?,

()()2,3R A R A b =≠=,原方程组无解;

..............................5分 2.当1λ=时,有()211103331001,1112111

20111455109990000A b r r ---??????

? ? ?

=---- ? ? ? ? ? ?----??????, 所以原方程的通解为1230111,10x x k x ?????? ? ? ?

=+- ? ? ? ? ? ???????..................................8分

3.当4

1,5

λ≠-时,方程组有唯一解。....................................10分

15. 设()12340,4,2,(1,1,0),(2,4,3),(1,1,1)αααα===-=-,求该向量组的秩和一个极大无关组。 解:

()2

13

41021102110211441~0462~0462023102310000T

T T

T

A αααα------??????

? ? ?== ? ? ? ? ? ???????

.6分

所以向量组的秩为2,.................................................8分

因为任意两个向量均不成比例,

所以任意两个向量都是该向量组的一个极大无关组。......................10分

四、解答题(10分)

16.已知三阶方阵A 的特征值1,2,3对应的特征向量分别为1α,2α,3α。其中:()11,1,1T

α=,()21,2,4T

α=,()31,3,9T

α=,()1,1,3T

β=。

(1)将向量β用1α,2α,3α线性表示;(2)求n A β,n 为自然数。 解:(1)把β用123,,ααα线性表示,即求解方程

112233x x x αααβ++=

得 分

11111111

10

01

2310120

010214

930

110

011

r r ??????

? ? ?- ? ? ? ? ? ??

??

??

?

故12322βααα=-+。.................................................5分 (2)()1231232222n n n n n A A A A A βαααααα=-+=-+

11211122331233222322223223.223n n n n n n n n n n n λαλαλαααα++++++??-+ ?

=-+=-+=-+ ? ?-+??

..........10分

五、证明题(每小题5分,共10分)

17.设A 是n 阶方阵,且()()R A R A E n +-=,A E ≠;证明:0Ax =有非零解。 证明:()01A E A E R A E ≠?-≠?-≥,................................2分 ()()()()1R A R A E n R A n R A E n +-=?=--≤-,

........................4分 所以0Ax =有非零解。.................................................5分 18. 已知向量组(I) 123,,ααα的秩为3,向量组(II) 1234,,,αααα的秩为3,向量组(III)

1235,,,αααα的秩为4,证明向量组12354,,,ααααα-的秩为4。

证明:向量组123,,ααα的秩为3,向量组1234,,,αααα的秩为3,所以123,,ααα为向量组1234,,,αααα的一个极大无关组,因此4α可唯一的由123,,ααα线性表示;....2分 假设向量组12354,,,ααααα-的秩不为4,又因为向量组123,,ααα的秩为3,所以向量组12354,,,ααααα-的秩为3,因此54αα-也可唯一的由123,,ααα线性表示;...4分 因此5α可唯一的由123,,ααα线性表示,而向量组1235,,,αααα的秩为4,即

1235

,,,αααα线性无关,因此5α不能由123,,ααα线性表示,矛盾,因此向量组12354,,,ααααα-的秩为4。

.............................................5分

武汉科技大学

2010-2011-1线性代数期末试卷(本科A)

解答与参考评分标准

一、单项选择题(每小题3分,共15分)

1.满足下列条件的行列式不一定为零的是( A )。

(A )行列式的某行(列)可以写成两项和的形式;(B )行列式中有两行(列)元素完全相同; (C )行列式中有两行(列)元素成比例; (D )行列式中等于零的个数大于2

n

n -个.

2.下列矩阵中( C )不满足2

A E =-。

(A )1211-?? ?-??; (B )1211--?? ???; (C )1211-?? ???; (D )1121?? ?

--??

. 3. 设,A B 为同阶可逆方阵,则( D )。

(A)AB

BA =; (B) 存在可逆矩阵1,P P AP B -=使;

(C) 存在可逆矩阵,T

C C AC B =使; (D) 存在可逆矩阵,,P Q PAQ B =使.

4.向量组错误!未找到引用源。线性无关的充分必要条件是( D )

(A )错误!未找到引用源。均不为零向量; (B )错误!未找到引用源。中有一部分向量组线性无关;

(C )错误!未找到引用源。中任意两个向量的分量不对应成比例;

(D )错误!未找到引用源。中任意一个向量都不能由其余错误!未找到引用源。个向量线性表示。

5.零为方阵A 的特征值是A 不可逆的( B )。

(A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件.

二、填空题(每小题3分,共15分)

6.设???

?

? ??=101020101A ,则22A A -= 0 。

7.已知(),,,,,,??

? ??==31211321βα设,A T βα=则A =1112322

133312

?

? ?

? ? ? ? ? ??

?

; 8.设A 是三阶方阵,且1A =-,则*1

2A A --= 27 ;

9.已知向量组()()()()12341,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,αααα====则该向量组的

秩为2 ;

10. 已知

111

242

335

A

-

??

?

=-

?

?

--

??

00

020

002

B

λ??

?

= ?

?

??

,且A 于B相似,则

λ= 6 。

三、计算题(每小题10分,共50分)

11.

1

2

312

1111

1111

1111(0)

1111

n n

n

a

a

D a a a a

a

+

+

=+≠

+

解:

1

21

32

111111

11

11110111

11110111

11110111

n

n n

a

a a

D a a

a a

+

++

=+=+

++

5分

1

1

1

2

2

1

1

111

1111

100

000

100

000

100

000

n

i i

n

n

a

a

a

a

a

a

a

=

+

-

=-=

-

8分

12

1

1

1

n

n

i i

a a a

a

=

??

=+

?

??

∑10分

12.已知3阶非零矩阵B的每一列都是方程组

123

123

123

220

20

30

x x x

x x x

x x x

λ

+-=

?

?

-+=

?

?+-=

?

的解.

①求λ的值;②证明0

B=.

解:①因为非零矩阵B的每一列都是齐次方程组的解,所以齐次线性方程组

123

123

123

220 20 30 x x x

x x x

x x x

λ

+-=?

?

-+=?

?+-=?

有非零解,即122

210451

311

λλλ

-

-=?+=?=

-

5分

②由题意可得1222110()()3311B R B R A n -?? ?

-=?+== ? ?-??

, 8分

因为()1R A >,所以()3R B <,即B 不可逆,所以0B = 10分 注:第二问也可以用反证法,方法对即可。

13.设3阶矩阵X 满足等式X B AX 2+=,其中311110012,102.004202A B ????

? ?

== ? ? ? ?????

求矩阵X 。

解:()22AX B X A E X B =+?-=1112012,002A E ?? ?

-=- ? ???

3分

()1111101001112,012102~010100,002202001101A E B ???--?

? ?

-=- ? ? ? ????? 8分

所以111100101X --?? ?

= ? ???

。 10分

14.求向量组123451134333541,,,,2232033421ααααα--??????????

? ? ? ? ?-- ? ? ? ? ?=====

? ? ? ? ?-- ? ? ? ? ?---??????????的秩及最大无关组。 解:()123451

1343113433

354100488,,,,~

22320003693

3

4

210051010ααααα----????

? ?

----

? ?

= ? ?---- ? ?

-----????

1134300488~0000000000--?? ?--

? ? ???, 6分 所以()12345,,,,2R ααααα=,任意两个不成比例的向量组均是12345,,,,ααααα的一个极大无关组。 10分

15. 设212312331001(,,)(,,)300430x f x x x x x x x x ??

?? ?

?= ? ? ? ?????

1.求二次型123(,,)f x x x 所对应的矩阵A ;

2. 求A 的特征值和对应的特征向量。

解:1. 二次型123(,,)f x x x 所对应的矩阵100032023A ??

?

= ? ???

, 3分

2.()()2

10003201505,10

2

3A E λ

λλλλλλ

--=

-=?--=?=-(二重) 6分

当5λ=时,()40010050022~011022000A E x -????

? ?

-=?-- ? ? ? ?-????

所以1011k ??

?

? ???为5λ=对应的特征向量。 8分

当1λ=时,()0000000022~011022000A E x ???? ? ?

-=? ? ? ? ?????

所以23100,101k k ????

? ?

- ? ? ? ?????

为1λ=对应的特征向量。 10分

四、解答题(10分)

16. 12(1,3,3),(1,2,0),(1,2,3),T T T a a βαα=-==+-3(1,2,2)T b a b α=---+, 试讨论b a ,为何值时

(1)β不能用321,,ααα线性表示;(2)β可由321,,ααα唯一地表示,并求出表示式;(3)β可由321,,ααα表示,但表示式不惟一,并求出表示式.

解:问题转化为方程组求解问题??

?

??

-=++-=+-++=-+3

)2(33)2()2(2132321321x b a ax x b x a x x x x

增广矩阵11

1111112223~010323000A a b a b a a b a b --???? ? ?=+--- ? ?

? ?-+--???? 5分

(1)0a =时,(若b=0则2)(,1)(==A R A R ,若≠b 0则()2,()3R A R A ==) 方程组无解,即β不能用321,,ααα线性表示 6分 (2)0,0≠-≠b a a 时,()()3R A R A ==,方程组有唯一解,即β可由321,,ααα唯一地表示,求表示式:

111111110110010100101000000100010a a A a b a a b --??

???? ? ? ??-?? ?

? ? ? ? ?-??????

1112(1)a a βαα?=-+ 8分

(3)0,0a a b ≠-=时,()()2R A R A ==,β可由321,,ααα表示,但表示式不惟一,

求表示式:11111110010101100000000a a A a a --????

? ??-?- ? ? ? ?????

11

123(1)()a a k k βααα?=-+++, 10分

五、证明题(每小题5分,共10分)

17.设12,,

,n ααα错误!未找到引用源。是一组n 维向量,证明它们线性无关的充分必要条

件是:任一错误!未找到引用源。维向量都可由它们线性表示。

证明:充分性:12,,

,n ααα是一组n 维向量,任一n 维向量都可由它们线性表示。因此有E

可由12,,

,n ααα线性表示,因此有

()()()n R E R A n R A n =≤≤?=?12,,,n ααα线性无关。 3分

必要性:,n b R ?∈12,,

,n ααα线性无关,因此有12,,

,,n b ααα线性相关,即

()12,,,n x b ααα=有惟一解,所以向量b 可由向量组12,,

,n ααα线性表示,由b 的任意性

可得任一错误!未找到引用源。维向量都可由12,,,n ααα线性表示。

5分

18.设A 为对称矩阵,B 为反对称矩阵,且,A B 可交换,A B -可逆,证明:

()()

1

A B A B -+-是正交矩阵。

证明:A 为对称矩阵T A A ?=,B 为反对称矩阵T B B ?=-,

,A B 可交换()()()()AB BA A B A B A B A B ?=?+-=-+, 2分

()()()

()()

()()

()()

()

()()()

11

11

1

T

T

T

A B A B A B A B A B A B A B A B A B A B A B E

-----+-+-=

-++=+-+-= 4分

所以()()1

A B A B -+-是正交矩阵。 5分

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

2019春北京大学网络教育学院线性代数作业答案

春季学期线性代数作业 一、选择题(每题2分,共20分) 1.(教材§1.1,课件第一讲)行列式(B )。 A.13 B.-11 C.17 D.-1 2.(教材§1.3,课件第二讲)下列对行列式做的变换中,(B )不会改变行列式的值。 A.将行列式的某一行乘以一个非零数 B.将行列式的某一行乘以一个非零数后加到另外一行 C.互换两行 D.互换两列 3.(教材§2.2,课件第四讲)若线性方程组无解,则a的值为( D )。 A.1 B.0 C.-1 D.-2 4.(教材§3.3,课件第六讲)下列向量组中,线性无关的是(C )。 A. B. C. D. 5.(教材§3.5,课件第八讲)下列向量组中,(D )不是的基底。 A. B. C. D.

6.(教材§4.1,课件第九讲)已知矩阵,矩阵和矩阵均为n阶矩阵,和均为实数,则下列结论不正确的是( A )。 A. B. C. D. 7.(教材§4.1,课件第九讲)已知矩阵,矩阵,则 ( C )。 A. B. C. D. 8.(教材§4.1,课件第九讲)已知矩阵,为矩阵,矩阵为矩阵,为实数,则下列关于矩阵转置的结论,不正确的是( D )。 A. B. C. D. 9.(教材§4.3,课件第十讲)下列矩阵中,(A )不是初等矩阵。 A. B. C. D. 10.(教材§5.1,课件第十一讲)矩阵的特征值是(B )。 A. B. C. D. 二、填空题(每题3分,共30分)

11.(教材§1.1,课件第一讲)行列式的展开式中,的一次项的系数是 2 。 12.(教材§1.4,课件第三讲)如果齐次线性方程组有非零解,那么的值为0或1 。 13.(教材§2.3,课件第四讲)齐次线性方程组有(填“有”或“没有”)非零解。 14. (教材§3.1,课件第五讲)已知向量则 。 15. (教材§3.3,课件第六讲)向量组是线性无关(填“相关”或“无关”)的。 16. (教材§4.1,课件第九讲)已知矩阵,矩阵,那 么。 17. (教材§4.2,课件第九讲)已知矩阵,那么 。 18. (教材§5.1,课件第十一讲)以下关于相似矩阵的说法,正确的有1,2,4

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符 号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 5 1122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式10 2 3 25403--中元素-2的代数余子式是 —11 。 5.行列式25 11 22 14--x 中,x 的代数余子式是 — 5 。 6.计算00000d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组 ?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 04 21 911 7018904 2 1 351 1321 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81 1 11021 29 42311-=-=D 108 1 103229543112-==D 135 10 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是:

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数试题及答案.

线性代数(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 12 11 =a a a a ,则=1 6 030322211211 a a a a 3。 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_ _2___________. 6. 设A为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 7。若A为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 23453 2011 11111 2 1403 54321=D ,则=++++4544434241A A A A A 9。 向量α=(2,1,0,2)T -的模(范数)______________ 。 10。若()T k 11=α与()T 121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1。 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ ? D .r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8? B.8- C. 34?? D.3 4- 3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A *kA )(B *A k n )(C *-A k n 1)(D *A 5。 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____. )(A AC AB = 则 C B =)(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)()(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分.1-3每小题8分,4-7每小题9分) 1。 计算n 阶行列式22221 =D 22222 22322 2 12 2 2-n n 2 222 . 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2)3(1--. 3.求矩阵的逆 111211120A ?? ?=- ? ???

河北工业大学线性代数作业答案

线性代数作业提示与答案 作业(1) 一.k x x k x k x -====4321,0,, 二.??? ??? ???==--=++=24 13212 211,757975,767171k x k x k k x k k x 三.1.阶梯形(不唯一):????? ? ???? ??---140 10612 0071210 02301 ,简化阶梯形?????? ? ????? ????- 10000 02 1 100 00 01002 7 01 秩为4; 2.简化阶梯形为单位矩阵. 四.1.其系数矩阵的行列式值为 2 )1)(2(-+λλ(该方程组的系数矩阵为方阵,故可以借助于行列式来判定) 当12≠-≠λλ,时,方程组只有零解, 当2-=λ时,通解为=x ???? ? ?????111k ; 当1=λ时,通解为=x T T k k ]1,0,1[]0,1,1[21-+-; 2.?? ?? ???? ??? ???? ? -++-- - -2200123 23012 1211~2 λλλλA , 当2-≠λ时,方程组有唯一解; 当2-=λ时,方程组有无穷解,通解为=x T T k ],,[],,[022111+.

作业(2) 一.1. =x 1,2,3; 2. !)(n n 11-- 3.-120 4. ()() !) 1(2 21n n n --- 5. 41322314a a a a 6. 2,0=x 7.abc 3- 8.12 二.1.1; 2.以第二列、第三列分别减去第一列,再把第二列、第三列分别加到第一列上,得到 333 33 32222221 11111b a a c c b b a a c c b b a a c c b +++++++++=23 2 3 3221 11c b a c b a c b a 3. 0; (注:行列式计算中注意行列式的表示方法不要和矩阵表示方法混淆,而且计算过程中用的是等号) 4.12 2 2 +++γβα 作业(3) 一.1.c; 2. d ; 3.a 二.1.将第n ,,, 32列都加到第一列上,提出公因子∑=+ n i i a x 1 ,得到(∑=+ n i i a x 1 )1-n x . 2.由第二列起,各列均减第一列,按第二行展开,得)!(22--n . 3.由第1-n 行至第一行,相继将前一行元素乘以1-后加到后一行上,得到 .)1(0 1 00001011 111 22 1 2) 1(n n n n n n --=-- 4.按第一列展开,得到行列式的值为.)(n n n y x 11+-+ 三.3)(=A R (注:用矩阵的行初等变换化为梯矩阵,数非零行即可.注意矩阵的表

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

专科《线性代数》大作业

学习中心 姓 名_____________ 学 号 西安电子科技大学网络教育 2014学年上学期 《线性代数》期末考试试题 (综合大作业) 考试说明: 1.大作业于2014年06月17日下发,2014年06月29日交回。 2.试题必须独立完成,如发现抄袭、雷同均按零分计。 3. 试题须手写完成,不能提交打印稿和复印稿,否则计零分。 一、选择题:(每小题3分,共18分) 1.向量组1α=(),0,0,1T 2α=(),0,2,1T 3α=()T 5,0,0是线性 ; ()A 相关; ()B 无关; ()C 表示; ()D 组合. 2.设有向量1α=()T k ,3,1,4-,2α=,41,43,41,1T ??? ??- 当k = 时,1α,2α为线性相关; ()A 1; ()B -1; ()C 3; ()D -4. 3.行列式8 76 54321 0000 00 00a a a a a a a a 中元素7a 的代数余子式为 ; ()A 542632a a a a a a - ()B 542631a a a a a a - ()C 632542a a a a a a - ()D 854863a a a a a a -. 4.设 10010020 000 1000 -=a a ,则a = ; ()A 21- ; ()B 21; ()C -1; ()D 1.

5.设??????????=1011α,??????????=0102α,??????????=1003α,向量???? ? ?????--=011β可表示为321,,ααα的线性 组合:321αααβc b a ++=,则 ; ()A 1,1,1-=-=-=c b a ; ()B 1,1,1-=-==c b a ; ()C 1,1,1-==-=c b a ; ()D 1,1,1=-=-=c b a . 6.设有矩阵23?A ,32?B ,33?C ,下列矩阵运算可行的是 ; ()A AC ; ()B ABC ; ()C C B T ; ()D BC AB -. 二、填空题:(每小题3分,共21分) 1.设34?A ·5?B k = C n m ?, 则 k = ,m = ,n = ; 2.设A =??????-432101,B =?? ????065231,则T AB = ; 3.设A =???? ? ?????--c b c a b c 000,则A 2= ; 4.设A =??????????--210413161,B =???? ??????--121312510, 则 (1)A +B 2= , (2)A 2-B = ; 5.排列534162的逆序数()=534162 t ; 6.非齐次线性方程组x A =b 有解的充要条件是 。 三、计算题:(共20 分) 1.4 1111411 1141 1114 ===

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

数值线性代数大作业报告

数值线性代数实验 大报告 指导老师:赵国忠 姓名:1108300001 刘帅 1108300004 王敏 1108300032 郭蒙

一、实验名称:16题P75上机习题 二、实验目的:编制通用的子程序,完成习题的计算任务 三、实验内容与要求: P75上机习题 先用熟悉的计算机语言将算法2.5.1编制成通用的子程序,然后再用所编制的子程 序完成下面两个计算任务: (1) 估计5到20阶Hilbert 矩阵的无穷范数条件数。 (2) 设A n = 1 1...111... .......... ... 1-1 (01) -- 先随机地选取x ∈R n ,并计算出b=A n x;然后再用列主元Gauss 消去法求解该方程组,假定计算解为∧x .试对n 从5到30估计计算解∧ x 的精度,并且与真实的相对误差作比较。 四、 实验原理: (1)矩阵范数(martix norm )是数学上向量范数对矩阵的一个自然推广。利用for 循环和cond (a )Hilbert 求解Hilbert 矩阵的无穷范数,再利用norm(a,inf)求矩阵的无穷范数条件数。 (2)本题分为4步来求解。先运用rand 随机选取x ∈R n ,输入A n 矩阵,编制一个M 文件计算出b 。第二步用列主元高斯消去法求解出方程的解X2。第三步建立M 文件: soluerr.m 估计计算解∧x 的精度。第四步, 建立M 文件: bijiao.m ,与真实相对误差作比较。 五、 实验过程: (1)程序: clear for n=5:20

for i=1:n for j=1:n a(i,j)=1/(i+j-1); end end c=cond(a); f=norm(c,inf); fprintf('n=%3.0f\nnorm(c,inf)%e\n',n,f) end 运行结果: n= 5 norm(c,inf)4.766073e+005 n= 6 norm(c,inf)1.495106e+007 n= 7 norm(c,inf)4.753674e+008 n= 8 norm(c,inf)1.525758e+010 n= 9 norm(c,inf)4.931542e+011 n= 10 norm(c,inf)1.602467e+013 n= 11 norm(c,inf)5.224376e+014 n= 12 norm(c,inf)1.698855e+016 n= 13 norm(c,inf)3.459404e+017 n= 14 norm(c,inf)4.696757e+017 n= 15 norm(c,inf)2.569881e+017 n= 16 norm(c,inf)7.356249e+017 n= 17 norm(c,inf)4.362844e+017 n= 18 norm(c,inf)1.229633e+018 n= 19 norm(c,inf)9.759023e+017 n= 20 norm(c,inf)1.644051e+018 (2)程序:

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

线性代数课后作业答案(胡觉亮版)

第一章 1.用消元法解下列线性方程组: (1)??? ??=++=++=++. 5432,9753,432321 321321x x x x x x x x x 解 由原方程组得同解方程组 12323234,23,x x x x x ++=?? +=? 得方程组的解为13232, 2 3. x x x x =-?? =-+?令3x c =,得方程组的通解为 c x c x c x =+-=-=321,32,2,其中c 为任意常数. 2.用初等行变换将下列矩阵化成行阶梯形矩阵和行最简形矩阵: (2)???? ? ??--324423211123. 解 1102 232111232551232041050124442300000000r r ? ?- ?-???? ? ? ? ? -??→--??→- ? ? ? ? ?- ????? ? ?? ? ,得 行阶梯形:????? ? ?---0000510402321(不唯一);行最简形:???? ??? ? ? ? - -00004525 10212 01 3.用初等行变换解下列线性方程组: (1)?? ? ??=+-=+-=++.3,1142,53332321321x x x x x x x x

解 2100313357214110109011320019r B ? ? ??? ? ? ?=-??→- ? ? ?- ??? ? ?? ?M M M M M M , 得方程组的解为 9 20 ,97,32321=-==x x x . (2)??? ??=+++=+++=++-. 2222,2562, 1344321 43214321x x x x x x x x x x x x 解 114311143121652032101222200001r B --???? ? ? =?? →-- ? ? ? ????? M M M M M M , 得方程组无解. 第二章 1.(2) 2 2 x y x y . 解 原式()xy y x =-. (2)01000 020 00010 n n -L L L L L L L L L . 2.解 原式1 100 020 (1) 001 n n n +=-=-L L M M M L !)1(1n n +-

相关主题
文本预览
相关文档 最新文档